Shape Transitions and Coexistence: self-consistent mean-field and beyond Dario Vretenar University of Zagreb #### How can nuclear matter support a diversity of shapes? Evolution of shell structure with nucleon number and/or angular momentum. Shape transitions within a single nucleus (shape coexistence) or as a function of nucleon number (shape evolution) → universal phenomena that occur in light, medium-heavy, heavy and superheavy nuclei. Universal theory framework: Nuclear Energy Density Functionals Basic implementation: the self-consistent mean field method → produces semi-classical energy surfaces as functions of intrinsic deformation parameters. - → include static correlations: deformations & pairing - → do not include dynamic (collective) correlations that arise from symmetry restoration and quantum fluctuations around mean-field minima ## Collective Hamiltonian Prog. Part. Nucl. Phys. **66**, 519 (2011). Phys. Rev. C **79**, 034303 (2009). ... nuclear excitations determined by quadrupole vibrational and rotational degrees of freedom: $$H_{\text{coll}} = \mathcal{T}_{\text{vib}}(\beta, \gamma) + \mathcal{T}_{\text{rot}}(\beta, \gamma, \Omega) + \mathcal{V}_{\text{coll}}(\beta, \gamma)$$ $$\mathcal{T}_{\text{vib}} = \frac{1}{2} B_{\beta\beta} \dot{\beta}^2 + \beta B_{\beta\gamma} \dot{\beta} \dot{\gamma} + \frac{1}{2} \beta^2 B_{\gamma\gamma} \dot{\gamma}^2$$ $$\mathcal{T}_{ m rot} = rac{1}{2} \sum_{k=1}^{3} \mathcal{I}_k \omega_k^2$$ The dynamics of the collective Hamiltonian is determined by: the self-consistent collective potential, the three mass parameters: $B_{\beta\beta}$, $B_{\beta\gamma}$, $B_{\gamma\gamma}$, and the three moments of inertia I_k , functions of the intrinsic deformations β and γ collective eigenfunction: $$\Psi^{IM}_{\alpha}(\beta,\gamma,\Omega) = \sum_{K \in \Delta I} \psi^I_{\alpha K}(\beta,\gamma) \Phi^I_{MK}(\Omega)$$ ✓ an intuitive interpretation of mean-field results in terms of *intrinsic shapes* and *single-particle states* the *full model space* of occupied states can be used; no distinction between core and valence nucleons, *no need for effective charges!* ## Shape evolution and triaxiality in germanium isotopes Phys. Rev. C 89, 044325 (2014). ... formation of deformed minima → regions of low single-particle level density around the Fermi surface. ...shallow triaxial minimum at $\gamma = 30^{\circ}$ → important role of dynamical effects related to restoration of broken symmetries and fluctuations in collective coordinates. #### Quadrupole collective Hamiltonian based on the functional DD-PC1 Distribution of *K* components (projection of the angular momentum on the body-fixed symmetry axis) in the collective wave functions of the nucleus ⁷⁶Ge. $$N_K = 6 \int_0^{\pi/3} \int_0^\infty \left| \psi_{\alpha,K}^J(\beta,\gamma) \right|^2 \beta^4 |\sin 3\gamma| d\beta d\gamma.$$ → more K-mixing for states with higher angular momenta. The level of K-mixing is reflected in the staggering in energy between odd- and even-spin states in the γ band: $$S(J) = \frac{E[J_{\gamma}^{+}] - 2E[(J-1)_{\gamma}^{+}] + E[(J-2)_{\gamma}^{+}]}{E[2_{1}^{+}]}$$ Deformed γ -soft potential \Rightarrow S(J) oscillates between negative values for even-spin states and positive values for odd-spin states. γ -rigid triaxial potential \Rightarrow S(J) oscillates between positive values for even-spin states and negative values for odd-spin states. The mean-field potential of ⁷⁶Ge is γ soft. The inclusion of collective correlations (symmetry restoration and quantum fluctuations) drives the nucleus toward triaxiality, but not strong enough to stabilize a $\gamma \approx 