Studies of super-deformed states in atomic nuclei using the Coulomb excitation method

Kasia Hadyńska-Klęk
INFN Laboratori Nazionali di Legnaro, Italy

Studies of super-deformed states in atomic nuclei using the Coulomb excitation method

Kasia Hadyńska-Klęk
INFN Laboratori Nazionali di Legnaro, Italy
\rightarrow The story of ${ }^{42} \mathrm{Ca}$
\rightarrow COULEX results
\rightarrow Theory
\rightarrow Definition of superdefomation?

Motivation - SD in ${ }^{42} \mathrm{Ca}$?

\rightarrow Superdeformed band in ${ }^{40} \mathrm{Ca}(\mathrm{DSAM}, \mathrm{ANL})$
$B\left(E 2 ; 4^{+} \rightarrow 2^{+}\right)=170 \mathrm{Wu}$
$\mathrm{Q}_{\mathrm{t}}=1.80(+10.39,-0.29)$ eb $\rightarrow \beta_{2}=0.59(+0.11,-0.07)$
(E. Ideguchi et al.. PRL 87, 222501 (2001), C.J. Chiara et al., PRC 67, 041303R (2003))

Motivation - SD in ${ }^{42} \mathrm{Ca}$?

\rightarrow Superdeformed band in ${ }^{40} \mathrm{Ca}(\mathrm{DSAM}, \mathrm{ANL})$
$B\left(E 2 ; 4^{+} \rightarrow 2^{+}\right)=170 \mathrm{Wu}$
$\mathrm{Q}_{\mathrm{t}}=1.80(+10.39,-0.29)$ eb $\rightarrow \beta_{2}=0.59(+0.11,-0.07)$
(E. Ideguchi et al.. PRL 87, 222501 (2001), C.J. Chiara et al., PRC 67, 041303R (2003))

Motivation - SD in ${ }^{42} \mathrm{Ca}$?

\rightarrow Superdeformed band in ${ }^{40} \mathrm{Ca}(\mathrm{DSAM}, \mathrm{ANL})$
$B\left(E 2 ; 4^{+} \rightarrow 2^{+}\right)=170 \mathrm{Wu}$
$Q_{t}=1.80(+10.39,-0.29)$ eb $\rightarrow \beta_{2}=0.59(+0.11,-0.07)$
(E. Ideguchi et al.. PRL 87, 222501 (2001), C.J. Chiara et al., PRC 67, 041303R (2003))
\rightarrow Superdeformed bands in A~40 mass region:
${ }^{36} \mathrm{Ar},{ }^{38} \mathrm{Ar},{ }^{40} \mathrm{Ar},{ }^{44} \mathrm{Ti}$
(in all cases β_{2} between 0.4-0.6)
C.E.Svensson et al., PRL 85 (2000) 2693 D.Rudolph et al., PRC 65 (2002) 034305
E.Ideguchi et al., PLB 686 (2010) 18
D.C.O'Leary et al., PRC 61 (2000) 064314

Coulomb excitation of ${ }^{42} \mathrm{Ca}$

- INFN LNL
- Beam: ${ }^{42} \mathrm{Ca}, 170 \mathrm{MeV}$
- Targets:
$-{ }^{208} \mathrm{~Pb}, 1 \mathrm{mg} / \mathrm{cm}^{2}$
${ }^{-197} \mathrm{Au}, 1 \mathrm{mg} / \mathrm{cm}^{2}$
- AGATA: 3 triple clusters, 143.8 mm from the target
- DANTE: 3 MCP detectors, 100-144 ${ }^{\circ}$

Results - spectrum of ${ }^{42} \mathrm{Ca}$

■ Pb (208, 207, 206, 204)

