Partial Dynamical Symmetries and Shape Coexistence in Nuclei

A. Leviatan Racah Institute of Physics The Hebrew University, Jerusalem, Israel

D. Shapira (HU) N. Gavrielov (HU)

Shapes and Symmetries in Nuclei: From Experiment to Theory (SSNET) Workshop Gif sur Yvette, France, November 7 – 11, 2016

Shape Coexistence in Nuclei

Exp: prolate-oblate spherical-prolate-oblate spherical-prolate Kr, Se, Hg neutron-deficient isotopes <sup>186</sup>Pb Sr neutron-rich isotopes

- Shell model approach
  - Multiparticle-multihole intruder excitations across shell gaps
  - Drastic truncation of large SM spaces
- Mean-field approach (EDF)
  - Coexisting shapes associated with different minima of an energy surface
  - Beyond MF methods: restoration of broken symmetries
- Symmetry-based approach
  - Dynamical symmetries  $\leftrightarrow$  phases
  - Geometry: coherent (intrinsic) states Global min: equilibrium shape ( $\beta_0, \gamma_0$ )

$$\begin{split} E_N(\beta,\gamma) &= \langle \beta,\gamma;N|\hat{H}|\beta,\gamma;N\rangle \\ &|\beta,\gamma;N\rangle = (N!)^{-1/2} (b_c^{\dagger})^N |0\rangle \\ &b_c^{\dagger} \propto \beta \cos \gamma d_0^{\dagger} + \beta \sin \gamma (d_2^{\dagger} + d_{-2}^{\dagger})/\sqrt{2} + s^{\dagger} \end{split}$$

Dynamical Symmetry

 $\hat{H} = \mathop{\scriptscriptstyle \sum}_{G} a_G \, \hat{C}_G$ 

 $\begin{array}{ll} U(6) \supset U(5) \supset SO(5) \supset SO(3) & \mid [N] \ n_d \ \tau \ n_\Delta \ L \ \rangle & \text{Spherical vibrator} & \beta = 0 \\ U(6) \supset SU(3) \ \supset SO(3) & \mid [N] \ (\lambda \ ,\mu \ ) \ K \ L \ \rangle & \text{Axial rotor} & \beta = \pm \sqrt{2}, \ \gamma = 0 \\ U(6) \supset SO(6) \supset SO(5) \supset SO(3) & \mid [N] \ \sigma \ \tau \ n_\Delta \ L \ \rangle & \gamma \text{-unstable rotor} & \beta = 1, \ \gamma \ \text{arbitrary} \end{array}$ 

- Complete solvability
- Good quantum numbers for all states
- DS: benchmark for a single shape  $[G_1 = U(5), SU(3), SO(6)]$



Dynamical Symmetry

 $\hat{H} = \mathop{\scriptscriptstyle \sum}_{G} a_G \, \hat{C}_G$ 

 $\begin{array}{ll} U(6) \supset U(5) \supset SO(5) \supset SO(3) & \mid [N] \ n_d \ \tau \ n_\Delta \ L \ \rangle & \mbox{Spherical vibrator} & \ \beta=0 \\ U(6) \supset SU(3) \ \supset SO(3) & \mid [N] \ (\lambda \ ,\mu \ ) \ K \ L \ \rangle & \mbox{Axial rotor} & \ \beta=\pm\sqrt{2}, \ \gamma=0 \\ U(6) \supset SO(6) \supset SO(5) \supset SO(3) & \mid [N] \ \sigma \ \tau \ n_\Delta \ L \ \rangle & \ \gamma-\mbox{unstable rotor} & \ \beta=1, \ \gamma \ \mbox{arbitrary} \end{array}$ 

- Complete solvability
- Good quantum numbers for all states
- DS: benchmark for a single shape  $[G_1 = U(5), SU(3), SO(6)]$

Partial Dynamical Symmetry

- Some states solvable and/or with good quantum numbers
- G<sub>1</sub>, G<sub>2</sub> incompatible (non-commuting) symmetries
- PDS: benchmark for shape coexistence

$$G_1 = U(5)$$
  $G_2 = SU(3)$   
 $G_1 = SU(3)$   $G_2 = SU(3)$   
 $G_1 = U(5)$   $G_2 = SO(6)$ 

spherical - prolate prolate - oblate spherical - γ-unstable

 $G_1 = U(5)$   $G_2 = SU(3)$   $G_3 = \overline{SU(3)}$  spherical-prolate-oblate







