Studies of super-deformed states in atomic nuclei using the Coulomb excitation method

Kasia Hadyńska-Klęk

INFN Laboratori Nazionali di Legnaro, Italy

SSNET Workshop, Orsay, France 07.11 – 11.11.2016

Studies of super-deformed states in atomic nuclei using the Coulomb excitation method

Kasia Hadyńska-Klęk

INFN Laboratori Nazionali di Legnaro, Italy

- → The story of ${}^{42}Ca$
- → COULEX results
- → Theory
- → Definition of superdefomation?

SSNET Workshop, Orsay, France 07.11 – 11.11.2016

→ Superdeformed band in ⁴⁰Ca (DSAM, ANL)

B(E2; $4^+ \rightarrow 2^+$) = 170 Wu Q_t=1.80(+10.39,-0.29) eb $\rightarrow \beta_2$ =0.59(+0.11,-0.07)

(E. Ideguchi et al., PRL 87, 222501 (2001), C.J. Chiara et al., PRC 67, 041303R (2003))

→ Superdeformed band in ⁴⁰Ca (DSAM, ANL)

B(E2; $4^+ \rightarrow 2^+$) = 170 Wu Q_t=1.80(+10.39,-0.29) eb $\rightarrow \beta_2$ =0.59(+0.11,-0.07)

(E. Ideguchi et al., PRL 87, 222501 (2001), C.J. Chiara et al., PRC 67, 041303R (2003))

→ Superdeformed band in ⁴⁰Ca (DSAM, ANL)

B(E2; $4^+ \rightarrow 2^+$) = 170 Wu Q_t=1.80(+10.39,-0.29) eb $\rightarrow \beta_2$ =0.59(+0.11,-0.07)

(E. Ideguchi et al., PRL 87, 222501 (2001), C.J. Chiara et al., PRC 67, 041303R (2003))

→ Superdeformed bands in A~40 mass region: ³⁶Ar, ³⁸Ar, ⁴⁰Ar, ⁴⁴Ti

(in all cases β_2 between 0.4-0.6)

C.E.Svensson et al., PRL 85 (2000) 2693 D.Rudolph et al., PRC 65 (2002) 034305 E.Ideguchi et al., PLB 686 (2010) 18 D.C.O'Leary et al., PRC 61 (2000) 064314

Coulomb excitation of ⁴²Ca

- INFN LNL
- Beam: ⁴²Ca, 170 MeV
- Targets:
 - ²⁰⁸Pb, 1 mg/cm²
 - ¹⁹⁷Au, 1 mg/cm²
- AGATA: 3 triple clusters, 143.8 mm from the target
- DANTE: 3 MCP detectors, 100-144°

Results – spectrum of ⁴²Ca

Results – transition probabilities

	$\langle I_i \ E2 \ I_f \rangle \ [e \ \text{fm}^2]$	$B(E2\downarrow;I_i^+)$	$^{+} \rightarrow I_{f}^{+})$ [W.u.]
$I_i^+ \to I_f^+$	Present	Present	Previous
$2^+_1 \rightarrow 0^+_1$	$20.5^{+0.6}_{-0.6}$	9.7 ^{+0.6}	9.3 ± 1 [36] 11 ± 2 [28] 9 ± 3 [27] 8.5 ± 1.0 [45]
$4^+_1 \rightarrow 2^+_1$	$24.3^{+1.2}_{-1.2}$	$7.6^{+0.7}_{-0.7}$	8.5 ± 1.9 [45] 50 ± 15 [28] 11 ± 3 [27] 10^{+10} [45]
$6^+_1 \rightarrow 4^+_1$	$9.3^{+0.2}_{-0.2}$	$0.77^{+0.03}_{-0.03}$	0.7 ± 0.3 [27]
$0^+_2 \rightarrow 2^+_1$	$22.2^{+1.1}_{-1.1}$	57^{+6}_{-6}	64 ± 4 [27] 100 ± 6 [28] 55 ± 1 [42]
$2^+_2 \rightarrow 0^+_1$	$-6.4^{+0.3}_{-0.3}$	$1.0\substack{+0.1 \\ -0.1}$	64 ± 4 [45] 2.2 ± 0.6 [28] 1.5 ± 0.5 [27] 1.2 ± 0.3 [45]
$2^+_2 \rightarrow 2^+_1$	-23.7 ^{+2.3} _{-2.7} -	12.9 ^{+2.5} -2.5	17 ± 11 [28] 19^{+22}_{-14} [27] 14^{+35}_{-14} [45]
$4^+_2 \rightarrow 2^+_1$	42 ⁺³ 42 ⁻⁴	23 ⁺³ ₋₄	30 ± 11 [28] 16 ± 5 [27] 12^{+7}_{-4} [45]
$2^+_2 \rightarrow 0^+_2$	26 ⁺⁵ ₋₃	15_{-4}^{+6}	< 61 [27]
$4^+_2 \rightarrow 2^+_2$	46^{+3}_{-6}	27^{+4}_{-6}	$\begin{array}{c} 40 \ [43] \\ 60 \pm 30 \ [27] \\ 60 \pm 20 \ [28] \\ 40^{+40}_{-30} \ [45] \end{array}$
	$\langle I_i \ E2 \ I_f \rangle \ [e \ \mathrm{fm}^2]$	Q_{sp}	, [<i>e</i> fm ²]
$2^+_1 \rightarrow 2^+_1$	-16^{+9}_{-3}	-12^{+7}_{-2}	-19 ± 8 [36]
$2^+_2 \rightarrow 2^+_2$	-55^{+15}_{-15}	-42^{+12}_{-12}	

