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The Fundamental Method:

Inverse Problem Theory
of Applied Mathematics
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Direct and Inverse Problems in Quantum Theories

• Consider an arbitrary, e.g. many-body, theory with its Hamiltonian:

Ĥ = T̂ + V̂int(...{p}); {p} → Optimal parameters

• If we know the parameters, we are able to solve the Direct Problem:

Ĥϕj(..., {p}) = eth
j (..., {p})ϕ j(..., {p})

• However, before any comparison theory-experiment, and even more
generally: Before any calculation we must solve the Inverse Problem:

To determine the optimal parameters of the Hamiltonian
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Inverse Problem in Quantum Theories

• Given parameters {p} → Schrödinger equation produces ‘data’:

Ĥ(p)→ {Ep, ψ(p)} ↔ ÔH(p) = dth ← Direct Problem

• To find the optimal parameters we must invert the above relation:

popt = Ô−1
H (dexp)← Inverse Problem

• In many-body theories the existence of operator Ô−1
H is doubtful,

in fact no mathematical methods of such a construction are known

• If ÔH has no inverse we say that inverse problem is ill-posed

• In physics this issue remains unsolved: Instead of finding optimal
parameters by solving the Inverse Problem→→“one minimises χ2 ”
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H (dexp)← Inverse Problem

• In many-body theories the existence of operator Ô−1
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A Powerful Method: Local Taylor Expansion

• Parameter adjustment is obtained via the χ2-minimisation

χ2(p) =
∑nd

j=1[eexp
j − eth

j (p)]2 → ∂χ2

∂pk
= 0, k = 1 . . . nm

with nd - number of data points; nm - number of model parameters

• Usually we iterate this non-linear problem using Taylor linearization

eth
j (p[it+1]) ≈ eth

j (p[it]) +
nm∑

k=1

(
∂eth

j

∂pk

)∣∣∣
p=p[it]

(
p

[it+1]
k − p

[it]
k

)
Short-hand notation: J

[it]
jk

df
=
(
∂eth

j

∂pk

)∣∣∣
p=p[it]

and b
[it]
j =

[
eexp

j − eth
j (p[it])

]
• Inserting into χ2(p) gives the linearised iterative representation

χ2(p[it+1]) =
∑nd

j=1

[∑nm
k=1 J

[it]
jk ·

(
p

[it+1]
k − p

[it]
k

)− b
[it]
j

] 2
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Inverse Problem in Linearised Representation

• One may easily show that within the new, linearised representation

∂χ2

∂pi
= 0 → (JTJ) · p = JT b ↔ JTJ

df
= A

• In Applied Mathematics we slightly change wording and notation:

{p} → P : ‘Causes’ and {JTb} → D : ‘Effects’⇒ A · P = D

• From the measured ‘Effects’, called Data, represented by D, we extract
information about the optimal parameters, P, by inverting the matrix A:

A · P = D︸ ︷︷ ︸
Direct Problem

→ P = A−1 · D︸ ︷︷ ︸
Inverse Problem
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Stability of Solutions of Nuclear Inverse Problem

• We consider linear equations: P = A−1 · D



P1

P2

· · ·
Pm


 =




A11 A12 · · · A1d

A21 A22 · · · A2d

· · · · · · · · · · · ·
Am1 Am2 · · · Amd




−1

︸ ︷︷ ︸
A−1: m×d rectangular matrix




D1

D2

· · ·
Dd




• [Aik ] depend on: 1) Hamiltonian, and 2) Selection of data points

• If one of the parameters is a function of another, say, pk = f (pk ′)
then one may show, that two columns of A are linearly dependent

• If this happens → A-matrix becomes singular [Ill-Posed Problem]

Ill-Posed: Correlation between parameters and the data is lost!
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Here we detected our dangerous enemy:
Parametric Correlations

and their negative impact on the theory predictions

• Strictly speaking: The exactly ill-posed inverse problem (A−1

does not exist) has no solutions since modelling does not constrain
parameters:

“Changing data does not change parameters”

... and yet physicists often keep minimising χ2 !!

• Unfortunately, the χ2 usually “works perfectly well”→ results
may even go through experimental data... [“good r.m.s.”]

