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Shape Coexistence in Nuclei 

Exp:         prolate-oblate                      Kr, Se, Hg  neutron-deficient isotopes
spherical-prolate-oblate       186Pb 
spherical-prolate Sr neutron-rich isotopes

• Shell model approach

- Multiparticle-multihole intruder excitations across shell gaps
- Drastic truncation of large SM spaces

• Mean-field approach (EDF)

- Coexisting shapes associated with different minima of an energy surface
- Beyond MF methods: restoration of broken symmetries

• Symmetry-based approach

- Dynamical symmetries ↔ phases
- Geometry: coherent (intrinsic) states

Global min: equilibrium shape (β0,γ0)



Dynamical Symmetry

U(6) ⊃ U(5) ⊃ SO(5) ⊃ SO(3) [N] nd τ n∆ L 〉 Spherical vibrator       β=0 
U(6) ⊃ SU(3) ⊃ SO(3) [N] (λ ,µ ) K L〉 Axial rotor     β = ±√2, γ=0

U(6) ⊃ SO(6) ⊃ SO(5) ⊃ SO(3) [N] σ τ n∆ L 〉 γ-unstable rotor  β =1, γ arbitrary 

• Complete solvability
• Good quantum numbers for all states
• DS: benchmark for a single shape [G1 = U(5), SU(3), SO(6)]
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Partial Dynamical Symmetry

G1 = U(5)      G2 = SU(3)          spherical - prolate
G1 = SU(3)    G2 = SU(3)          prolate - oblate
G1 = U(5)      G2 = SO(6)          spherical - γ-unstable

G1 = U(5)   G2 = SU(3)   G3 = SU(3)   spherical-prolate-oblate

• Some states solvable and/or with good quantum numbers
• G1, G2 incompatible (non-commuting) symmetries
• PDS: benchmark for shape coexistence



Dynamical Symmetry
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Partial Dynamical Symmetry

• SU(3)-SU(3) PDS             prolate-oblate
• U(5)-SU(3)-SU(3) PDS     spherical-prolate-oblate
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• U(5)-SO(6) PDS              spherical - γ-unstable
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SU(3) and SU(3) Dynamical Symmetries

U(6) ⊃ SU(3) ⊃ SO(3) [N] (λ ,µ ) K L〉 Prolate-deformed rotor

U(6) ⊃ SU(3) ⊃ SO(3) [N] (λ ,µ ) K L〉 Oblate-deformed rotor

SU(3) SU(3) SO(3)

g
SU(3) and SU(3) DS spectra are identical
Quadrupole moments of corresponding states differ in sign 

β γ



A single number-conserving H which preserves relevant DSs for 
prolate and oblate ground bands and selected spherical states

Construction based on an intrinsic-collective resolution of H 

Focus on the dynamics in the vicinity of the critical point where 
the corresponding multiple minima are near degenerate

Construction of the Hamiltonian



Prolate-Oblate Critical-Point Hamiltonian

Intrinsic part of C.P. Hamiltonian

{

Energy Surface

• Two degenerate P-O global minima 

(β=√2,γ = 0) and (β=√2,γ = π/3) [or equivalently (β= -√2,γ 0) ]

• β=0 always extremum: local min (max) for F>0 (F<0)

• Saddle points: [β1,γ = 0,π/3] , [β2,γ = π/3]

• Maximum: [β3,γ = π/3]

• Three degenerate S-P-O global minima: β=0, (β= ±√2,γ = 0)



oblate-spherical-prolateoblate-prolate

Normal modes:

Saddle points support 
a barrier separating 
the various minima

E(β,γ)

E(β,γ=0)

bandhead
spectrum



Is invariant under  [     ,        ] = 0  

⇒ All non-degenerate e.s. have well-defined s-parity

⇒ Vanishing quadrupole moments for 

Linear Γ dependence distinguishes the two deformed minima and 
slightly lifts their degeneracy, as well as that of the normal modes

Complete Hamiltonian

g1 band: solvable with 

g2 band: slight shift ~ αN2; rigid-rotor spectrum



Prolate-Oblate Coexistence

Ground g1 band: pure SU(3)-DS states (2N,0)

SU(3) decompositionSU(3) decomposition

Ground g2 band: pure SU(3)-DS states (0,2N)