K. Hadyńska-Klęk et al., PRL 117, 062501 (2016)

Results – transition probabilities

	$\langle I_i \ E2 \ I_f \rangle \ [e \ \mathrm{fm}^2]$	$B(E2\downarrow;I_i)$	$^{+} \rightarrow I_{f}^{+})$ [W.u.]
$I_i^+ \rightarrow I_f^+$	Present	Present	Previous
$2^+_1 \to 0^+_1$	$20.5^{+0.6}_{-0.6}$	$9.7^{+0.6}_{-0.6}$	9.3 ± 1 [36]
			11 ± 2 [28]
			9±3 [27]
4+ . 2+	24 2+12	7 < +0.7	8.5 ± 1.9 [45]
$4_1 \rightarrow 2_1$	24.5-1.2	7.0_0.7	50 ± 15 [28] 11 ± 3 [27]
			10^{+10} [45]
$6_1^+ \to 4_1^+$	$9.3^{+0.2}_{-0.2}$	$0.77^{+0.03}_{-0.03}$	0.7 ± 0.3 [27]
$0^+_2 \rightarrow 2^+_1$	22.2+1.1	57 ⁺⁶	64 ± 4 [27]
• <u>2</u> • <u>-</u> 1		2 / -0	100 ± 6 [28]
			55 ± 1 [42]
			64 ± 4 [45]
$2^+_2 \rightarrow 0^+_1$	$-6.4^{+0.3}_{-0.3}$	$1.0^{+0.1}_{-0.1}$	2.2 ± 0.6 [28]
			1.5 ± 0.5 [27]
		10 1 25	1.2 ± 0.3 [45]
$2^+_2 \rightarrow 2^+_1$	$-23.7^{+2.5}_{-2.7}$ -	$12.9^{+2.5}_{-2.5}$	17 ± 11 [28]
			19_{-14}^{+22} [27]
(+ a +	10+3	a a + 3	14^{+35}_{-9} [45]
$4^+_2 \rightarrow 2^+_1$	42_{-4}^{+3}	23^{+5}_{-4}	30 ± 11 [28]
			$10 \pm 5 [27]$ $12^{\pm 7} [45]$
$2^+ \rightarrow 0^+$	26+5	15+6	< 61 [27]
$2_2 \rightarrow 0_2$	20_3	15-4	< 46 [45]
$4^+_2 \rightarrow 2^+_2$	46^{+3}_{-6}	27^{+4}_{-6}	60 ± 30 [27]
2 2	-0	-0	60 ± 20 [28]
			40^{+40}_{-30} [45]
	$\langle I_i \ E2 \ I_f \rangle \ [e \ \text{fm}^2]$	Q _{s1}	$e [e \text{ fm}^2]$
$2^+ \rightarrow 2^+$			
	-16^{+9}	-12^{+7}	-19 ± 8 [36]

