

FIPPS FIssion Product Prompt γ -ray Spectrometer

A. Blanc¹, A. Chebboubi¹, H. Faust¹, M. Jentschel¹, U. Köster¹,
C. Michelagnoli¹, P. Mutti¹, E. Ruiz-Martinez¹, G. Kessedjian²,
C. Sage², G. Simpson², D. Wilmsen³, W. Urban⁴

¹Institut Laue-Langevin ²LPSC-Grenoble ³GANIL ⁴University of Warsaw

SSNET workshop, Gif sur Yvette, France 9 November 2016

The Institut Laue-Langevin (ILL) - since 1971

- 58 MW high flux reactor with intense extracted neutron beams
- 12 member states (F, D, UK, E, CH, A, I, CZ, S, B, SK, DK)
- > 40 instruments (mainly for neutron scattering)
- user facility (2000 scientific visitors from 45 countries per year)

- Introduction: Nuclear Physics at the Institut Laue-Langevin
- γ -ray spectroscopy after slow neutron-induced reactions
- EXogam at ILL (EXILL): setup and experimental campaign
- The FIPPS instrument: layout, physics possibilities, time-lines

Slow neutron-induced reactions

(n, γ)

 \rightarrow close to stability

- \rightarrow structure at low spin (below n-separation energy)
- \rightarrow cross-sections (applications)

Slow neutron-induced reactions

(n, γ)

 \rightarrow close to stability

- \rightarrow structure at low spin (below n-separation energy)
- \rightarrow cross-sections (applications)

(n,fission)

- \rightarrow away from stability
- \rightarrow fission yields and dynamics
- \rightarrow structure of n-rich nuclei

Nuclear Physics @ ILL

LOHENGRIN fission fragment separator

P. Armbruster et al., NIM 139, 213–222 (1976)
 G. Fioni et al., NIMA 332, 175–180 (1993)

up to 10^5 s^{-1} mass-separeted fission fragments, $T_{1/2} >= \mu \text{s}$

GAMma-ray Spectrometer (GAMS)

E. Kessler Jr et al., NIMA 457, 187–202 (2001) C. Doll et al., J. Res. Natl. Inst. Stand. Technol. 105, 167 (2000)

γ -ray spectroscopy of fission fragments: single-particle energies outside the ⁷⁸Ni core

 \checkmark level population in β decay

 86 Se \rightarrow 86 Br \rightarrow 86 Kr

В

FIG. 8. y spectrum gated on the (a) 1389.8-keV line, (b) 1217.2keV line, and (c) 1465.3-keV line.

FIG. 12. Schematic drawing of the proposed decay scenario in A = 86 isobars, involving the $\nu g_{2/2} \rightarrow \pi g_{0/2}$, G-T decay.

EXogam @ ILL (EXILL)

- $\label{eq:Highly collimated neutron beam} \begin{array}{l} \label{eq:Highly collimated neutron beam} \\ \text{from ILL reactor (PF1B guide)} \end{array}$
- $\label{eq:high-efficiency} \begin{array}{l} \rightarrow \mbox{ High efficiency and resolution Ge array} \\ (\mbox{up to 52 Ge crystals, 6\% @1.3MeV}) \\ + \mbox{ LaBr}_3 \mbox{ detectors for fast timing} \end{array}$
- \rightarrow Fully digital electronics, trigger-less (>10 kHz/crystal)
- \rightarrow 2 reactor cycles (\approx 100 days)
- \rightarrow 14 stable (rare) and 3 actinide targets

The EXILL campaign: (n,γ) reactions on (rare) stable targets

The EXILL campaign: (n,γ) reactions on (rare) stable targets

Nuclear structure around ²⁰⁸Pb

Nuclear structure around ²⁰⁸Pb

9/17

$^{209}\text{Bi}(n,\gamma)^{210}\text{Bi}$ (\rightarrow ^{210}Po) cross section

Transitions multipolarity from angular correlations:

almost pure M1 character for the 320 keV transition \rightarrow reduction of the uncertainty on the ²⁰⁹Bi(n, γ)^{210m}Bi, ²⁰⁹Bi(n, γ)^{210g}Bi cross sections

Multivariable analysis of angular correlations:

The EXILL campaign: (n,fission) reactions on actinides

 235 UO₂, $\sigma_f = 586$ b Layer sandwiched between Zr or Be backings

²⁴¹PuO₂, $\sigma_f = 1010 \text{ b}$ Layer sandwiched between Be backings

see L. Iskra (⁹⁶Y) and L. Fraile (¹³⁶Te) talks

Single-particle vs. collective phenomena around ¹³²Sn: delayed γ -ray spectroscopy of n-induced fission fragments