- 511 keV
- ${ }^{43} \mathrm{Ca}$

Results - transition probabilities

$I_{i}^{+} \rightarrow I_{f}^{+}$	$\left\langle I_{i}\\|E 2\\| I_{f}\right\rangle\left[e f m^{2}\right]$	$B\left(E 2 \downarrow ; I_{i}^{+} \rightarrow I_{f}^{+}\right)[\mathrm{W} . \mathrm{u}$.	
	Present	Present	Previous
$2_{1}^{+} \rightarrow 0_{1}^{+}$	$20.5{ }_{-0.6}^{+0.6}$	9.7-0.6	9.3 ± 1 [36]
			11 ± 2 [28]
			9 ± 3 [27]
			8.5 ± 1.9 [45]
$4_{1}^{+} \rightarrow 2_{1}^{+}$	$24.3{ }_{-1.2}^{+12}$	$7.6{ }_{-0.7}^{+0.7}$	50 ± 15 [28]
			11 ± 3 [27]
			10_{-8}^{+10} [45]
$6_{1}^{+} \rightarrow 4_{1}^{+}$	9.3.-0.2	$0.77_{-0.03}^{+0.03}$	0.7 ± 0.3 [27]
$\mathrm{O}_{2}^{+} \rightarrow 2_{1}^{+}$	$22.2{ }_{-1.1}^{+1.1}$	57_{-6}^{+6}	64 ± 4 [27]
			100 ± 6 [28]
			55 ± 1 [42]
			64 ± 4 [45]
$2_{2}^{+} \rightarrow 0_{1}^{+}$	$-6.4-03$	$1 .{ }_{-0.1}^{0.1}$	2.2 ± 0.6 [28]
			1.5 ± 0.5 [27]
			1.2 ± 0.3 [45]
$2_{2}^{+} \rightarrow 2_{1}^{+}$	$-23.7{ }_{-2.7}^{+23}$.	12.9 -25	17 ± 11 [28]
			19^{+22} [27]
			14_{-9}^{+35} [45]
$4_{2}^{+} \rightarrow 2_{1}^{+}$	42_{-4}^{+3}	23_{-4}^{+3}	30 ± 11 [28]
			16 ± 5 [27]
			${ }^{12_{-4}^{+7}}$ [45]
$2_{2}^{+} \rightarrow 0_{2}^{+}$	26_{-3}^{+5}	15_{-4}^{+6}	<61 [27]
$4_{2}^{+} \rightarrow 2+$	46_{-6}^{+3}	27_{-6}^{+4}	<46 [45]
			60 ± 30 [27]
			60 ± 20 [28]
			${ }^{40}{ }^{+30}$ [45]
	$\left\langle I_{i l}\\|E 2\\| I_{f}\right\rangle\left[e \mathrm{fm}^{2}\right]$		[ffm^{2}]
$2_{1}^{+} \rightarrow 2_{1}^{+}$	-16_{-3}^{+9}	-12_{-2}^{+7}	-19 ± 8 [36]
$\underline{\underline{2+} \rightarrow 2+}$	-55_{-15}^{+15}	-42_{-12}^{+12}	

K. Hadyńska-Klęk et al., PRL 117, 062501 (2016)

Results - transition probabilities

K. Hadyńska-Klęk et al., PRL 117, 062501 (2016)

Discussion: Quadrupole Shape Invariants

$$
\begin{gathered}
\frac{1}{\sqrt{5}}\left\langle Q^{2}\right\rangle=\frac{1}{\sqrt{2 I_{i}+1}} \sum_{t}\langle i\|E 2\| t\rangle\langle t\|E 2\| f\rangle\left\{\begin{array}{lll}
2 & 2 & 0 \\
l_{i} & I_{f} & I_{t}
\end{array}\right\} \\
\left\langle Q^{3} \cos (3 \delta)\right\rangle=\mp \frac{\sqrt{35}}{\sqrt{2}} \frac{1}{\sqrt{2 I_{i}+1}} \sum_{t u}\langle s\|E 2\| u\rangle\langle u\|E 2\| t\rangle\langle t\|E 2\| s\rangle\left\{\begin{array}{lll}
2 & 2 & 2 \\
I_{s} & l_{t} & I_{u}
\end{array}\right\}
\end{gathered}
$$