K. Hadyńska-Klęk et al., PRL 117, 062501 (2016)

$$\frac{1}{\sqrt{5}} \langle Q^2 \rangle = \frac{1}{\sqrt{2l_i + 1}} \sum_t \langle i \| E2 \| t \rangle \langle t \| E2 \| f \rangle \left\{ \begin{array}{ll} 2 & 2 & 0\\ l_i & l_f & l_t \end{array} \right\}$$
$$\langle Q^3 \cos(3\delta) \rangle = \mp \frac{\sqrt{35}}{\sqrt{2}} \frac{1}{\sqrt{2l_i + 1}} \sum_{tu} \langle s \| E2 \| u \rangle \langle u \| E2 \| t \rangle \langle t \| E2 \| s \rangle \left\{ \begin{array}{ll} 2 & 2 & 0\\ l_f & l_t \end{array} \right\}$$

K. Kumar, PRL 28, 249 (1972)

Increasing deformation in GSB and stable in the side band

 $\cos(3\delta) \sim 0.8$ – slightly triaxial - prolate 0,

J. Srebrny and D. Cline, Int. J. Mod. Phys. E20, 422 (2011)

Why non-zero deformation of the ground state?

- \rightarrow **fluctuations** about the spherical shape
- \rightarrow maximum triaxiality effect of averaging over <u>all possible quadrupole shapes</u>
- \rightarrow the dispersion of Q², σ (Q²), should be comparable to Q² value

$$\sigma(Q^2) = \sqrt{\langle Q^4 \rangle - \langle Q^2 \rangle^2}$$

Why non-zero deformation of the ground state?

- \rightarrow fluctuations about the spherical shape
- \rightarrow maximum triaxiality effect of averaging over <u>all possible quadrupole shapes</u>
- \rightarrow the dispersion of Q², σ (Q²), should be comparable to Q² value

$$\sigma(Q^2) = \sqrt{\langle Q^4 \rangle - \langle Q^2 \rangle^2}$$

Insufficient experimental data

Theoretical predictions and the full set of ME from:

Large Scale Shell Model	Beyond Mean Field
F.Nowacki, H.Naïdja, B.Bounthong	T. R. Rodríguez
Université de Strasbourg, France	Universidad Autónoma de Madrid, Spain

Why non-zero deformation of the ground state?

- \rightarrow **fluctuations** about the spherical shape
- \rightarrow maximum triaxiality effect of averaging over <u>all possible quadrupole shapes</u>
- \rightarrow the dispersion of Q², σ (Q²), should be comparable to Q² value

$$\sigma(Q^2) = \sqrt{\langle Q^4 \rangle - \langle Q^2 \rangle^2}$$

Insufficient experimental data

Theoretical predictions and the full set of ME from the SM and BMF calculations

Both approaches predict:

0₁ - SPHERICAL 0₂ - TRIAXIAL/PROLATE

We use the theoretical predictions and the full set of ME from the calculations:

- Large Scale Shell Model (F.Nowacki, H.Naïdja, B.Bounthong Strasbourg)
- Beyond Mean Field (T. R. Rodríguez Madrid)

state	$\langle Q^2 \rangle_{exp}$	$\langle Q^2 \rangle_{SM}$	$\sigma(Q^2)_{SM}$	$\langle Q^2 \rangle_{BMF}$	$\sigma(Q^2)_{BMF}$
0_{1}^{+}	500(20)	240	470	100	250
2_{1}^{+}	900 (100)	250	490	100	310
0_{2}^{+}	1300(230)	1200	500	1900	520
2^{+}_{2}	1400(250)	1130	500	1900	300
state	$\langle \cos(3\delta) \rangle_{exp}$	$\langle \cos(3\delta) \rangle_{SM}$		$\langle \cos(3$	$\delta)\rangle_{BMF}$
0_{1}^{+}	0.06(10)	0.34		0	.34
0_{2}^{+}	0.79(13)	0.67		0	.49

We use the theoretical predictions and the full set of ME from the calculations:

