Partial Dynamical Symmetries and Shape Coexistence in Nuclei

A. Leviatan
Racah Institute of Physics
The Hebrew University, Jerusalem, Israel

D. Shapira (HU)
N. Gavrielov (HU)

Shapes and Symmetries in Nuclei: From Experiment to Theory (SSNET) Workshop Gif sur Yvette, France, November 7-11, 2016

Shape Coexistence in Nuclei

Exp: prolate-oblate spherical-prolate-oblate spherical-prolate
$\mathrm{Kr}, \mathrm{Se}, \mathrm{Hg}$ neutron-deficient isotopes ${ }^{186} \mathrm{~Pb}$
Sr neutron-rich isotopes

- Shell model approach
- Multiparticle-multihole intruder excitations across shell gaps
- Drastic truncation of large SM spaces
- Mean-field approach (EDF)
- Coexisting shapes associated with different minima of an energy surface
- Beyond MF methods: restoration of broken symmetries
- Symmetry-based approach
- Dynamical symmetries \leftrightarrow phases
- Geometry: coherent (intrinsic) states Global min: equilibrium shape (β_{0}, γ_{0})

$$
\begin{gathered}
E_{N}(\beta, \gamma)=\langle\beta, \gamma ; N| \hat{H}|\beta, \gamma ; N\rangle \\
|\beta, \gamma ; N\rangle=(N!)^{-1 / 2}\left(b_{c}^{\dagger}\right)^{N}|0\rangle \\
b_{c}^{\dagger} \propto \beta \cos \gamma d_{0}^{\dagger}+\beta \sin \gamma\left(d_{2}^{\dagger}+d_{-2}^{\dagger}\right) / \sqrt{2}+s^{\dagger}
\end{gathered}
$$

$$
\hat{H}=\sum_{G} a_{G} \hat{C}_{G}
$$

$$
\begin{array}{lll}
U(6) \supset U(5) \supset S O(5) \supset S O(3) & \left|[N] n_{d} \tau n_{\Delta} L\right\rangle & \text { Spherical vibrator } \beta=0 \\
U(6) \supset S U(3) \supset S O(3) & |[N](\lambda, \mu) K L\rangle & \text { Axial rotor } \beta= \pm \sqrt{2, \gamma=0} \\
U(6) \supset S O(6) \supset S O(5) \supset S O(3) & \left|[N] \sigma \tau n_{\Delta} L\right\rangle & \gamma \text {-unstable rotor } \beta=1, \gamma \text { arbitrary }
\end{array}
$$

- Complete solvability
- Good quantum numbers for all states
- DS: benchmark for a single shape $\left[\mathrm{G}_{1}=\mathrm{U}(5), \mathrm{SU}(3), \mathrm{SO}(6)\right]$

$$
\hat{H}=\sum_{G} a_{G} \hat{C}_{G}
$$

$$
\begin{array}{lll}
U(6) \supset U(5) \supset S O(5) \supset S O(3) & \left|[N] n_{d} \tau n_{\Delta} L\right\rangle & \text { Spherical vibrator } \beta=0 \\
U(6) \supset S U(3) \supset S O(3) & |[N](\lambda, \mu) K L\rangle & \text { Axial rotor } \beta= \pm \sqrt{2}, \gamma=0 \\
U(6) \supset S O(6) \supset S O(5) \supset S O(3) & \left|[N] \sigma \tau n_{\Delta} L\right\rangle & \gamma \text {-unstable rotor } \beta=1, \gamma \text { arbitrary }
\end{array}
$$

- Complete solvability
- Good quantum numbers for all states
- DS: benchmark for a single shape $\left[\mathrm{G}_{1}=\mathrm{U}(5), \mathrm{SU}(3), \mathrm{SO}(6)\right]$

> Partial Dynamical Symmetry

- Some states solvable and/or with good quantum numbers
- $\mathrm{G}_{1}, \mathrm{G}_{2}$ incompatible (non-commuting) symmetries
- PDS: benchmark for shape coexistence

$\begin{array}{lll}G_{1}=U(5) & G_{2}=\operatorname{SU}(3) & \\ G_{1}=S U(3) & G_{2}=\overline{S U(3)} & \\ \text { spherical }- \text { prolate }- \text { oblate } \\ G_{1}=U(5) & G_{2}=S O(6) & \\ \text { spherical }-\gamma \text {-unstable }\end{array}$
$\mathrm{G}_{1}=\mathrm{U}(5) \quad \mathrm{G}_{2}=\mathrm{SU}(3) \quad \mathrm{G}_{3}=\overline{\mathrm{SU}(3)}$ spherical-prolate-oblate