Increasing deformation in GSB and stable in the side band

Discussion: Quadrupole Shape Invariants

$\cos (3 \delta) \sim 0.8$ - slightly triaxial - prolate O_{2}

state	$\left\langle Q^{2}\right\rangle_{e x p}$
0_{1}^{+}	$500(20)$
2_{1}^{+}	$900(100)$
0_{2}^{+}	$1300(230)$
2_{2}^{+}	$1400(250)$
state	$\cos (3 \delta)\rangle_{e x p}$
0_{1}^{+}	$0.06(10)$
0_{2}^{+}	$0.79(13)$

$\boldsymbol{\operatorname { c o s }}(3 \overline{)}) \sim 0-$ triaxial GS

Discussion: Quadrupole Shape Invariants

state	$\left\langle Q^{2}\right\rangle_{\text {exp }}$
0_{1}^{+}	$500(20)$
2_{1}^{+}	$900(100)$
0_{2}^{+}	$1300(230)$
2_{2}^{+}	$1400(250)$
state	$\langle\cos (3 \delta)\rangle_{\text {exp }}$
0_{1}^{+}	$0.06(10)$
0_{2}^{+}	$0.79(13)$

$$
\begin{aligned}
& 0_{1} \beta=0.26(2) \text { and } y=29(2)^{\circ} \\
& 0_{2} \beta=0.43(2) \text { and } y=13(6)^{\circ}
\end{aligned}
$$

$$
\begin{gathered}
\beta=\sqrt{\left\langle\beta^{2}\right\rangle}=\sqrt{\frac{\left\langle Q^{2}\right\rangle}{q_{0}^{2}}}, \\
\gamma=\arccos \langle\cos (3 \delta)\rangle
\end{gathered}
$$

Discussion: Quadrupole Shape Invariants

state	$\left\langle Q^{2}\right\rangle_{\text {exp }}$
0_{1}^{+}	$500(20)$
2_{1}^{+}	$900(100)$
0_{2}^{+}	$1300(230)$
2_{2}^{+}	$1400(250)$
state	$\langle\cos (3 \delta)\rangle_{\text {exp }}$
0_{1}^{+}	$0.06(10)$
0_{2}^{+}	$0.79(13)$

SUPERDEFORMED slightly triaxial SIDE BAND

Discussion: Quadrupole Shape Invariants

state	$\left\langle Q^{2}\right\rangle_{\text {exp }}$
0_{1}^{+}	$500(20)$
2_{1}^{+}	$900(100)$
0_{2}^{+}	$1300(230)$
2_{2}^{+}	$1400(250)$
state	$\langle\cos (3 \delta)\rangle_{\text {exp }}$
0_{1}^{+}	$0.06(10)$
0_{2}^{+}	$0.79(13)$

$0_{1} \beta=0.26(2)$ and $y=29(2)^{\circ}$

Non-zero triaxial deformation of the ground state?

Discussion: Shape parameters

Why non-zero deformation of the ground state?
\rightarrow fluctuations about the spherical shape
\rightarrow maximum triaxiality - effect of averaging over all possible quadrupole shapes
\rightarrow the dispersion of $Q^{2}, \sigma\left(Q^{2}\right)$, should be comparable to Q^{2} value

$$
\sigma\left(Q^{2}\right)=\sqrt{\left\langle Q^{4}\right\rangle-\left\langle Q^{2}\right\rangle^{2}}
$$

Discussion: Shape parameters

Why non-zero deformation of the ground state?
\rightarrow fluctuations about the spherical shape
\rightarrow maximum triaxiality - effect of averaging over all possible quadrupole shapes
\rightarrow the dispersion of $Q^{2}, \sigma\left(Q^{2}\right)$, should be comparable to Q^{2} value

$$
\sigma\left(Q^{2}\right)=\sqrt{\left\langle Q^{4}\right\rangle-\left\langle Q^{2}\right\rangle^{2}}
$$

Insufficient experimental data

Theoretical predictions and the full set of ME from:

Large Scale Shell Model

F.Nowacki, H.Naïdja, B.Bounthong Université de Strasbourg, France

Beyond Mean Field
T. R. Rodríguez

Universidad Autónoma de Madrid, Spain

Discussion: Shape parameters

Why non-zero deformation of the ground state?
\rightarrow fluctuations about the spherical shape
\rightarrow maximum triaxiality - effect of averaging over all possible quadrupole shapes
\rightarrow the dispersion of $Q^{2}, \sigma\left(Q^{2}\right)$, should be comparable to Q^{2} value

$$
\sigma\left(Q^{2}\right)=\sqrt{\left\langle Q^{4}\right\rangle-\left\langle Q^{2}\right\rangle^{2}}
$$