- Large Scale Shell Model (F.Nowacki, H.Naïdja, B.Bounthong Strasbourg)
- Beyond Mean Field (T. R. Rodríguez Madrid)

state	$\langle Q^2 \rangle_{exp}$	$\langle Q^2 \rangle_{SM}$	$\sigma(Q^2)_{SM}$	$\langle Q^2 \rangle_{BMF}$	$\sigma(Q^2)_{BMF}$
0_{1}^{+}	500(20)	240	470	100	250
2_{1}^{+}	900(100)	250	490	100	310
0_{2}^{+}	1300(230)	1200	500	1900	520
2^+_2	1400(250)	1130	500	1900	300
state	$\langle \cos(3\delta) \rangle_{exp}$	$\langle \cos(3$	$ \delta\delta\rangle\rangle_{SM}$	$\langle \cos(3$	$\delta)\rangle_{BMF}$
0_{1}^{+}	0.06(10)	0	.34	0.34	
0_{2}^{+}	0.79(13)	0.67		0.49	

0₁ - SPHERICAL with large fluctuations around minimum 0₂ - SUPERDEFORMED, SLIGHTLY TRIAXIAL/PROLATE shape

 \rightarrow a quantitative definition of superdeformation does not seem to exist \rightarrow authors use various subjective criteria, rarely clearly defined

 \rightarrow a quantitative definition of superdeformation does not seem to exist \rightarrow authors use various subjective criteria, rarely clearly defined

However:

 \rightarrow SD – a **<u>significant</u>** deviation from the spherical shape

 \rightarrow a quantitative definition of superdeformation does not seem to exist \rightarrow authors use various subjective criteria, rarely clearly defined

However:

 \rightarrow SD – a **<u>significant</u>** deviation from the spherical shape

 \rightarrow deformation corresponding to axes ratio between **3:2:1 and 2:1:1** \rightarrow corresponding β parameter: 0.4-0.6: A~130 mass region, e.g. ¹⁵²Dy, and some in the A~40 region:

 $\beta_2 = 0.46 \pm 0.03 ({}^{36}\text{Ar}), \ \beta_2 = 0.48 \pm 0.05 ({}^{40}\text{Ar})$

P. Nolan and P. Twin, Annu. Rev. Nucl. Part. Sci. 38, 533 (1988) R.V.F. Janssens, T.L. Khoo, Annu. Rev. Nucl. Part. Sci. 41, 321 (1991) C.E. Svensson, et al., Phys. Rev. Lett. 85, 2693 (2000) C.E. Svensson, et al., Phys. Rev. C 63, 061301(R) (2001) E. Ideguchi et al., Phys. Lett. B 686, 18 (2010)

 \rightarrow a quantitative definition of superdeformation does not seem to exist \rightarrow authors use various subjective criteria, rarely clearly defined

However:

 \rightarrow SD – a **<u>significant</u>** deviation from the spherical shape

 \rightarrow deformation corresponding to axes ratio between **3:2:1 and 2:1:1** \rightarrow corresponding β parameter: 0.4-0.6: A~130 mass region, e.g. ¹⁵²Dy, and some in the A~40 region:

	P. Nolan and P. Twin, Annu. Rev. Nucl. Part. Sci. 38, 533 (1988)
$B_{2} = 0.46 \pm 0.03.(36 \text{ km})$	R.V.F. Janssens, T.L. Khoo, Annu. Rev. Nucl. Part. Sci. 41, 321 (1991)
$p_2 = 0.40 \pm 0.03 (^{\circ} Al),$	C.E. Svensson, et al., Phys. Rev. Lett. 85, 2693 (2000)
$\beta_2 = 0.48 \pm 0.05$ (⁴⁰ Ar)	C.E. Svensson, et al., Phys. Rev. C 63, 061301(R) (2001)
	E. Ideguchi et al., Phys. Lett. B 686, 18 (2010)

```
\rightarrow normal deformation: 1.3:1:1 (\beta \sim 0.3)
```

 \rightarrow a quantitative definition of superdeformation does not seem to exist \rightarrow authors use various subjective criteria, rarely clearly defined

However:

 \rightarrow SD – a **<u>significant</u>** deviation from the spherical shape

 \rightarrow deformation corresponding to axes ratio between **3:2:1 and 2:1:1** \rightarrow corresponding β parameter: 0.4-0.6: A~130 mass region, e.g. ¹⁵²Dy, and some in the A~40 region:

 $\beta_2 = 0.46 \pm 0.03 ({}^{36}\text{Ar}), \beta_2 = 0.48 \pm 0.05 ({}^{40}\text{Ar})$

 \rightarrow the deformation parameters determined from quadrupole invariants in ⁴²Ca: $\beta_2=0.43(2)$ for 0_2 and $\beta_2=0.45(2)$ for 2_2 state

Shell configuration in A~40 region

\rightarrow complex particle-hole configuration

TABLE IV. Percentage of *n*p-*n*h components and energy of the first three 0⁺ states (GS, ND, and SD) of 40 Ca.