Dynamical Symmetry

$$
\begin{array}{lll}
U(6) \supset U(5) \supset S O(5) \supset S O(3) & \left|[N] n_{d} \tau n_{\Delta} L\right\rangle & \text { Spherical vibrator } \beta=0 \\
U(6) \supset S U(3) \supset \mathrm{SO}(3) & |[N](\lambda, \mu) K L\rangle & \text { Axial rotor } \beta= \pm \sqrt{2, \gamma=0} \\
U(6) \supset \mathrm{SO}(6) \supset \mathrm{SO}(5) \supset \mathrm{SO}(3) & \left|[\mathrm{N}] \sigma \tau \mathrm{n}_{\Delta} \mathrm{L}\right\rangle & \gamma \text {-unstable rotor } \beta=1, \gamma \text { arbitrary }
\end{array}
$$

Partial Dynamical Symmetry

This talk:

- $\operatorname{SU}(3) \overline{-S U(3)} \mathrm{PDS} \quad$ prolate-oblate
- $\mathrm{U}(5)-\mathrm{SU}(3)-\mathrm{SU}(3)$ PDS spherical-prolate-oblate
A.L., Shapira, PRC 93, 051302(R) (2016)
- $\mathrm{U}(5)-\mathrm{SO}(6)$ PDS spherical $-\gamma$-unstable
A.L., Gavrielov

$\mathrm{SU}(3)$ and $\overline{\mathrm{SU}(3)}$ Dynamical Symmetries

$$
\begin{array}{rlc}
\mathrm{U}(6) \supset \mathrm{SU}(3) \supset \mathrm{SO}(3) & |[\mathrm{N}](\lambda, \mu) \mathrm{KL}\rangle & \text { Prolate-deformed rotor } \\
\mathrm{U}(6) \supset \overline{\mathrm{SU}(3)} \supset \mathrm{SO}(3) & \mid[\mathrm{N}] \bar{\lambda}, \bar{\mu}) \mathrm{KL}\rangle & \text { Oblate-deformed rotor } \\
\mathrm{SU}(3) & \overline{\mathrm{SU}(3)} & \mathrm{SO}(3)
\end{array}
$$

$$
\begin{aligned}
& (\lambda, \mu)=(2 N-4 k-6 m, 2 k) \\
& \hat{C}_{2}[S U(3)]=2 Q^{(2)} \cdot Q^{(2)}+\frac{3}{4} L^{(1)} \cdot L^{(1)} \\
& Q^{(2)}=d^{\dagger} s+s^{\dagger} \tilde{d}-\frac{1}{2} \sqrt{7}\left(d^{\dagger} \tilde{d}\right)^{(2)} \\
& \begin{array}{lll}
(2 N, 0) & g(K=0) & \\
(2 N-4,2) & \beta(K=0) \quad \gamma(K=2)
\end{array} \\
& \left(s^{\dagger}, s\right) \rightarrow\left(-s^{\dagger},-s\right) \quad \mathcal{R}_{s}=\exp \left(i \pi \hat{n}_{s}\right) \quad \hat{n}_{s}=s^{\dagger} s \\
& \mathcal{R}_{s}|N,(\lambda, \mu), K, L\rangle=|N,(\bar{\lambda}, \bar{\mu}), \bar{K}, L\rangle \\
& \mathcal{R}_{s} Q^{(2)} \mathcal{R}_{s}^{-1}=-\bar{Q}^{(2)} \\
& \mathrm{SU}(3) \text { and } \overline{\mathrm{SU}(3)} \mathrm{DS} \text { spectra are identical } \\
& \text { Quadrupole moments of corresponding states differ in sign } \\
& \hat{C}_{2}[S O(3)]=L^{(1)} \cdot L^{(1)} \\
& L^{(1)}=\sqrt{10}\left(d^{\dagger} \tilde{d}\right)^{(1)} \\
& \begin{array}{ll}
10 \pm & \begin{array}{r}
6+- \\
5^{+} \\
4 \pm+ \\
4^{+} \\
3^{+} \\
2^{+} \\
2^{+} \\
0^{+} \\
2^{+}
\end{array} \\
& \beta \gamma
\end{array} \\
& 6+ \\
& 4+ \\
& 2^{2+}= \\
& \text { g }
\end{aligned}
$$