**Dynamical Symmetry** 

 $U(6) \supset U(5) \supset SO(5) \supset SO(3)$  $|[N] n_d \tau n_A L \rangle$ Spherical vibrator β=0  $|[N](\lambda,\mu) K L\rangle$  Axial rotor  $\beta = \pm \sqrt{2}, \gamma = 0$  $U(6) \supset SU(3) \supset SO(3)$  $U(6) \supset SO(6) \supset SO(5) \supset SO(3) \quad |[N] \sigma \tau n_{\Lambda} L \rangle$  $\gamma$ -unstable rotor  $\beta = 1, \gamma$  arbitrary

Partial Dynamical Symmetry

This talk:

• SU(3)-SU(3) PDS

prolate-oblate • U(5)-SU(3)-SU(3) PDS spherical-prolate-oblate

A.L., Shapira, PRC 93, 051302(R) (2016)

• U(5)-SO(6) PDS spherical -  $\gamma$ -unstable

A.L., Gavrielov

SU(3) and  $\overline{SU(3)}$  Dynamical Symmetries

| $U(6) \supset SU(3) \supset SO(3)$                                                                | [N] <mark>(λ ,μ )</mark> K L>                                                                                  | Prolate-deformed rotor                                                          |
|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| $U(6) \supset \overline{SU(3)} \supset SO(3)$                                                     | $ $ [N] ( $\overline{\lambda}$ , $\overline{\mu}$ ) K L $\rangle$                                              | Oblate-deformed rotor                                                           |
| SU(3)                                                                                             | <u>SU(3)</u>                                                                                                   | SO(3)                                                                           |
| $(\lambda,\mu)\!=\!(2N\!-\!4k\!-\!6m,2k)$                                                         | $(\bar{\lambda},\bar{\mu})\!=\!(2k,2N\!-\!4k\!-\!6m)$                                                          |                                                                                 |
| $\hat{C}_2[SU(3)] = 2Q^{(2)} \cdot Q^{(2)} + \frac{3}{4}L^{(1)} \cdot L^{(1)}$                    | $\hat{C}_2[\overline{\mathrm{SU}(3)}] = 2\bar{Q}^{(2)} \cdot \bar{Q}^{(2)} + \frac{3}{4}L^{(1)} \cdot \bar{L}$ | $\hat{C}_2[SO(3)] = L^{(1)} \cdot L^{(1)}$                                      |
| $Q^{(2)} = d^{\dagger}s + s^{\dagger}\tilde{d} - \frac{1}{2}\sqrt{7}(d^{\dagger}\tilde{d})^{(2)}$ | $\bar{Q}^{(2)} = d^{\dagger}s + s^{\dagger}\tilde{d} + \frac{1}{2}\sqrt{7}(d^{\dagger}\tilde{d})^{(2)}$        | $L^{(1)} = \sqrt{10} (d^{\dagger} \tilde{d})^{(1)}$                             |
| $\begin{array}{ll} (2N,0) & g(K=0) \\ (2N-4,2) & \beta(K=0) & \gamma(K=2) \end{array}$            | $\begin{array}{ll} (0,2N) & g(\bar{K}=0) \\ (2,2N-4) & \beta(\bar{K}=0) & \gamma(\bar{K}=0) \end{array}$       | = 2) 10± 6+ 5+ 6+ 5+ 4+ 4+                                                      |
| $(s^{\dagger}, s) \to (-s^{\dagger}, -s)$ $\mathcal{R}_s = \exp(i\pi \hat{n})$                    | $\hat{n}_s)$ $\hat{n}_s = s^\dagger s$                                                                         | $8^{+}_{-}$ $2^{+}_{-}_{-}^{3^{+}_{-}_{-}}_{2^{+}_{-}}^{2^{+}_{-}}_{2^{+}_{-}}$ |
| $\mathcal{R}_s N, (\lambda, \mu), K, L\rangle =  N, (\bar{\lambda}, \bar{\mu}), \bar{K}$          | $\langle , L \rangle$                                                                                          | 6±βγ                                                                            |
| $\mathcal{R}_{s}Q^{(2)}\mathcal{R}_{s}^{-1} = -\bar{Q}^{(2)}$                                     |                                                                                                                | 4+                                                                              |
|                                                                                                   |                                                                                                                |                                                                                 |