... but these results have neither mathematical
nor not much of the physical significance
... and even less of prediction capacities!

... especially if the inverse problem is ‘just about’ ill posed!
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Parametric Correlations
within the Inverse Problem:

a. How to determine their presence?

b. How to counteract their consequences
which are likely to ruin the predictive power?
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One can demonstrate that parametric correlations of this
kind can conveniently be studied using Monte Carlo methods

• Given space of data {d1, d2, . . . dn} with uncertainties
{σ1, σ2, . . . σn}

• With a random-number generator we define what is called
‘Gaussian noise distribution’ around each di

• We fit the parameter sets {p1, p2, . . . pm}j

great number of times, N , i.e. for j = 1, 2, . . . N

• From m-tuplets of obtained parameters, {p1, p2, . . . pm},
we construct the tables and projection plots

like the ones which follow
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Parametric Correlations
[Illustrations for Skyrme Hartree-Fock Hamiltonian]

To follow the discussion it will be sufficient to know that
the Skyrme Hamiltonian depends on the adjustable constants:

C ρ
0 ,C

ρ
1 ,C

ρα
o ,C τ

0 ,C
τ
1 ,C

∇J
0
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Parameter-Correlations in Skyrme-HF
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Illustration shows that majority of these parameters are strongly correlated
excluding the prediction capacities of the model [B. Szpak, PhD thesis]
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Parametric Correlations:

Strongly Present the Skyrme-Hartree-Fock Mean Fields

The presence of parametric correlations implies that
no stable extraneous predictive power

can be obtained with this type of the Hamiltonians

In other words: This type of the Hamiltonian
may very well allow to fit the data:

Stable extraneous predictions is another issue∗)

∗)J. Rikovska-Stone, J. Phys. G31 (2005) R211-R230: Cites over 100 distinct,
non-equivalent parameterisations of the Skyrme Hartree-Fock Hamiltonian so far

published in the literature
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Selection of the Model Mean-Field Hamiltonian
for the Project
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‘WS Universal’: among Popular Realistic [Toy?] Models

• Here we decided to used the Woods-Saxon Universal Hamiltonian since
our preliminary tests have shown much fewer parametric correlations

• This Hamiltonian is among the Popular Realistic Models, and it is used
for calculations of deformed nuclei structure

• We examine the predictive power capacities of the nuclear mean-field
theory and its fundamental degrees of freedom: nucleon levels

• To simplify the task without loosing conceptual generality we limit our-
selves to ‘experimentally known’ doubly-magic spherical-nuclei:

16
8O8, 40

20Ca20, 48
20Ca28, 56

28Ni28, 90
40Zr50, 132

50Sn82, 146
64Gd82, 208

82Pb126
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Woods-Saxon Hamiltonian: Central Potential

•We present here only the spherical variant of the Woods-Saxon potential

VWS
cent =

Vc

1 + exp [(r − Rc) /ac]
; Rc = rcA1/3.

It has unique features among most of the mean field potentials, namely,
each parameter is related to an independent class of experiments:

Vc - depth parameter; specific transfer reactions

rc - radius parameter; electron scattering

ac - diffuseness parameter; hadron scattering

• In principle each of these parameters can be determined separately thus
helping to counteract certain parametric correlations

• The importance – This potential is broadly used for deformed nuclei:

VWS
cent =

Vc

1 + exp [distΣ(~r; R0)/ac]

with a fixed parameter set for thousands of nuclei⇒ Thus ‘universal’
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Woods-Saxon Hamiltonian: Spin-Orbit Potential

The spherical Woods-Saxon spin-orbit potential has the form

Vws
so =

λso

r

d

dr

[
1

1 + exp [(r − Rso) /aso]

]
ˆ̀· ŝ; Rso = rsoA1/3

λso - strength parameter

rso - radius parameter

aso - diffuseness parameter

In total two sets of six parameters {Vc, rc, ac;λso, rso, aso}π,ν

I. Dedes, J. Dudek Stochastic Theory of Predictive Power: Mean-Field



Back to the Parametric Correlation Problem

• One can show that the parametric correlations can be detected through
projecting the χ2(p) onto a (pj, pk)-plane: mini 6=j,k χ