A single number-conserving H which preserves relevant DSs for prolate and oblate ground bands and selected spherical states

Construction based on an intrinsic-collective resolution of H

Focus on the dynamics in the vicinity of the critical point where the corresponding multiple minima are near degenerate

Prolate-Oblate Critical-Point Hamiltonian

Intrinsic part of C.P. Hamiltonian

$$
\begin{gathered}
\left\{\begin{array}{l}
\hat{H}|N,(\lambda, \mu)=(2 N, 0), K=0, L\rangle=0 \\
\hat{H}|N,(\bar{\lambda}, \bar{\mu})=(0,2 N), \bar{K}=0, L\rangle=0
\end{array}\right. \\
\hat{H}=h_{0} P_{0}^{\dagger} \hat{n}_{s} P_{0}+h_{2} P_{0}^{\dagger} \hat{n}_{d} P_{0}+\eta_{3} G_{3}^{\dagger} \cdot \tilde{G}_{3} \quad P_{0}^{\dagger}=d^{\dagger} \cdot d^{\dagger}-2\left(s^{\dagger}\right)^{2} \quad G_{3, \mu}^{\dagger}=\sqrt{7}\left[\left(d^{\dagger} d^{\dagger}\right)^{(2)} d^{\dagger}\right]_{\mu_{\mu}}^{(3)}
\end{gathered}
$$

Energy Surface $\tilde{E}(\beta, \gamma)=\left(1+\beta^{2}\right)^{-3}\left\{\left(\beta^{2}-2\right)^{2}\left[h_{0}+h_{2} \beta^{2}\right]+\eta_{3} \beta^{6} \sin ^{2}(3 \gamma)\right\}$

$$
=z_{0}+\left(1+\beta^{2}\right)^{-3}\left[A \beta^{6}+B \beta^{6} \Gamma^{2}+D \beta^{4}+F \beta^{2}\right] \quad \Gamma=\cos 3 \gamma
$$

- Two degenerate P-O global minima

$$
(\beta=\sqrt{ } 2, \gamma=0) \text { and }(\beta=\sqrt{ } 2, \gamma=\pi / 3) \text { [or equivalently }(\beta=-\sqrt{ } 2, \gamma 0) \text {] }
$$

- $\beta=0$ always extremum: local min (max) for $\mathrm{F}>0(\mathrm{~F}<0)$
- Saddle points: $\left[\beta_{1}, \gamma=0, \pi / 3\right],\left[\beta_{2}, \gamma=\pi / 3\right]$
- Maximum: $\left[\beta_{3}, \gamma=\pi / 3\right]$

$$
\hat{H}\left(h_{0}=0\right)\left|N, n_{d}=\tau=L=0\right\rangle=0
$$

- Three degenerate S-P-O global minima: $\beta=0,(\beta= \pm \sqrt{ } 2, \gamma=0)$

Saddle points support a barrier separating the various minima

 $E(\beta, \gamma)$ $E(\beta, \gamma=0)$
bandhead spectrum

Normal modes:

$$
\begin{aligned}
& \epsilon_{\beta 1}=\epsilon_{\beta 2}=\frac{8}{3}\left(h_{0}+2 h_{2}\right) N^{2} \quad \epsilon=4 h_{2} N^{2} \\
& \epsilon_{\gamma 1}=\epsilon_{\gamma 2}=4 \eta_{3} N^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \hat{H}=h_{0} P_{0}^{\dagger} \hat{n}_{s} P_{0}+h_{2} P_{0}^{\dagger} \hat{n}_{d} P_{0}+\eta_{3} G_{3}^{\dagger} \cdot \tilde{G}_{3} \quad P_{0}^{\dagger}=d^{\dagger} \cdot d^{\dagger}-2\left(s^{\dagger}\right)^{2} \quad G_{3, \mu}^{\dagger}=\sqrt{7}\left[\left(d^{\dagger} d^{\dagger}\right)^{(2)} d^{\dagger}\right]_{\mu}^{(3)} \\
& \tilde{E}(\beta, \gamma)=z_{0}+\left(1+\beta^{2}\right)^{-3}\left[A \beta^{6}+B \beta^{6} \Gamma^{2}+D \beta^{4}+F \beta^{2}\right] \quad \Gamma=\cos 3 \gamma
\end{aligned}
$$