 $0^{+}$ 

g

SU(3) and SU(3) DS spectra are identical Quadrupole moments of corresponding states differ in sign A single number-conserving H which preserves relevant DSs for prolate and oblate ground bands and selected spherical states

Construction based on an intrinsic-collective resolution of H

Focus on the dynamics in the vicinity of the critical point where the corresponding multiple minima are near degenerate **Prolate-Oblate Critical-Point Hamiltonian** 

Intrinsic part of C.P. Hamiltonian

$$\begin{cases} \hat{H}|N, (\lambda, \mu) = (2N, 0), K = 0, L\rangle = 0\\ \hat{H}|N, (\bar{\lambda}, \bar{\mu}) = (0, 2N), \bar{K} = 0, L\rangle = 0 \end{cases}$$

 $\hat{H} = h_0 P_0^{\dagger} \hat{n}_s P_0 + h_2 P_0^{\dagger} \hat{n}_d P_0 + \eta_3 G_3^{\dagger} \cdot \tilde{G}_3 \qquad P_0^{\dagger} = d^{\dagger} \cdot d^{\dagger} - 2(s^{\dagger})^2 \qquad G_{3,\mu}^{\dagger} = \sqrt{7} [(d^{\dagger} d^{\dagger})^{(2)} d^{\dagger}]_{\mu}^{(3)}$ 

Energy Surface  $\tilde{E}(\beta,\gamma) = (1+\beta^2)^{-3} \left\{ (\beta^2 - 2)^2 \left[ h_0 + h_2 \beta^2 \right] + \eta_3 \beta^6 \sin^2(3\gamma) \right\}$ 

$$= z_0 + (1 + \beta^2)^{-3} [A\beta^6 + B\beta^6 \Gamma^2 + D\beta^4 + F\beta^2] \qquad \Gamma = \cos 3\gamma$$

• Two degenerate P-O global minima

 $(\beta = \sqrt{2}, \gamma = 0)$  and  $(\beta = \sqrt{2}, \gamma = \pi/3)$  [or equivalently  $(\beta = -\sqrt{2}, \gamma = 0)$ ]

- $\beta=0$  always extremum: local min (max) for F>0 (F<0)
- Saddle points:  $[\beta_1, \gamma = 0, \pi/3]$ ,  $[\beta_2, \gamma = \pi/3]$
- Maximum:  $[\beta_3, \gamma = \pi/3]$

$$\hat{H}(h_0 = 0) | N, n_d = \tau = L = 0 \rangle = 0$$

• Three degenerate S-P-O global minima:  $\beta=0$ , ( $\beta=\pm\sqrt{2},\gamma=0$ )



$$\begin{split} \hat{H} &= h_0 P_0^{\dagger} \hat{n}_s P_0 + h_2 P_0^{\dagger} \hat{n}_d P_0 + \eta_3 G_3^{\dagger} \cdot \tilde{G}_3 \qquad P_0^{\dagger} = d^{\dagger} \cdot d^{\dagger} - 2(s^{\dagger})^2 \qquad G_{3,\mu}^{\dagger} = \sqrt{7} [(d^{\dagger} d^{\dagger})^{(2)} d^{\dagger}]_{\mu}^{(3)} \\ \tilde{E}(\beta, \gamma) &= z_0 + (1 + \beta^2)^{-3} [A\beta^6 + B\beta^6 \Gamma^2 + D\beta^4 + F\beta^2] \qquad \Gamma = \cos 3\gamma \\ \hat{H} \text{ Is invariant under} \qquad (s^{\dagger}, s) \rightarrow (-s^{\dagger}, -s) \qquad [\hat{H}, \mathcal{R}_s] = 0 \end{split}$$

- $\Rightarrow$  All non-degenerate e.s. have well-defined s-parity
- $\Rightarrow \text{Vanishing quadrupole moments for } \mathcal{R}_s T(E2) \mathcal{R}_s^{-1} = -T(E2)$  $\alpha \hat{\theta}_2 = \alpha \left[ -\hat{C}_2[SU(3)] + 2\hat{N}(2\hat{N}+3) \right]$  $\tilde{\alpha}(1+\beta^2)^{-2}[(\beta^2-2)^2+2\beta^2(2-2\sqrt{2}\beta\Gamma+\beta^2)] \qquad \tilde{\alpha} = \alpha/(N-2)$