Insufficient experimental data

Theoretical predictions and the full set of ME from the SM and BMF calculations

Both approaches predict:
0_{1} - SPHERICAL
0_{2} - TRIAXIALIPROLATE

Discussion: Shape parameters

We use the theoretical predictions and the full set of ME from the calculations:

- Large Scale Shell Model (F.Nowacki, H.Naïdja, B.Bounthong - Strasbourg)
- Beyond Mean Field (T. R. Rodríguez - Madrid)

state	$\left\langle Q^{2}\right\rangle_{\text {exp }}$	$\left\langle Q^{2}\right\rangle_{S M}$	$\sigma\left(Q^{2}\right)_{S M}$	$\left\langle Q^{2}\right\rangle_{B M F}$	$\sigma\left(Q^{2}\right)_{B M F}$
0_{1}^{+}	$500(20)$	240	470	100	250
2_{1}^{+}	$900(100)$	250	490	100	310
0_{2}^{+}	$1300(230)$	1200	500	1900	520
2_{2}^{+}	$1400(250)$	1130	500	1900	300
state	$\langle\cos (3 \delta)\rangle_{\text {exp }}$	$\langle\cos (3 \delta)\rangle_{S M}$		$\langle\cos (3 \delta)\rangle_{B M F}$	
0_{1}^{+}	$0.06(10)$	0.34		0.34	
0_{2}^{+}	$0.79(13)$	0.67		0.49	

Discussion: Shape parameters

We use the theoretical predictions and the full set of ME from the calculations:

- Large Scale Shell Model (F.Nowacki, H.Naïdja, B.Bounthong - Strasbourg)
- Beyond Mean Field (T. R. Rodríguez - Madrid)

state	$\left\langle Q^{2}\right\rangle_{\text {exp }}$	$\left\langle Q^{2}\right\rangle_{S M}$	$\sigma\left(Q^{2}\right)_{S M}$	$\left\langle Q^{2}\right\rangle_{B M F}$	$\sigma\left(Q^{2}\right)_{B M F}$
0_{1}^{+}	$500(20)$	240	470	100	250
2_{1}^{+}	$900(100)$	250	490	100	310
0_{2}^{+}	$1300(230)$	1200	500	1900	520
2_{2}^{+}	$1400(250)$	1130	500	1900	300
state	$\langle\cos (3 \delta)\rangle_{\text {exp }}$	$\langle\cos (3 \delta)\rangle_{S M}$		$\langle\cos (3 \delta)\rangle_{B M F}$	
0_{1}^{+}	$0.06(10)$	0.34		0.34	
0_{2}^{+}	$0.79(13)$	0.67	0.49		

0_{1} - SPHERICAL with large fluctuations around minimum 0_{2} - SUPERDEFORMED, SLIGHTLY TRIAXIALIPROLATE shape

What does it mean SUPERDEFORMED?

\rightarrow a quantitative definition of superdeformation does not seem to exist
\rightarrow authors use various subjective criteria, rarely clearly defined

What does it mean SUPERDEFORMED?

\rightarrow a quantitative definition of superdeformation does not seem to exist
\rightarrow authors use various subjective criteria, rarely clearly defined
However:
\rightarrow SD - a significant deviation from the spherical shape

What does it mean SUPERDEFORMED?