\hat{H} Is invariant under $\quad\left(s^{\dagger}, s\right) \rightarrow\left(-s^{\dagger},-s\right) \quad\left[\hat{H}, \mathcal{R}_{s}\right]=0$
\Rightarrow All non-degenerate e.s. have well-defined s-parity
\Rightarrow Vanishing quadrupole moments for $\mathcal{R}_{s} T(E 2) \mathcal{R}_{s}^{-1}=-T(E 2)$

$$
\begin{aligned}
& \alpha \hat{\theta}_{2}=\alpha\left[-\hat{C}_{2}[S U(3)]+2 \hat{N}(2 \hat{N}+3)\right] \\
& \tilde{\alpha}\left(1+\beta^{2}\right)^{-2}\left[\left(\beta^{2}-2\right)^{2}+2 \beta^{2}\left(2-2 \sqrt{2} \beta \Gamma+\beta^{2}\right)\right] \quad \tilde{\alpha}=\alpha /(N-2)
\end{aligned}
$$

Linear Γ dependence distinguishes the two deformed minima and slightly lifts their degeneracy, as well as that of the normal modes

Complete Hamiltonian

$$
\hat{H}^{\prime}=\hat{H}\left(h_{0}, h_{2}, \eta_{3}\right)+\alpha \hat{\theta}_{2}+\rho \hat{C}_{2}[\mathrm{SO}(3)]
$$

g_{1} band: solvable with $\quad E_{g 1}(L)=\rho L(L+1)$
g_{2} band: slight shift $\sim \alpha \mathrm{N}^{2}$; rigid-rotor spectrum
$\overline{\mathrm{SU}(3)}$ decomposition
SU(3) decomposition

Ground g_{1} band: pure $\mathrm{SU}(3)$-DS states ($2 \mathrm{~N}, 0$)
Ground g_{2} band: pure $\overline{\mathrm{SU}(3)-D S ~ s t a t e s ~}(0,2 \mathrm{~N})$
Excited β and γ bands: considerable mixing

Triple Spherical-Prolate-Oblate Coexistence

$U(5)$ decompostion

P-O bands show similar behavior
New aspect: occurrence of spherical type of states $\left(\mathrm{n}_{\mathrm{d}}=\mathrm{L}=0\right)$ and ($\mathrm{n}_{\mathrm{d}}=1, \mathrm{~L}=2$) pure $\mathrm{U}(5)$-DS
Higher spherical states: pronounced ($\sim 70 \%$) $n_{d}=2$

prolate spherical oblate

Partial Dynamical Symmetries

$U(5)$ decompostion

The purity of selected sets of states with respect to $S U(3), \overline{S U(3)}$, and $U(5)$, in the presence of other mixed states, are the hallmarks of a Partial Dynamical Symmetry

E2 rates and Quadrupole Moments

$$
T(E 2)=e_{B}\left(d^{\dagger} s+s^{\dagger} \tilde{d}\right)
$$

Quadrupole moments in the g_{1} and g_{2} bands

$$
Q_{L}=\mp e_{B} \sqrt{\frac{16 \pi}{40}} \frac{L}{2 L+3} \frac{4(2 N-L)(2 N+L+1)}{3(2 N-1)}
$$

Intraband $\left(g_{1} \rightarrow g_{1}, g_{2} \rightarrow g_{2}\right)$ E2 transitions

$$
\begin{aligned}
& B\left(E 2 ; g_{i}, L+2 \rightarrow g_{i}, L\right)= \\
& \quad e_{B}^{2} \frac{3(L+1)(L+2)}{2(2 L+3)(2 L+5)} \frac{(4 N-1)^{2}(2 N-L)(2 N+L+3)}{18(2 N-1)^{2}}
\end{aligned}
$$

(0,2N)