Linear  $\Gamma$  dependence distinguishes the two deformed minima and slightly lifts their degeneracy, as well as that of the normal modes

**Complete Hamiltonian** 

$$\hat{H}' = \hat{H}(h_0, h_2, \eta_3) + \alpha \,\hat{\theta}_2 + \rho \,\hat{C}_2[SO(3)]$$

 $g_1$  band: solvable with  $E_{g1}(L) = \rho L(L+1)$ 

 $g_2$  band: slight shift ~  $\alpha N^2$ ; rigid-rotor spectrum

**Prolate-Oblate Coexistence** 



Excited  $\beta$  and  $\gamma$  bands: considerable mixing

oblate prolate

Triple Spherical-Prolate-Oblate Coexistence

#### U(5) decompostion



P-O bands show similar behavior

New aspect: occurrence of spherical type of states  $(n_d=L=0)$  and  $(n_d=1,L=2)$  pure U(5)-DS Higher spherical states: pronounced (~70%)  $n_d=2$ 



prolate spherical oblate

**Partial Dynamical Symmetries** 



The purity of selected sets of states with respect to SU(3), SU(3), and U(5), in the presence of other mixed states, are the hallmarks of a Partial Dynamical Symmetry

E2 rates and Quadrupole Moments

$$T(E2) = e_B(d^{\dagger}s + s^{\dagger}\tilde{d})$$

Quadrupole moments in the  $g_1$  and  $g_2$  bands

$$Q_L = \mp e_B \sqrt{\frac{16\pi}{40}} \frac{L}{2L+3} \frac{4(2N-L)(2N+L+1)}{3(2N-1)}$$

Intraband  $(g_1 \rightarrow g_1, g_2 \rightarrow g_2)$  E2 transitions

$$B(E2; g_i, L+2 \to g_i, L) =$$

$$e_B^2 \frac{3(L+1)(L+2)}{2(2L+3)(2L+5)} \frac{(4N-1)^2(2N-L)(2N+L+3)}{18(2N-1)^2}$$

 $\mathcal{R}_s T(E2) \mathcal{R}_s^{-1} = -T(E2)$ 



prolate-oblate coexistence

E2 rates and Quadrupole Moments

$$T(E2) = e_B(d^{\dagger}s + s^{\dagger}\tilde{d})$$

Deformed states  $(g_1 \rightarrow g_1, g_2 \rightarrow g_2)$ 

$$Q_L = \mp e_B \sqrt{\frac{16\pi}{40}} \frac{L}{2L+3} \frac{4(2N-L)(2N+L+1)}{3(2N-1)}$$
$$B(E2; g_i, L+2 \to g_i, L) =$$

$$e_B^2 \frac{3(L+1)(L+2)}{2(2L+3)(2L+5)} \frac{(4N-1)^2(2N-L)(2N+L+3)}{18(2N-1)^2}$$

Spherical U(5)-DS states ( $n_d=1 \rightarrow n_d=0$ )

 $Q(n_d=1,L=2) = 0$ 

$$B(E2; n_d = 1, L = 2 \rightarrow n_d = 0, L = 0) = e_B^2 N$$



spherical-prolate-oblate coexistence

**Selection Rules and Isomeric States** 

$$\begin{split} T(E2) &= e_B(d^{\dagger}s + s^{\dagger}\tilde{d}) \quad (2,2) \text{ tensor} & 6^+ \\ (2,2) \otimes (2N,0) &\rightarrow (2N,0) \oplus (2N-4,2) \\ \text{g1 exhausts the (2N,0) irrep of SU(3)} \\ (2N-4,2) \text{ component of g2 is vanishingly small} & 4^+ \\ \text{E2 selection rule: } \mathbf{g}_1 & \nleftrightarrow \mathbf{g}_2 \\ \text{Valid also for } T(E2) &= \alpha \, \hat{Q} + \theta \, (d^{\dagger}s + \tilde{d}s) \\ T(E0) &\propto \, \hat{n}_d \quad (0,0) \oplus (2,2) \text{ tensor} \\ \text{E0 selection rule: } \mathbf{g}_1 & \nleftrightarrow \mathbf{g}_2 \\ \text{E0 selection rule: } \mathbf{g}_1 & \bigstar \mathbf{g}_2 \\ \end{array}$$

prolate-oblate coexistence

Selection Rules and Isomeric States

$$T(E2) = e_B(d^{\dagger}s + s^{\dagger}\tilde{d})$$
$$\Delta n_d = \pm 1$$

The spherical states exhaust the  $(n_d=0,1)$  irreps of U(5)