\rightarrow a quantitative definition of superdeformation does not seem to exist
\rightarrow authors use various subjective criteria, rarely clearly defined

However:

\rightarrow SD - a significant deviation from the spherical shape
\rightarrow deformation corresponding to axes ratio between 3:2:1 and 2:1:1 \rightarrow corresponding β parameter: 0.4-0.6: A~130 mass region, e.g. ${ }^{152} \mathrm{Dy}$, and some in the $\mathrm{A} \sim 40$ region:
$\beta_{2}=0.46 \pm 0.03\left({ }^{(36} \mathrm{Ar}\right)$,
$\beta_{2}=0.48 \pm 0.05\left({ }^{40} \mathrm{Ar}\right)$
R.V.F. Janssens, T.L. Khoo, Annu. Rev. Nucl. Part. Sci. 41, 321 (1991)
C.E. Svensson, et al., Phys. Rev. Lett. 85, 2693 (2000)
C.E. Svensson, et al., Phys. Rev. C 63, 061301(R) (2001)
E. Ideguchi et al., Phys. Lett. B 686, 18 (2010)

What does it mean SUPERDEFORMED?

\rightarrow a quantitative definition of superdeformation does not seem to exist
\rightarrow authors use various subjective criteria, rarely clearly defined

However:

\rightarrow SD - a significant deviation from the spherical shape
\rightarrow deformation corresponding to axes ratio between 3:2:1 and 2:1:1 \rightarrow corresponding β
parameter: 0.4-0.6: A~130 mass region, e.g. ${ }^{152} \mathrm{Dy}$, and some in the $\mathrm{A} \sim 40$ region:
P. Nolan and P. Twin, Annu. Rev. Nucl. Part. Sci. 38, 533 (1988)
$\beta_{2}=0.46 \pm 0.03\left({ }^{36} \mathrm{Ar}\right)$, R.V.F. Janssens, T.L. Khoo, Annu. Rev. Nucl. Part. Sci. 41, 321 (1991)
C.E. Svensson, et al., Phys. Rev. Lett. 85, 2693 (2000)
C.E. Svensson, et al., Phys. Rev. C 63, 061301(R) (2001)
E. Ideguchi et al., Phys. Lett. B 686, 18 (2010)
\rightarrow normal deformation: 1.3:1:1 ($\beta \sim 0.3$)

What does it mean SUPERDEFORMED?

\rightarrow a quantitative definition of superdeformation does not seem to exist
\rightarrow authors use various subjective criteria, rarely clearly defined

However:

\rightarrow SD - a significant deviation from the spherical shape
\rightarrow deformation corresponding to axes ratio between 3:2:1 and 2:1:1 \rightarrow corresponding β parameter: 0.4-0.6: A~130 mass region, e.g. ${ }^{152 \mathrm{Dy}}$, and some in the $\mathrm{A} \sim 40$ region:
$\beta_{2}=0.46 \pm 0.03\left({ }^{36} \mathrm{Ar}\right)$,
$\beta_{2}=0.48 \pm 0.05\left({ }^{40} \mathrm{Ar}\right)$
\rightarrow the deformation parameters determined from quadrupole invariants in ${ }^{42} \mathrm{Ca}$:
$\beta_{2}=0.43(2)$ for O_{2} and $\beta_{2}=\mathbf{0 . 4 5 (2)}$ for $\mathbf{2}_{2}$ state

What does it mean SUPERDEFORMED?

Shell configuration in A~40 region

\rightarrow complex particle-hole configuration

$$
{ }^{42} \mathrm{Ca}, \beta_{2}=0.43(2)\left(0_{2}\right) \text { and } \beta_{2}=0.45(2)\left(2_{2}\right)
$$

${ }^{40} \mathrm{Ca}: 8 p-8 \mathrm{~h}, \beta_{2} \simeq 0.6$
TABLE IV. Percentage of $n \mathrm{p}-n \mathrm{~h}$ components and energy of the first three 0^{+}states (GS, ND, and SD) of ${ }^{40} \mathrm{Ca}$.