	0p-0h	2p-2h	4p-4h	6p-6h	8p-8h	E(th)	E(exp)
0^+_{GS}	65	29	5	_	_	0	0
0^+_{ND}	1	1	64	25	9	3.49	3.35
0^+_{SD}	_	-	9	4	87	4.80	5.21

⁴² Ca,	β2=0.43(2)	(0_2) and	β2 = 0.45	(2) (2 ₂)
J_i ^{pi}	2p0h	4p2h	6p4h	8p6h
0_1+	40%	40%	17%	3%
2_1+	45%	36%	16%	3%
4_1+	55%	35%	9%	1%
6_1+	55%	35%	9%	1%
0_2+	10%	18%	49%	23%
2_2+	12%	13%	50%	24%
2_3+	0%	14%	59%	26%
3_1+	0%	4%	66%	30%
4_2+	1%	15%	62%	22%
6_2+	1%	24%	61%	14%

4p-4h: 36,40 Ar, β_2 =0.46 and β_2 =0.48

3p-3h: ³⁵Cl: β₂≈0.37

Summary and outlook

- the properties of low-lying states in ⁴²Ca were studied using low-energy Coulomb excitation – 0⁺, 2⁺ and 4⁺ states observed in both bands
- the quadrupole deformation parameters of the 0⁺and 2⁺ states in GSB and SDB in ⁴²Ca were determined from the measured reduced matrix elements
- the results were compared with SM and BMF calculations
- the non-zero deformation of the ground state has been attributed to the fluctuations around the spherical shape
- a large static deformation of β =0.43(2) and β =0.45(2), for 0⁺₂ and 2⁺₂ was observed, proving the **superdeformed** character of the side band
- the $cos(3\delta)$ parameter measured for 0_2 brings the first experimental evidence for **non-axial** character of SD bands in the A~40 mass region
- COULEX of SD bands in other A~40 nuclei: ⁴⁰Ca, ³⁶⁻⁴⁰Ar, ⁴⁴Ti projects in preparation/ongoing

Many thanks to:

PRL 117, 062501 (2016)