Milan-Cracow

collaboration

G. Bocchi et al., PLB 760, 273-278 (2016)

 \rightarrow New event-builder for cross-isomer coincidences

- \checkmark Prompt-delayed γ coincidences across the isomer
- \checkmark Lifetimes from LaBr₃ data (FATIMA campaign)
- ✓ New microscopic approach to particle-core couplings

New microscopic approach to particle–core excitations around $^{132}\mathrm{Sn}$

ightarrow more and more fragmented wave functions with increasing angular momentum

Theoretical calculations: Hybrid Configuration Mixing (HCM) model

From EXILL to FIPPS (FIssion Product Prompt γ -ray Spectrometer¹)

¹A. Blanc et al., EPJ Conf. **93**, 01015 (2015).

From EXILL to FIPPS (FIssion Product Prompt γ -ray Spectrometer¹)

¹A. Blanc et al., EPJ Conf. **93**, 01015 (2015).

From EXILL to FIPPS (FIssion Product Prompt γ -ray Spectrometer¹)

¹A. Blanc et al., EPJ Conf. **93**, 01015 (2015).

FIPPS work in progress

FIPPS position:

- \checkmark thermal neutron guide
- \checkmark 7.10⁸ n/cm²/s prior collimation
- $\checkmark \gamma$ -ray background 5 to 10 times better than at PF1b

Ge clovers in ring structure d=9 or 13 cm

4 clovers already delevered and tested in lab

 $\begin{array}{c} \mathsf{FWHM} @ 1.3 \, \mathsf{MeV} \\ \approx 2.1 \, \mathsf{keV} \end{array}$

FIPPS possibilities/timelines

(n, γ) on stable and radioactive targets, (n,fission) on actinides 1 cycle = 50 days

- Nov 2016: Ge detectors installation and source tests;
- Nov-Dec 2016 (cycle 3): (n,γ) on stable targets, instrument commissioning;
- Jan-March 2017 (cycle 1): (n,γ) on stable targets, proposals submitted Sept. 2016 (≈100 days asked for FIPPS!)

FIPPS possibilities/timelines

(n, γ) on stable and radioactive targets, (n,fission) on actinides 1 cycle = 50 days

- Nov 2016: Ge detectors installation and source tests;
- Nov-Dec 2016 (cycle 3): (n,γ) on stable targets, instrument commissioning;
- Jan-March 2017 (cycle 1): (n,γ) on stable targets, proposals submitted Sept. 2016 (≈100 days asked for FIPPS!)

Possibilities:

- (n,γ) on rare stable targets
- (n,γ) on radioactive targets
- (n,fission) with ²³³U, ²³⁵U, ²³⁹Pu, ²⁴¹Pu etc. targets
- progressive installation of ancillary methods: LaBr₃, magnetic moment measurements, plunger, GFM...

The future program is science-driven and depends on your input!

FIPPS possibilities/timelines

(n, γ) on stable and radioactive targets, (n,fission) on actinides 1 cycle = 50 days

- Nov 2016: Ge detectors installation and source tests;
- Nov-Dec 2016 (cycle 3): (n,γ) on stable targets, instrument commissioning;
- Jan-March 2017 (cycle 1): (n,γ) on stable targets, proposals submitted Sept. 2016 (≈100 days asked for FIPPS!)

Possibilities:

- (n,γ) on rare stable targets
- (n,γ) on radioactive targets
- (n,fission) with ²³³U, ²³⁵U, ²³⁹Pu, ²⁴¹Pu etc. targets
- progressive installation of ancillary methods: LaBr₃, magnetic moment measurements, plunger, GFM...

The future program is science-driven and depends on your input!

submission deadline on February 14th Aug-Oct 2017 (cycle 2), Nov-Dec 2017 (cycle 3)

Next proposal

Outline and conclusions

- γ -ray spectroscopy after slow neutron-induced reactions at ILL: Lohengrin, EXILL, **FIPPS**
- nuclear structure around double shell closure (selected highlights) studied at EXILL
- FIPPS phase I is under installation at ILL and will provide a permanent station at ILL for prompt and delayed γ-ray spectroscopy after (n,γ) and (n,fission) reactions
- your are all very welcome in the collaboration and to propose experiments at ILL !!!