	0p-0h	$2 \mathrm{p}-2 \mathrm{~h}$	$4 \mathrm{p}-4 \mathrm{~h}$	$6 \mathrm{p}-6 \mathrm{~h}$	$8 \mathrm{p}-8 \mathrm{~h}$	$E($ th $)$	$E(\exp)$
$\mathrm{O}_{\mathrm{GS}}^{+}$	65	29	5	-	-	0	0
$\mathrm{O}_{\mathrm{ND}}^{+}$	1	1	64	25	9	3.49	3.35
$\mathrm{O}_{\mathrm{SD}}^{+}$	-	-	9	4	87	4.80	5.21

$4 p-4 h:{ }^{36,40} \mathrm{Ar}, \beta_{2}=0.46$ and $\beta_{2}=0.48$
$3 p-3 h:{ }^{35} \mathrm{Cl}: \beta_{2} \simeq 0.37$

Summary and outlook

- the properties of low-lying states in ${ }^{42}$ Ca were studied using low-energy Coulomb excitation $-0^{+}, 2^{+}$and 4^{+}states observed in both bands
- the quadrupole deformation parameters of the 0^{+}and 2^{+}states in GSB and SDB in ${ }^{42} \mathrm{Ca}$ were determined from the measured reduced matrix elements
- the results were compared with SM and BMF calculations
- the non-zero deformation of the ground state has been attributed to the fluctuations around the spherical shape
- a large static deformation of $\beta=0.43(2)$ and $\beta=0.45(2)$, for $0_{2}{ }^{+}$and $2_{2}{ }^{+}$was observed, proving the superdeformed character of the side band
- the $\cos (3 \delta)$ parameter measured for 0_{2} brings the first experimental evidence for non-axial character of SD bands in the A~40 mass region
- COULEX of SD bands in other $\mathrm{A} \sim 40$ nuclei: ${ }^{40} \mathrm{Ca},{ }^{36-40} \mathrm{Ar},{ }^{44} \mathrm{Ti}$ - projects in preparation/ongoing

Many thanks to:

