Multipole modes of deformed superfluid nuclei with the finite amplitude method in three-dimensional coordinate space

Kouhei Washiyama and Takashi Nakatsukasa
Center for Computational Sciences, University of Tsukuba
Introduction: Shape fluctuation
Goal: Constrained HFB + Local QRPA
Method: Finite amplitude method
Result: Isoscalar quadrupole strength
Result: Isoscalar/vector monopole
Result: Triaxial nucleus

This work was funded by ImPACT Program of Council for Science,
Technology and Innovation (Cabinet Office, Government of Japan)

Introduction: Shape fluctuation

A~100 nuclei

- Spherical \rightarrow deformed, soft, transitional
- Excited states

Description of
shape fluctuations
is necessary

Goal: 5D collective (Bohr) Hamiltonian

5D quadrupole collective Hamiltonian

$$
\begin{aligned}
& \mathcal{H}=T_{\text {vib }}+T_{\text {rot }}+V(\beta, \gamma) \\
& T_{\text {vib }}=\frac{1}{2} D_{\beta \beta}(\beta, \gamma) \dot{\beta}^{2}+D_{\beta \gamma}(\beta, \gamma) \dot{\beta} \dot{\gamma}+\frac{1}{2} D_{\gamma \gamma}(\beta, \gamma) \dot{\gamma}^{2} \\
& T_{\text {rot }}=\frac{1}{2} \sum_{k=1}^{3} \mathcal{J}_{k}(\beta, \gamma) \omega_{k}^{2} \\
& V(\beta, \gamma), D_{\mu \nu}(\beta, \gamma), \mathcal{J}_{k}(\beta, \gamma) \\
& { }^{68} \mathrm{Se} \\
& V(\beta, \gamma) \\
& \text { Energy spectra }
\end{aligned}
$$

Goal: Constrained HFB + Local QRPA

5D quadrupole collective Hamiltonian

$$
\begin{aligned}
\mathcal{H} & =T_{\text {vib }}+T_{\text {rot }}+V(\beta, \gamma) \\
T_{\text {vib }} & =\frac{1}{2} D_{\beta \beta}(\beta, \gamma) \dot{\beta}^{2}+D_{\beta \gamma}(\beta, \gamma) \dot{\beta} \dot{\gamma}+\frac{1}{2} D_{\gamma \gamma}(\beta, \gamma) \dot{\gamma}^{2} \\
T_{\text {rot }} & =\frac{1}{2} \sum_{k=1}^{3} \mathcal{J}_{k}(\beta, \gamma) \omega_{k}^{2}
\end{aligned}
$$

$V(\beta, \gamma) \quad$ Constrained HFB with Skyrme energy density functional Three-dimension in $\beta-\gamma$ plane
$D_{\mu \nu}(\beta, \gamma)$ Local QRPA: Finite Amplitude Method
$\mathcal{J}_{k}(\beta, \gamma) \quad$ Efficient method with a reasonable computational cost 3D QRPA is necessary for $\beta-\gamma$ dynamics

Method: Quasi-particle RPA (QRPA)

QRPA equation

$$
\left(\begin{array}{cc}
A & B \\
B^{*} & A^{*}
\end{array}\right)\binom{X}{Y}=\omega\binom{X}{-Y}
$$

1. Construct A and B matrix

$$
A_{m i n j}=\left(\varepsilon_{m}-\varepsilon_{i}\right) \delta_{m n} \delta_{i j}+\frac{\partial h_{m i}}{\partial \rho_{n j}} \quad B_{m i n j}=\frac{\partial h_{m i}}{\partial \rho_{j n}} \quad \text { (for RPA) }
$$

2. Diagonalize A B matrix to obtain ω and (X, Y) amplitude

- Time-consuming computation $\frac{\delta h}{\delta \rho}$ (residual interaction)
- Diagonalization of big matrix A B (~105-6)

Method: Finite amplitude method

QRPA equation

$$
\begin{aligned}
\left(E_{\mu}+E_{\nu}-\omega\right) X_{\mu \nu}+\delta H^{20}(\omega) & =-F_{\mu \nu}^{20} \\
\left(E_{\mu}+E_{\nu}+\omega\right) Y_{\mu \nu}+\delta H^{02}(\omega) & =-F_{\mu \nu}^{02}
\end{aligned}
$$

Nakatsukasa et al., PRC76 (2007) 024318
Avogadro \& Nakatsukasa, PRC84(2011)014314
Stoitsov et al., PRC84 (2011) 041305
Liang et al., PRC87 (2013) 054310
Niksic et al., PRC88 (2013) 044327
Pei et al., PRC90 (2014) 051304
Kortelainen et al., PRC92(2015)051302

Finite amplitude method (FAM)

$$
\delta h=\frac{\delta h}{\delta \rho} \delta \rho \longrightarrow \quad \delta h(\omega)=\frac{h\left[\rho_{0}+\delta \rho\right]-h\left[\rho_{0}\right]}{\eta}
$$

Advantages:

- Avoid computing $\frac{\delta h}{\delta \rho}$
- δh can be computed by static HFB codes
- Avoid diagonalizing A, B: Iterative method

Setups:

- Computer code based on evb8 (HFB in 3 dimension)
- Hartree-Fock basis and quasiparticle basis

Benchmark: Isoscalar quadrupole strength

$\mathrm{K}=0$: Giant resonance is reproduced.
A peak at $\mathrm{E} \sim 10 \mathrm{MeV}$ is not present.
$\mathrm{K}=2$: Height of the peaks is underestimated.

Energy weighted sum rule FAM/HFB $=111 \% \rightarrow$ Overestimate

Benchmark: Monopole strength

Two-peak structure
Difference in height of the peaks

Result: Triaxial nucleus

Summary

3D FAM+QRPA is almost ready Benchmark

Triaxial nuclei

Future plan

FAM+Local QRPA \rightarrow Mass inertia
Bohr Hamiltonian