Excited β and γ bands: considerable mixing oblate prolate



Triple Spherical-Prolate-Oblate Coexistence

U(5) decompostion

prolate spherical oblate 

P-O bands show similar behavior

New aspect: occurrence of spherical type of states
(nd=L=0) and (nd=1,L=2) pure U(5)-DS
Higher spherical states: pronounced (∼70%) nd=2



Partial Dynamical Symmetries

The purity of selected sets of states with respect to 
SU(3), SU(3), and U(5), in the presence of other mixed states,
are the hallmarks of a Partial Dynamical Symmetry

SU(3) decomposition SU(3) decompostion U(5) decompostion



E2 rates and Quadrupole Moments
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g2 g1

prolate-oblate coexistence

Quadrupole moments in the g1 and g2 bands

Intraband (g1→g1, g2→g2) E2 transitions



E2 rates and Quadrupole Moments
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spherical-prolate-oblate coexistence

Deformed states (g1 → g1, g2 → g2)

Q(nd=1,L=2) = 0

Spherical U(5)-DS states (nd=1 → nd=0)



Selection Rules and Isomeric States
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Isomer

prolate-oblate coexistence

(2N-4,2) component of g2 is vanishingly small

E2 selection rule: g1 ↔ g2

Valid also for

(2,2) tensor

g1 exhausts the (2N,0) irrep of SU(3)

(0,0) ⊕ (2,2) tensor

(2,2) ⊗ (2N,0) → (2N,0) ⊕ (2N-4,2)

E0 selection rule: g1 ↔ g2
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Selection Rules and Isomeric States

isomer

prolate-spherical-oblate coexistence

∆nd = ±1

The spherical states exhaust the 
(nd=0,1) irreps of U(5)

The nd=2 component in the (L=0,2,4) 
states of the g1 and g2 bands is 
extremely small

Spherical → deformed
E2 rates very weak

diagnal in nd

No E0 transitions involving these 
spherical states



U(5) and SO(6) Dynamical Symmetries

U(6) ⊃ U(5) ⊃ SO(5) ⊃ SO(3) [N] nd τ n∆ L 〉 Spherical vibrator

U(6) ⊃ SO(6) ⊃ SO(5) ⊃ SO(3) [N] σ τ n∆ L 〉 γ-unstable rotor

nd = 0

nd = 1

nd = 2

U(5)  σ=N

σ=N-2

SO(6)

Spherical and γ-unstable Critical-Point Hamiltonian

{
Intrinsic part of C.P. Hamiltonian

Energy Surface

• Two degenerate spherical and γ-unstable deformed global minima: β=0 and β=1



E(β,γ)

E(β,γ=0)

bandhead
spectrum

Normal modes:

Energy surface independent of γ
SO(5) symmetry

a barrier separates the 
spherical and γ-unstable 
deformed minima

Spherical & γ-unstable deformed

Complete Hamiltonian



U(5) decompostion

SO(6) decompostion

- g-band: pure SO(6)-DS (σ=N)
- Excited β bands: mixed

- Spherical states: pure U(5)-DS
with (nd=L=0) and (nd=1,L=2)

- Higher spherical states: 
pronounced & coherent mixing 

⇒ SO(6)-PDS

⇒ U(5)-PDS



E2 rates and Quadrupole Moments
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Spherical γ-unstable def. coexistence

Deformed states (g → g)

Q(nd=1,L=2) = 0

Spherical U(5)-DS states (nd=1 → nd=0)
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Selection Rules and Isomeric States

∆σ=0, ∆nd = ±1, ∆τ = ±1

SO(6) generator

g-band exhausts the σ=N irrep of SO(6)

E2 selection rule: g ↔ other states

In particular, 
deformed → spherical
E2 rates very weak

diagnal in nd

No E0 transitions involving these 
spherical states

isomer



Concluding Remarks

• A number-conserving rotational-invariant Hamiltonian which captures 
essential features of shape-coexistence in nuclei
Symmetry-based benchmark

• H conserves the dynamical symmetry for selected bands
Partial Dynamical Symmetries relevant for shape-coexistence

SU(3) and SU(3) PDS             prolate-oblate  
U(5), SU(3) and SU(3) PDS    spherical-prolate-oblate
U5) and SO(6) PDS                spherical - γ-unstable deformed

• Closed expressions for quadrupole moments and B(E2) values;
selection rules to E2 & E0 transitions and isomeric states  

• Study of shape-coexistence provides a fertile ground for the development of
generalized notions of symmetries

• PDS:  solvable bands are unmixed
Band mixing can be incorporated but, if strong, may destroy the PDS
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