PHYSICAL REVIEW LETTERS

week ending 5 AUGUST 2016

Superdeformed and Triaxial States in ⁴²Ca

K. Hadyńska-Klęk,^{1,2,3,4} P. J. Napiorkowski,¹ M. Zielińska,^{5,1} J. Srebmy,¹ A. Maj,⁶ F. Azaiez,⁷ J. J. Valiente Dobón,⁴ M. Kicińska-Habior,² F. Nowacki,⁸ H. Naïdja,^{8,9,10} B. Bounthong,⁸ T. R. Rodríguez,¹¹ G. de Angelis,⁴ T. Abraham,¹ G. Anil Kumar,⁶ D. Bazzacco,^{12,13} M. Bellato,¹² D. Bortolato,¹² P. Bednarczyk,⁶ G. Benzoni,¹⁴ L. Berti,⁴ B. Birkenbach,¹⁵ B. Bruyneel,¹⁵ S. Brambilla,¹⁴ F. Camera,^{14,16} J. Chavas,⁵ B. Cederwall,¹⁷ L. Charles,⁸ M. Ciemała,⁶ P. Cocconi,⁴
P. Coleman-Smith,¹⁸ A. Colombo,¹² A. Corsi,^{14,16} F. C. L. Crespi,^{14,16} D. M. Cullen,¹⁹ A. Czermak,⁶ P. Désesquelles,^{20,21}
D. T. Doherty,^{5,22} B. Dulny,⁶ J. Eberth,¹⁵ E. Farnea,^{12,13} B. Fornal,⁶ S. Franchoo,⁷ A. Gadea,²³ A. Giaz,^{14,16} A. Gottardo,⁴ X. Grave,⁷ J. Grębosz,⁶ A. Görgen,³ M. Gulmini,⁴ T. Habermann,⁹ H. Hess,¹⁵ R. Isocrate,^{12,13} J. Iwanicki,¹ G. Jaworski,¹ D. S. Judson,²⁴ A. Jungclaus,²⁵ N. Karkour,²¹ M. Kmiecik,⁶ D. Karpiński,² M. Kisieliński,¹
N. Kondratyev,²⁶ A. Korichi,²¹ M. Komorowska,^{1,2} M. Kowalczyk,¹ W. Korten,⁵ M. Krzysiek,⁶ G. Lehaut,²⁷ S. Leoni,^{14,16} J. Ljungvall,²¹ A. Lopez-Martens,²¹ S. Lunardi,^{12,13} G. Maron,⁴ K. Mazurek,⁶ R. Menegazzo,^{12,13} D. Mengoni,¹² E. Merchán,^{9,28} W. Męczyński,⁶ C. Michelagnoli,^{12,13} J. Mierzejewski,¹ B. Million,¹⁴ S. Myalski,⁶ D. R. Napoli,⁴ R. Nicolini,¹⁴ M. Niikura,⁷ A. Obertelli,⁵ S. F. Özmen,¹ M. Palacz,¹ L. Próchniak,¹ A. Pullia,^{14,16} B. Quintana,²⁹ G. Rampazzo,⁴ F. Recchia,^{12,13} N. Redon,²⁷ P. Reiter,¹⁵ D. Rosso,⁴ K. Rusek,¹ E. Sahin,⁴ M.-D. Salsac,⁵ P.-A. Söderström,³⁰ I. Stefan,⁷ O. Stézowski,²⁷ J. Styczeń,⁶ Ch. Theisen,⁵ N. Toniolo,⁴ C. A. Ur,^{12,13} K. Wrzosek-Lipska,¹ and M. Ziebliński⁶

Low energy branch of ⁴⁶Ti Giant Dipole Resonance decay feeding the states in the side band in ⁴²Ca (M.Kmiecik *et al.*, Acta Phys. Pol. **B36**, 1169(2005))

Moments of inertia of states in the side band in ⁴²Ca look very similar to states in SD-band in ⁴⁰Ca, (A.Maj *et al.* Key Topics in Nuclear Structure, page 417, (2005), M.Lach *et al.* EPJ A 16, 3, 309-311 (2003))

Theory

Large Scale Shell Model

F.Nowacki, H.Naïdja, B.Bounthong Université de Strasbourg, France

ANTOINE code

6 particle-hole excitations from $s_{_{1\!/\!2}}$ and $d_{_{3\!/\!2}}$ orbitals to pf orbitals

Effective charges: 1.5e (protons) and 0.5e (neutrons)

Same method as the one used for SD in ⁴⁰Ca: E.Caurier, J.Menendez, F.Nowacki and A.Poves, Phys. Rev. C 75, 054317 (2007)

Beyond Mean Field

T. R. Rodríguez Universidad Autónoma de Madrid, Spain

RVAMPIRE code

T.R.Rodríguez and J.L.Egido, Phys. Rev. C 81, 064323 (2010)

HFB, Gogny D1S interaction to define the energy density functional

 \rightarrow Particle number and angular momentum symmetry restoration

 \rightarrow Quadrupole (axial and non-axial) shape mixing within generator coordinate method

Both approaches predict:

0₁ - SPHERICAL 0₂ - TRIAXIAL/PROLATE

6^{+}	 7435
•	1400

3⁺ ------ 5770 4⁺ ------ 5446

2+ ----- 5029

6⁺ ------ 4275

2+ ----- 2481

0+ _____ 0

BMF

 $\begin{array}{c} 4^+ \\ 2^+ \end{array} \begin{array}{c} 2468 \\ 2362 \end{array}$

