Multipole modes of deformed superfluid nuclei with the finite amplitude method in three-dimensional coordinate space

Kouhei Washiyama and Takashi Nakatsukasa Center for Computational Sciences, University of Tsukuba

Introduction: Shape fluctuation

Goal: Constrained HFB + Local QRPA

Method: Finite amplitude method

Result: Isoscalar quadrupole strength

Result: Isoscalar/vector monopole

Result: Triaxial nucleus

This work was funded by ImPACT Program of Council for Science, Technology and Innovation (Cabinet Office, Government of Japan)

Introduction: Shape fluctuation

A~100 nuclei

- Spherical → deformed, soft, transitional
- Excited states

Description of shape fluctuations is necessary

Goal: 5D collective (Bohr) Hamiltonian

5D quadrupole collective Hamiltonian

$$\mathcal{H} = T_{\text{vib}} + T_{\text{rot}} + V(\beta, \gamma)$$

$$T_{\text{vib}} = \frac{1}{2} D_{\beta\beta}(\beta, \gamma) \dot{\beta}^2 + D_{\beta\gamma}(\beta, \gamma) \dot{\beta} \dot{\gamma} + \frac{1}{2} D_{\gamma\gamma}(\beta, \gamma) \dot{\gamma}^2$$

$$T_{\text{rot}} = \frac{1}{2} \sum_{k=1}^{3} \mathcal{J}_k(\beta, \gamma) \omega_k^2$$

Quantization

Goal: Constrained HFB + Local QRPA

5D quadrupole collective Hamiltonian

$$\mathcal{H} = T_{\text{vib}} + T_{\text{rot}} + V(\beta, \gamma)$$

$$T_{\text{vib}} = \frac{1}{2} D_{\beta\beta}(\beta, \gamma) \dot{\beta}^2 + D_{\beta\gamma}(\beta, \gamma) \dot{\beta} \dot{\gamma} + \frac{1}{2} D_{\gamma\gamma}(\beta, \gamma) \dot{\gamma}^2$$

$$T_{\text{rot}} = \frac{1}{2} \sum_{k=1}^{3} \mathcal{J}_k(\beta, \gamma) \omega_k^2$$

 $V(\beta, \gamma)$

Constrained HFB with Skyrme energy density functional Three-dimension in β - γ plane

$$D_{\mu\nu}(\beta,\gamma)$$
$$\mathcal{J}_k(\beta,\gamma)$$

Local QRPA: Finite Amplitude Method

Efficient method with a reasonable computational cost 3D QRPA is necessary for β - γ dynamics

Method: Quasi-particle RPA (QRPA)

QRPA equation

$$\begin{pmatrix} A & B \\ B^* & A^* \end{pmatrix} \begin{pmatrix} X \\ Y \end{pmatrix} = \omega \begin{pmatrix} X \\ -Y \end{pmatrix}$$

1. Construct A and B matrix

$$A_{minj} = (\varepsilon_m - \varepsilon_i)\delta_{mn}\delta_{ij} + \frac{\partial h_{mi}}{\partial \rho_{nj}} \qquad B_{minj} = \frac{\partial h_{mi}}{\partial \rho_{jn}} \qquad \text{(for RPA)}$$

- 2. Diagonalize A B matrix to obtain ω and (X,Y) amplitude
- Time-consuming computation $\frac{\delta h}{\delta \rho}$ (residual interaction)
- Diagonalization of big matrix A B ($\sim 10^{5-6}$)

Method: Finite amplitude method

QRPA equation

$$(E_{\mu} + E_{\nu} - \omega)X_{\mu\nu} + \delta H^{20}(\omega) = -F_{\mu\nu}^{20}$$
$$(E_{\mu} + E_{\nu} + \omega)Y_{\mu\nu} + \delta H^{02}(\omega) = -F_{\mu\nu}^{02}$$

Nakatsukasa et al., PRC76 (2007) 024318 Avogadro & Nakatsukasa, PRC84(2011)014314 Stoitsov et al., PRC84 (2011) 041305 Liang et al., PRC87 (2013) 054310 Niksic et al., PRC88 (2013) 044327 Pei et al., PRC90 (2014) 051304 Kortelainen et al., PRC92(2015)051302

Finite amplitude method (FAM)

$$\delta h = \frac{\delta h}{\delta \rho} \delta \rho \longrightarrow \delta h(\omega) = \frac{h[\rho_0 + \delta \rho] - h[\rho_0]}{\eta}$$

Advantages:

- Avoid computing $\frac{\delta h}{\delta \rho}$
- ullet δh can be computed by static HFB codes
- Avoid diagonalizing A, B: Iterative method

Setups:

- Computer code based on evb8 (HFB in 3 dimension)
- Hartree-Fock basis and quasiparticle basis

Benchmark: Isoscalar quadrupole strength

K=0: Giant resonance is reproduced. A peak at E~10MeV is not present.

K=2: Height of the peaks is underestimated.

Energy weighted sum rule FAM/HFB = 111% → Overestimate

Pairing collapse in the ground state Smearing width = 0.5 MeV

Benchmark: Monopole strength

Energy weighted sum rule (FAM/HFB) = 132%

Stoitsov et al., PRC84(2011)041305

Two-peak structure

Difference in height of the peaks

Result: Triaxial nucleus

¹¹⁰Ru, $\beta = 0.31$, $\gamma = 20^{\circ}$

Finite pairing in the ground state Smearing width = 0.5 MeV

Summary

3D FAM+QRPA is almost ready

Benchmark

Triaxial nuclei

Future plan

FAM+Local QRPA → Mass inertia

Bohr Hamiltonian