(2N,0)
prolate-oblate coexistence

$$
T(E 2)=e_{B}\left(d^{\dagger} s+s^{\dagger} \tilde{d}\right)
$$

Deformed states $\left(g_{1} \rightarrow g_{1}, g_{2} \rightarrow g_{2}\right)$

$$
\begin{aligned}
& Q_{L}=\mp e_{B} \sqrt{\frac{16 \pi}{40}} \frac{L}{2 L+3} \frac{4(2 N-L)(2 N+L+1)}{3(2 N-1)} \\
& B\left(E 2 ; g_{i}, L+2 \rightarrow g_{i}, L\right)= \\
& \quad e_{B}^{2} \frac{3(L+1)(L+2)}{2(2 L+3)(2 L+5)} \frac{(4 N-1)^{2}(2 N-L)(2 N+L+3)}{18(2 N-1)^{2}}
\end{aligned}
$$

Spherical $U(5)$-DS states $\left(n_{d}=1 \rightarrow n_{d}=0\right)$

$$
Q\left(n_{d}=1, L=2\right)=0
$$

$(0,2 \mathrm{~N})$
spherical-prolate-oblate coexistence

Selection Rules and Isomeric States

$$
T(E 2)=e_{B}\left(d^{\dagger} s+s^{\dagger} \tilde{d}\right) \quad(2,2) \text { tensor }
$$

$(2,2) \otimes(2 N, 0) \rightarrow(2 N, 0) \oplus(2 N-4,2)$
g1 exhausts the $(2 N, 0)$ irrep of $S U(3)$
($2 \mathrm{~N}-4,2$) component of g 2 is vanishingly small
E2 selection rule: $\mathrm{g}_{1} \leftrightarrow \mathrm{~g}_{2}$
Valid also for $T(E 2)=\alpha \hat{Q}+\theta\left(d^{\dagger} s+\tilde{d} s\right)$
$T(E 0) \propto \hat{n}_{d} \quad(0,0) \oplus(2,2)$ tensor
E0 selection rule: $\mathrm{g}_{1} \leftrightarrow \mathrm{~g}_{2}$

prolate-oblate coexistence

Selection Rules and Isomeric States

$$
\begin{aligned}
& T(E 2)=e_{B}\left(d^{\dagger} s+s^{\dagger} \tilde{d}\right) \\
& \Delta \mathrm{n}_{\mathrm{d}}= \pm 1
\end{aligned}
$$

The spherical states exhaust the $\left(\mathrm{n}_{\mathrm{d}}=0,1\right)$ irreps of $U(5)$

The $\mathrm{n}_{\mathrm{d}}=2$ component in the ($\mathrm{L}=0,2,4$) states of the g_{1} and g_{2} bands is extremely small

$$
\text { Spherical } \rightarrow \text { deformed }
$$

E2 rates very weak
$T(E 0) \propto \hat{n}_{d} \quad$ diagnal in n_{d}

prolate-spherical-oblate coexistence

No E0 transitions involving these spherical states
$\mathrm{U}(5)$ and $\mathrm{SO}(6)$ Dynamical Symmetries

$$
\begin{aligned}
& U(6) \supset U(5) \supset S O(5) \supset S O(3) \quad\left|[N] n_{d} \tau n_{\Delta} L\right\rangle \quad \text { Spherical vibrator } \\
& \mathrm{U}(6) \supset \mathrm{SO}(6) \supset \mathrm{SO}(5) \supset \mathrm{SO}(3) \quad\left|[\mathrm{N}] \sigma \tau \mathrm{n}_{\Delta} \mathrm{L}\right\rangle \quad \gamma \text {-unstable rotor }
\end{aligned}
$$

Spherical and γ-unstable Critical-Point Hamiltonian
Intrinsic part of C.P. Hamiltonian

$$
\begin{gathered}
\left\{\begin{array}{l}
\hat{H}|N, \sigma=N, \tau, L\rangle=0 \\
\hat{H}\left|N, n_{d}=\tau=L=0\right\rangle=0
\end{array}\right. \\
\hat{H}=h_{2} P_{0}^{\dagger} \hat{n}_{d} P_{0} \quad P_{0}^{\dagger}=d^{\dagger} \cdot d^{\dagger}-\left(s^{\dagger}\right)^{2}
\end{gathered}
$$

Energy Surface $\tilde{E}(\beta)=\left(1+\beta^{2}\right)^{-3} h_{2} \beta^{2}\left(\beta^{2}-1\right)^{2}\left(1+\beta^{2}\right)^{-3}$

$$
=\left(1+\beta^{2}\right)^{-3}\left[A \beta^{6}+D \beta^{4}+F \beta^{2}\right]
$$