2(p1, p2, . . . pm)

208
82Pb126

1.5

a
c p

(
fm

)

rc
p ( fm )

MeV

0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.10
1.20
1.30
1.40
1.50
1.60
1.70
1.80
1.90
2.00
2.10
2.20
2.30
2.40
2.50
2.60

>2.70

15W

P
R
O
N
|

P
:
V

c p
,
λ
s
o

p
,
r
s
o

p
,
a
s
o

p
,

F
it

t
e
d
:

2
0
8
P
b

rmsmin = 0.079 MeV

∆zshift = 0.221 MeV
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• As the approximate circular symmetry of this diagram, shows that the
central potential radius and central potential diffuseness are not correlated
- thus no danger to the predictive power
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• These results show that the central potential depth and central potential
diffuseness are not correlated - therefore no danger to the predictive power!
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Back to the Parametric Correlation Problem

• One can show that the parametric correlations can be detected through
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• These results show that the central potential depth and central potential
radius are correlated: Vc × r2

c ≈ const. An ad hoc choice: rc → rexp.c
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Conclusion:

The Central Potential is virtually free from correlations

Next:

Checking the Spin-Orbit Potential
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The Spin-Orbit Situation is More Complex

• One can show that the parametric correlations can be detected through
projecting the χ2(p) onto a (pj, pk)-plane: mini 6=j,k χ

2(p1, p2, . . . pm)
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• These results show that the spin-orbit diffuseness and spin-orbit radius
are weakly correlated
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• These results show that the spin-orbit diffuseness and spin-orbit strength
are weakly correlated. Graphical instabilities under control - can be ignored
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The Spin-Orbit Situation is More Complex

• One can show that the parametric correlations can be detected through
projecting the χ2(p) onto a (pj, pk)-plane: mini 6=j,k χ

2(p1, p2, . . . pm)

208
82Pb126

2.0

r
s
o

p
(

fm
)

λso
p ( MeV fm2/~2 )

MeV

0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.35
1.40
1.45

>1.50

15W

P
R
O
N
|

P
:
V

c p
,
r
c p

,
a
c p

,
a
s
o

p
,

F
it

t
e
d
:

2
0
8
P
b

rmsmin = 0.072 MeV

∆zshift = 0.228 MeV

Parametric Correlations: Protons

5 15 25 35 45 55 65

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

.

• These results show that the spin-orbit radius and spin-orbit strength are
correlated. Graphical instabilities under control - can be ignored
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Conclusion:

The Spin-Orbit Potential contains weak
but complex correlations

Our solution:

Seek physics arguments eliminating correlations

A possible alternative:

Using Applied–Mathematics regularisation–methods, e.g.:
‘Truncated Singular Value Decomposition Theorem’

However, here we follow the first approach →→→
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Physics-Guided Improvements of the WS Universal

• It is well known that the microscopic structure of the mean field, V̂mf ,
is based on the 2-body interactions, v̂2:

v̂2 ↔ v̂two−body(~ri −~rj)→ Vmean−field(~ri)↔ V̂mf (~ri)

V̂mf (~ri ) ∝
∑
j 6=i

∫
ψ∗j (~rj) v̂2(~ri −~rj)ψj(~rj) d3~rj,

∑
j

ψ∗j (~rj)ψj(~rj) ≡ ρ(~r )

• Here we follow the ‘microscopic generalisaton of the WS-universal’ in:

Realistic Nuclear Mean Field Approach with the Density-Dependent Spin-Orbit Term;
B. Belgoumène, J. Dudek and T. Werner, Phys. Lett. B267 (4) (1991) 431-437 ⇒

V̂πso = λππ
1

r

dρπ

dr
+ λπν

1

r

dρν

dr
Eq.(A)

V̂νso = λνπ
1

r

dρπ

dr
+ λνν

1

r

dρν

dr
Eq.(B)

Advantages: The new expression includes the iterative self-consistency condition like in
the microscopic HF approach rather than pure phenomenology and contains 4 parame-
ters rather than 6. What are their correlations?
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Density-Dependent Profiles

• The first preliminary tests show that the selfconsistent density and the
density gradient do not depend much on the choice of the λ parameters
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• This means that after the minimisation, parameters compensate mutually
their impact... But this must imply the linear parametric λ−λ correlations!