The  $n_d=2$  component in the (L=0,2,4) states of the  $g_1$  and  $g_2$  bands is extremely small

Spherical  $\rightarrow$  deformed E2 rates very weak

 $T(E0) \propto \hat{n}_d$  diagnal in n<sub>d</sub>

No E0 transitions involving these spherical states



prolate-spherical-oblate coexistence

U(5) and SO(6) Dynamical Symmetries



Spherical and  $\gamma$ -unstable Critical-Point Hamiltonian

Intrinsic part of C.P. Hamiltonian

$$\begin{cases} \hat{H}|N, \, \sigma = N, \, \tau, \, L\rangle = 0\\ \hat{H}|N, n_d = \tau = L = 0\rangle = 0 \end{cases}$$

$$\hat{H} = h_2 P_0^{\dagger} \hat{n}_d P_0 \qquad P_0^{\dagger} = d^{\dagger} \cdot d^{\dagger} - (s^{\dagger})^2$$

Energy Surface  $\tilde{E}(\beta) = (1 + \beta^2)^{-3} h_2 \beta^2 (\beta^2 - 1)^2 (1 + \beta^2)^{-3}$ =  $(1 + \beta^2)^{-3} [A\beta^6 + D\beta^4 + F\beta^2]$ 

Two degenerate spherical and γ-unstable deformed global minima: β=0 and β=1

## Spherical & γ-unstable deformed

Energy surface independent of  $\gamma$  SO(5) symmetry

a barrier separates the spherical and  $\gamma$ -unstable deformed minima

Normal modes: 
$$\epsilon_{eta} = 2h_2 N^2$$
  
 $\epsilon = h_2 N^2$ 

## **Complete Hamiltonian**

$$\hat{H}' = h_2 P_0^{\dagger} \hat{n}_d P_0 + B \hat{C}_2[SO(5)]$$





#### SO(6) decompositon

- g-band: pure SO(6)-DS (σ=N)
- Excited  $\beta$  bands: mixed

# $\Rightarrow$ SO(6)-PDS

# U(5) decompostion

- Spherical states: pure U(5)-DS with (n<sub>d</sub>=L=0) and (n<sub>d</sub>=1,L=2)
- Higher spherical states: pronounced & coherent mixing

 $\Rightarrow$  U(5)-PDS

E2 rates and Quadrupole Moments



Spherical U(5)-DS states (n<sub>d</sub>=1  $\rightarrow$  n<sub>d</sub>=0)

Spherical  $\gamma$ -unstable def. coexistence

 $Q(n_d=1,L=2) = 0$ 

 $B(E2; n_d = 1, L = 2 \rightarrow n_d = 0, L = 0) = e_B^2 N$ 

**Selection Rules and Isomeric States** 



 $T(E0) \propto \hat{n}_d$  diagnal in n<sub>d</sub>

No E0 transitions involving these spherical states

Spherical *y*-unstable def. coexistence

### **Concluding Remarks**

- A number-conserving rotational-invariant Hamiltonian which captures essential features of shape-coexistence in nuclei Symmetry-based benchmark
- H conserves the dynamical symmetry for selected bands Partial Dynamical Symmetries relevant for shape-coexistence

SU(3) and  $\overline{SU(3)}$  PDS U(5), SU(3) and  $\overline{SU(3)}$  PDS spherical-prolate-oblate U5) and SO(6) PDS

prolate-oblate spherical -  $\gamma$ -unstable deformed

- Closed expressions for quadrupole moments and B(E2) values; selection rules to E2 & E0 transitions and isomeric states
- PDS: solvable bands are unmixed Band mixing can be incorporated but, if strong, may destroy the PDS
- Study of shape-coexistence provides a fertile ground for the development of generalized notions of symmetries

# Thank you