- Two degenerate spherical and γ-unstable deformed global minima: $\beta=0$ and $\beta=1$

Spherical \& γ-unstable deformed

Energy surface independent of γ SO(5) symmetry

Normal modes: $\quad \epsilon_{\beta}=2 h_{2} N^{2}$

$$
\begin{aligned}
\epsilon_{\beta} & =2 h_{2} N^{2} \\
\epsilon & =h_{2} N^{2}
\end{aligned}
$$

Complete Hamiltonian
$\hat{H}^{\prime}=h_{2} P_{0}^{\dagger} \hat{n}_{d} P_{0}+B \hat{C}_{2}[\mathrm{SO}(5)]$
a barrier separates the spherical and γ-unstable deformed minima

$\mathrm{SO}(6)$ decompostion

- g-band: pure SO(6)-DS ($\sigma=N$)
- Excited β bands: mixed

$$
\Rightarrow \mathrm{SO}(6)-\mathrm{PDS}
$$

$\mathrm{U}(5)$ decompostion

- Spherical states: pure $U(5)$-DS with ($n_{d}=L=0$) and ($n_{d}=1, L=2$)
- Higher spherical states: pronounced \& coherent mixing
$\Rightarrow U(5)-P D S$

E2 rates and Quadrupole Moments

$$
T(E 2)=e_{B}\left(d^{\dagger} s+s^{\dagger} \tilde{d}\right)
$$

Deformed states $(\mathrm{g} \rightarrow \mathrm{g})$

$$
\mathrm{Q}(\sigma=\mathrm{N}, \tau)=0
$$

$$
\begin{array}{lll}
\tau=2 & 4+ & 2^{+}- \\
\tau=1 & 2^{+} \\
\tau=0 & 0^{+}+\frac{\downarrow}{g}
\end{array}
$$

$$
\begin{aligned}
& B\left(E 2 ; g ; \tau+1, L^{\prime}=2 \tau+2 \rightarrow g ; \tau, L=2 \tau\right)= \\
& \quad e_{B}^{2} \frac{\tau+1}{2 \tau+5}(N-\tau)(N+\tau+4)
\end{aligned}
$$

Spherical U(5)-DS states $\left(\mathrm{n}_{\mathrm{d}}=1 \rightarrow \mathrm{n}_{\mathrm{d}}=0\right)$
Spherical γ-unstable def. coexistence

$$
\begin{aligned}
& \mathrm{Q}\left(\mathrm{n}_{\mathrm{d}}=1, \mathrm{~L}=2\right)=0 \\
& B\left(E 2 ; n_{d}=1, L=2 \rightarrow n_{d}=0, L=0\right)=e_{B}^{2} N
\end{aligned}
$$

Selection Rules and Isomeric States

$T(E 2)=e_{B}\left(d^{\dagger} s+s^{\dagger} \tilde{d}\right) \mathrm{SO}(6)$ generator
$\Delta \sigma=0, \Delta \mathrm{n}_{\mathrm{d}}= \pm 1, \Delta \tau= \pm 1$
g-band exhausts the $\sigma=\mathrm{N}$ irrep of $\mathrm{SO}(6)$
E2 selection rule: $\mathrm{g} \leftrightarrow$ other states In particular, deformed \rightarrow spherical E2 rates very weak
$T(E 0) \propto \hat{n}_{d} \quad$ diagnal in n_{d}

Spherical γ-unstable def. coexistence

No E0 transitions involving these spherical states

Concluding Remarks

- A number-conserving rotational-invariant Hamiltonian which captures essential features of shape-coexistence in nuclei Symmetry-based benchmark
- H conserves the dynamical symmetry for selected bands Partial Dynamical Symmetries relevant for shape-coexistence
$\mathrm{SU}(3)$ and $\overline{\mathrm{SU}(3)}$ PDS prolate-oblate $U(5), S U(3)$ and $\overline{S U(3)}$ PDS spherical-prolate-oblate U5) and SO(6) PDS spherical - γ-unstable deformed
- Closed expressions for quadrupole moments and B(E2) values; selection rules to E2 \& E0 transitions and isomeric states
- PDS: solvable bands are unmixed

Band mixing can be incorporated but, if strong, may destroy the PDS

- Study of shape-coexistence provides a fertile ground for the development of generalized notions of symmetries

Thank you