V̂πso = λππ
1

r

dρπ

dr
+ λπν

1

r

dρν

dr
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Density-Dependent Spin-Orbit: Linear Correlations

• Correlation between λππ and λπν for 208Pb
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• Realistic calculations indicate that the density-dependent spin-orbit po-
tential parameters are correlated – but the correlations are perfectly linear
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Linear-Correlations in Density-Dependent Spin-Orbit

• The same as before but for 16O, 40Ca, 56Ni and 146Gd
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Density-Dependent Spin-Orbit: Linear Correlations

• Correlation between λνν and λνπ for 208Pb
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• Calculations show that the density-dependent spin-orbit potential param-
eters are correlated – but the λνν − λνπ correlations are perfectly linear
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Linear-Correlations in Density-Dependent Spin-Orbit

• The same as before but for 16O, 40Ca, 56Ni and 146Gd
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A Working Conclusion

• A more detailed analysis shows that the valleys on the planes

(λππ, λπν) and (λνν, λνπ)

cross at the common point for all the nuclei analysed where:

λππ ≈ λπν ≈ λνν ≈ λνπ

• Conclusion: We may significantly decrease the num-
ber of spin-orbit potential parameters thus eliminating
correlations. But: Do we loose something? What?
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How Many Degrees of Freedom Does the Vso Have?

• We fit all the traditional WS potential parameters to eight nuclei (60
neutron levels plus 45 proton levels)
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• We illustrate the results for 208Pb-neutrons→ Solution r.m.s.=0.49 MeV
• The answer: 6 - {λso, rso

0 , aso
0 } for protons and {λso, rso

0 , aso
0 } for neutrons
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How Many Degrees of Freedom Does the Vso Have?

• We fit the density-dependent spin-orbit: λnn = λnp = λpn = λpp ≡ λ, to
eight nuclei
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• The results for 208Pb-neutrons – Solution r.m.s.=0.49 MeV is unchanged
• The answer: 1 parameter - common for the protons and for the neutrons
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We repeat the test for the protons
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How Many Degrees of Freedom Does the Vso Have?

• We fit all the traditional WS potential parameters to eight nuclei (60
neutron levels plus 45 proton levels)
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• We illustrate the results for 208Pb-protons – Solution r.m.s.=0.73 MeV
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How Many Degrees of Freedom Does the Vso Have?

• We repeat the test under the constraint: λnn = λnp = λpn = λpp ≡ λ
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• 208Pb-protons – The r.m.s. decreased from r.m.s.=0.73 MeV to 0.71 MeV
• We decreased the number of spin-orbit potential parameters – and this
from 6 to 1 and the r.m.s. slightly improved. Conclusions for the project?

⇒
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Conclusions & Summary

• We need to take into account both the theory uncertainties and
the experimental errors in order to determine the uncertainties of
the model predictions

• The model needs to be verified for the presence/absence of para-
metric correlations

• The model predictions need to be verified for their stability

• In the case of presence of parametric correlations, we need to
eliminate them.

• We have shown that eliminating the spin-orbit parametric corre-
lations, we obtained better or equal quality result.
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How Many Degrees of Freedom Does the Vso Have?

Conclusions:

The self-consistent density-dependent, and thus ‘more
microscopic’ spin-orbit potential, depends effectively on

one parameter rather than six

• We obtain better or equal quality of comparison with experiment

• We arrive at the eliminating of all parametric correlation problems

I. Dedes, J. Dudek Stochastic Theory of Predictive Power: Mean-Field



Strategy and Strategical Goals

With this strategy in mind:

What are the actualised research directions
for the project?

We have two strategical goals:

• Eliminate parametric correlations and model over-parametrisation
in order not to “kill” the predictive power at the start [as presented]

• Determine quantitative limitations from the today’s constraints
such as experimental and theory errors which we cannot bypass today
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Strategy and Strategical Goals

In other words:

We can neither increase the number of data points
(volume of sampling) nor the quality of the sampling.