30^{\circ}$ shape. ### Shape phase transitions in medium-heavy and heavy nuclei $N \approx 90$ rare-earth nuclei \rightarrow one of the best examples of shape evolution and shape phase transition. #### Ground-state transitions: - ⇒ the physical control parameter nucleon number discrete integer values! - ⇒ order parameters expectation values of operators that as observables characterize the state of a nuclear system. Experimental evidence for a first-order shape phase transition at $N\approx90 \rightarrow$ associated with the X(5) critical symmetry. ... using collective wave functions obtained by diagonalization of the five-dimensional Hamiltonian microscopic calculation of order parameters for a first-order nuclear QPT between spherical and axially deformed shapes. $$\hat{T}(E0) = \sum_{k} e_k r_k^2$$ $$\rho^{2}(E0; 0_{2}^{+} \to 0_{1}^{+}) = \left| \frac{\left\langle 0_{2}^{+} | \hat{T}(E0) | 0_{1}^{+} \right\rangle}{eR^{2}} \right|^{2}$$ 8.0 #### Lowest 0+ excitations in N ≈ 90 rare-earth nuclei J. Phys. G: Nucl. Part. Phys. 43 (2016) 024005 ... eigenspectra of the 5D quadrupole collective Hamiltonian: Criteria for the excited 0^+ state to be labelled as a β -vibration: $$B(E2; 0_{\beta}^{+} \to 2_{1}^{+}) \approx 12 - 33 \ W.u.$$ $B(E2; 2_{\beta}^{+} \to 0_{1}^{+}) \approx 2.5 - 6 \ W.u.$ $\rho^{2}(E0; 0_{2}^{+} \to 0_{1}^{+}) \approx (85 - 230) \times 10^{-3}$ Criteria for the excited 0^+ state to be labelled as a β -vibration: $$B(E2; 0_{\beta}^{+} \to 2_{1}^{+}) \approx 12 - 33 \ W.u.$$ $B(E2; 2_{\beta}^{+} \to 0_{1}^{+}) \approx 2.5 - 6 \ W.u.$ $\rho^{2}(E0; 0_{2}^{+} \to 0_{1}^{+}) \approx (85 - 230) \times 10^{-3}$ Criteria for the excited 0^+ state to be labelled as a β -vibration: $$B(E2; 0_{\beta}^{+} \to 2_{1}^{+}) \approx 12 - 33 \text{ W.u.}$$ $B(E2; 2_{\beta}^{+} \to 0_{1}^{+}) \approx 2.5 - 6 \text{ W.u.}$ $\rho^{2}(E0; 0_{2}^{+} \to 0_{1}^{+}) \approx (85 - 230) \times 10^{-3}$ β -vibration or shape coexistence? #### Quadrupole and octupole shape transition in thorium J. Phys. G: Nucl. Part. Phys. 43 (2016) 024005 ...quadrupole-octupole collective Hamiltonian: $$\hat{H}_{\text{coll}} = -\frac{\hbar^2}{2\sqrt{w\mathcal{I}}} \left[\frac{\partial}{\partial \beta_2} \sqrt{\frac{\mathcal{I}}{w}} B_{33} \frac{\partial}{\partial \beta_2} - \frac{\partial}{\partial \beta_2} \sqrt{\frac{\mathcal{I}}{w}} B_{23} \frac{\partial}{\partial \beta_3} - \frac{\partial}{\partial \beta_3} \sqrt{\frac{\mathcal{I}}{w}} B_{23} \frac{\partial}{\partial \beta_2} \right] + \frac{\partial}{\partial \beta_3} \sqrt{\frac{\mathcal{I}}{w}} B_{22} \frac{\partial}{\partial \beta_3} + \frac{\hat{J}^2}{2\mathcal{I}} + V(\beta_2, \beta_3)$$... systematics of energy spectra of the positive-parity ground- state band (K^{π} = 0⁺) and the lowest negative-parity (K^{π} = 0⁻) sequences in ^{224–232}Th. ## Nuclear Energy Density Functional Framework \checkmark ...description of universal collective phenomena that reflect the organisation of nucleonic matter in finite nuclei \rightarrow universal theory framework that can be applied to different mass regions. \checkmark NEDFs provide an economic, global and accurate microscopic approach to nuclear structure that can be extended from relatively light systems to superheavy nuclei, and from the valley of β-stability to the particle drip-lines. ✓ NEDF-based structure models that take into account collective correlations → microscopic description of low-energy observables: excitation spectra, transition rates, changes in masses, isotope and isomer shifts, related to shell evolution with nuclear deformation, angular momentum, and number of nucleons.