6⁺ ------ 4807

3⁺ ----- 4045

	$\langle I_i \ E2 \ I_f \rangle$ [e fm ²]		$B(E2\downarrow; I_i^+ \rightarrow I_f^+)$ [W.u.]		
$I_i^+ \rightarrow I_f^+$	Present	SM	BMF	Present	Previous
$2_1^+ \to 0_1^+$	$20.5^{+0.6}_{-0.6}$	11.5	9.14	$9.7^{+0.6}_{-0.6}$	9.3 ± 1 [36]
					11±2 [28]
					9 ± 3 [27]
					8.5 ± 1.9 [45]
$4^+_1 \rightarrow 2^+_1$	$24.3^{+1.2}_{-1.2}$	11.3	12.2	$7.6^{+0.7}_{-0.7}$	50 ± 15 [28]
					11 ± 3 [27]
c+ ++	0.0402			a == ±0.03	10^{+10}_{-8} [45]
$6^+_1 \to 4^+_1$	$9.3_{-0.2}^{+0.2}$	8.2	14.3	$0.77^{+0.03}_{-0.03}$	0.7 ± 0.3 [27]
$0^+_2 \rightarrow 2^+_1$	$22.2^{+1.1}_{-1.1}$	11.9	6.1	57^{+6}_{-6}	64±4 [27]
					100 ± 6 [28]
					55±1 [42]
	< +10.2			4.01	64±4 [45]
$2^+_2 \to 0^+_1$	$-6.4^{+0.3}_{-0.3}$	9.4	4.4	$1.0^{+0.1}_{-0.1}$	2.2 ± 0.6 [28]
					1.5 ± 0.5 [27]
a+ a+	aa =±23	10 (12 0+25	1.2 ± 0.3 [45]
$2^+_2 \rightarrow 2^+_1$	$-23.7^{+2.5}_{-2.7}$	-13.6	-7.7	$12.9^{+2.5}_{-2.5}$	17 ± 11 [28]
					19_{-14}^{-14} [27]
					14^{+35}_{-9} [45]
$4^+_2 \to 2^+_1$	42^{+3}_{-4}	21.9	10.1	23^{+3}_{-4}	30 ± 11 [28]
					16 ± 5 [27]
e + e+	2445	~~	10	1 = +6	12_{-4}^{+7} [45]
$2_2^+ \rightarrow 0_2^+$	26_{-3}^{+5}	32	42	15_{-4}^{+0}	< 61 [27]
4+ . 2+	46+3	50	70	27+4	< 46 [45]
$4_2 \rightarrow 2_2$	40_6	52	70	27-6	60 ± 30 [27]
					$40^{\pm 40}$ [45]
					40_30 [45]
	$\langle I_i \ E2 \ $	$I_f \rangle$ [e f	m ²]	Q_{sp}	, [<i>e</i> fm ²]
$2^+_1 \to 2^+_1$	-16^{+9}_{-3}	-4.3	0.1	-12^{+7}_{-2}	-19 ± 8 [36]
$2^+_2 \rightarrow 2^+_2$	-55^{+15}_{-15}	-31	-42	-42^{+12}_{-12}	

COULEX

6⁺ ------ 4715

4+ _____ 2752

2+ _____ 2424

0+ 1837

0⁺ ------ 0

SM

0+ _____ 0

Shell configuration in A~40 region

\rightarrow complex particle-hole configuration

40Ca: 8p-8h	β₂ ≃ 0.6
	, pz 0.0

TABLE IV. Percentage of np-nh components and energy of the first three 0⁺ states (GS, ND, and SD) of ⁴⁰Ca.

	0p-0h	2p-2h	4p-4h	6p-6h	8p-8h	E(th)	E(exp)
0^+_{GS}	65	29	5	_	_	0	0
0^+_{ND}	1	1	64	25	9	3.49	3.35
0^+_{SD}	_	_	9	4	87	4.80	5.21

⁴² Ca, β	2=0.43(2)	(0_2) and	β2 = 0.45	(2) (2 ₂)
J_i ^{pi}	2p0h	4p2h	6p4h	8p6h
0_1+	40%	40%	17%	3%
2_1+	45%	36%	16%	3%
4_1+	55%	35%	9%	1%
6_1+	55%	35%	9%	1%
0_2+	10%	18%	49%	23%
2_2+	12%	13%	50%	24%
2_3+	0%	14%	59%	26%
3_1+	0%	4%	66%	30%
4_2+	1%	15%	62%	22%
6_2+	1%	24%	61%	14%

4p-4h: 36,40 Ar, β_2 =0.46 and β_2 =0.48

3p-3h: ³⁵Cl: β₂≈0.37

Conclusion:

a quantitative definition of superdeformation does not seem to exist