Under these objective constraints we wish to know
how (un)certain is what we calculate

with our rather complex computer programs?
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Uncertainties of Calculated Nucleon Energies

• The concept of pseudo-experimental levels: Optimise Hamiltonian under some
plausible conditions → Replace experimental levels by the model energies →
Construct in this way an exact model→ Now we can modify the ‘sampling’
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• LEFT: 208Pb levels after a fit which will be treated as pseudo-experimental
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Uncertainties of Calculated Nucleon Energies

• The pseudo-experimental levels: Now we can modify/increase the ‘sampling’
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Uncertainties of Calculated Nucleon Energies

• The pseudo-experimental levels: Now we can modify/increase the ‘sampling’
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Uncertainties of Calculated Nucleon Energies

• The pseudo-experimental levels: Now we can modify/increase the ‘sampling’
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Uncertainties of Calculated Nucleon Energies

• The pseudo-experimental levels: Now we can modify/increase the ‘sampling’
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Uncertainties of Calculated Nucleon Energies

• The pseudo-experimental levels: Now we can modify/increase the ‘sampling’
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Thank you!
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Strategy and Strategical Goals

Central Radius Uncertainties
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Uncertainties of the Optimal Parameters: rc
n

• Pseudo-experimental levels: Parameter uncertainties← increasing ‘sampling’

126 82
208Pb
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• Here: Sampling composed of 15 levels around the Fermi level
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Uncertainties of the Optimal Parameters: rc
n

• Pseudo-experimental levels: Parameter uncertainties← increasing ‘sampling’
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Uncertainties of the Optimal Parameters: rc
n

• Pseudo-experimental levels: Parameter uncertainties← increasing ‘sampling’
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Uncertainties of the Optimal Parameters: rc
n

• Pseudo-experimental levels: Parameter uncertainties← increasing ‘sampling’

126 82
208Pb
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Strategy and Strategical Goals

Spin-Orbit Radius Uncertainties
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Uncertainties of the Optimal Parameters: rso
n

• Pseudo-experimental levels: Parameter uncertainties← increasing ‘sampling’

126 82
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Uncertainties of the Optimal Parameters: rso
n

• Pseudo-experimental levels: Parameter uncertainties← increasing ‘sampling’
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• Here: Sampling composed of 15 levels around the Fermi level
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Uncertainties of the Optimal Parameters: rso
n

• Pseudo-experimental levels: Parameter uncertainties← increasing ‘sampling’
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• Here: Sampling composed of 20 levels around the Fermi level

I. Dedes, J. Dudek Stochastic Theory of Predictive Power: Mean-Field



Uncertainties of the Optimal Parameters: rso
n

• Pseudo-experimental levels: Parameter uncertainties← increasing ‘sampling’
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• Here: Sampling composed of 25 levels around the Fermi level
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Diffusivity Parameter
Uncertainties
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Uncertainties of the Optimal Parameters: ac
n

• Pseudo-experimental levels: Parameter uncertainties← increasing ‘sampling’
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Uncertainties of the Optimal Parameters: ac
n

• Pseudo-experimental levels: Parameter uncertainties← increasing ‘sampling’

126 82
208Pb
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Uncertainties of the Optimal Parameters: ac
n

• Pseudo-experimental levels: Parameter uncertainties← increasing ‘sampling’

126 82
208Pb
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• Here: Sampling composed of 20 levels around the Fermi level
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Uncertainties of the Optimal Parameters: ac
n

• Pseudo-experimental levels: Parameter uncertainties← increasing ‘sampling’
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• Here: Sampling composed of 25 levels around the Fermi level
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Uncertainties of the Optimal Parameters: ac
n

• Pseudo-experimental levels: Parameter uncertainties← increasing ‘sampling’
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• Here: Sampling composed of 29 levels around the Fermi level
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Monte Carlo: Propagation of Uncertainties

• Monte-Carlo Simulation prediction curves, fitting the parameters to 4 sampling
points. The exact solution curve has been subtracted for easy reading.
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• Observe that the uncertainties near the sampling points are usually minute.
Suppose that at ‘sampling=2’ – for the successful description we need the preci-
sion of 0.1. The simulation assures us that we MUST NOT use this exact theory
at this required precision level.
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