Superdeformed and Triaxial States in ${ }^{42} \mathbf{C a}$

K. Hadý́ska-Klęk, ${ }^{1,23,4}$ P. J. Napiorkowski, ${ }^{1}$ M. Zielińska, ${ }^{5,1}$ J. Srebmy, ${ }^{1}$ A. Maj, ${ }^{6}$ F. Azaiez, ${ }^{7}$ J. J. Valiente Dobón, ${ }^{4}$ M. Kicińska-Habior, ${ }^{2}$ F. Nowacki, ${ }^{8}$ H. Naïdja, ${ }^{8,9,10}$ B. Bounthong, ${ }^{8}$ T.R. Rodríguez, ${ }^{11}$ G. de Angelis, ${ }^{4}$ T. Abraham, ${ }^{1}$ G. Anil Kumar, ${ }^{6}$ D. Bazzacco, ${ }^{12,13}$ M. Bellato, ${ }^{12}$ D. Bortolato,,${ }^{12}$ P. Bednarczyk, ${ }^{6}$ G. Benzoni, ${ }^{14}$ L. Berti, ${ }^{4}$ B. Birkenbach, ${ }^{15}$
B. Bruyneel, ${ }^{15}$ S. Brambilla, ${ }^{14}$ F. Camera, ${ }^{14,16}$ J. Chavas, ${ }^{5}$ B. Cederwall, ${ }^{17}$ L. Charles, ${ }^{8}$ M. Ciemata, ${ }^{6}$ P. Cocconi, ${ }^{4}$
P. Coleman-Smith ${ }^{18}$ A. Colombo, ${ }^{12}$ A. Corsi, ${ }^{14,16}$ F. C. L. Crespi, ${ }^{14,16}$ D. M. Cullen, ${ }^{19}$ A. Czermak, ${ }^{6}$ P. Désesquelles, ${ }^{20,21}$ D. T. Doherty, ${ }^{5,22}$ B. Dulny, ${ }^{6}$ J. Eberth, ${ }^{15}$ E. Farnea, ${ }^{12,13}$ B. Fornal,,${ }^{6}$ S. Franchoo, ${ }^{7}$ A. Gadea, ${ }^{23}$ A. Giaz, ${ }^{14,16}$ A. Gottardo, ${ }^{4}$ X. Grave, ${ }^{7}$ J. Greebosz, ${ }^{6}$ A. Görgen, ${ }^{3}$ M. Gulmini, ${ }^{4}$ T. Habermann, ${ }^{9}$ H. Hess, ${ }^{15}$ R. Isocrate, ${ }^{12,13}$ J. Iwanicki, ${ }^{1}$ G. Jaworski, ${ }^{1}$ D. S. Judson, ${ }^{24}$ A. Jungclaus, ${ }^{25}$ N. Karkour, ${ }^{21}$ M. Kmiecik, ${ }^{6}$ D. Karpiński, ${ }^{2}$ M. Kisielínski, ${ }^{1}$ N. Kondratyev, ${ }^{26}$ A. Korichi, ${ }^{21}$ M. Komorowska, ${ }^{1,2}$ M. Kowalczyk, ${ }^{1}$ W. Korten, ${ }^{5}$ M. Krzysiek, ${ }^{6}$ G. Lehaut, ${ }^{27}$ S. Leoni, ${ }^{14}{ }^{1416}$
J. Ljungvall, ${ }^{21}$ A. Lopez-Martens, ${ }^{21}$ S. Lunardi, ${ }^{12,13}$ G. Maron, ${ }^{4}$ K. Mazurek, ${ }^{6}$ R. Menegazzo, ${ }^{12,13}$ D. Mengoni, ${ }^{12}$
E. Merchán, ${ }^{9,28}$ W. Męczyński, ${ }^{6}$ C. Michelagnoli, ${ }^{12,13}$ J. Mierzejewski, ${ }^{1}$ B. Million, ${ }^{14}$ S. Myalski, ${ }^{6}$ D. R. Napoli, ${ }^{4}$
R. Nicolini, ${ }^{14}$ M. Niikura, ${ }^{7}$ A. Obertelli, ${ }^{5}$ S. F. Özmen, ${ }^{1}$ M. Palacz, ${ }^{1}$ L. Próchniak, ${ }^{1}$ A. Pullia, ${ }^{14,16}$ B. Quintana, ${ }^{29}$ G. Rampazzo, ${ }^{4}$ F. Recchia,,${ }^{12,13}$ N. Redon, ${ }^{27}$ P. Reiter, ${ }^{15}$ D. Rosso, ${ }^{4}$ K. Rusek, ${ }^{1}$ E. Sahin, ${ }^{4}$ M.-D. Salsac, ${ }^{5}$ P.-A. Söderström, ${ }^{30}$ I. Stefan, ${ }^{7}$ O. Stézowski, ${ }^{27}$ J. Styczeń, ${ }^{6}$ Ch. Theisen, ${ }^{5}$ N. Toniolo, ${ }^{4}$ C. A. Ur, ${ }^{12,13}$
V. Vandone, ${ }^{14,16}$ R. Wadsworth, ${ }^{22}$ B. Wasilewska, ${ }^{6}$ A. Wiens, ${ }^{15}$ J. L. Wood, ${ }^{31}$
K. Wrzosek-Lipska, ${ }^{1}$ and M. Ziebliński ${ }^{6}$

Motivation - SD in ${ }^{42} \mathrm{Ca}$?

Low energy branch of ${ }^{46} \mathrm{Ti}$ Giant Dipole Resonance decay feeding the states in the side band in ${ }^{42} \mathrm{Ca}$ (M.Kmiecik et al., Acta Phys. Pol. B36, 1169(2005))

Moments of inertia of states in the side band in ${ }^{42} \mathrm{Ca}$ look very similar to states in SD-band in ${ }^{40} \mathrm{Ca}$, (A.Maj et al. Key Topics in Nuclear Structure, page 417, (2005), M.Lach et al. EPJ A 16, 3, 309-311 (2003))

Theory

Large Scale Shell Model

F.Nowacki, H.Naïdja, B.Bounthong Université de Strasbourg, France

ANTOINE code

6 particle-hole excitations from $\mathrm{s}_{1 / 2}$ and $\mathrm{d}_{3 / 2}$ orbitals to pf orbitals

Effective charges: 1.5 e (protons) and 0.5 e (neutrons)

Same method as the one used for SD in ${ }^{40} \mathrm{Ca}$: E.Caurier, J.Menendez, F.Nowacki and A.Poves, Phys. Rev. C 75, 054317 (2007)

Beyond Mean Field

T. R. Rodríguez

Universidad Autónoma de Madrid, Spain
RVAMPIRE code
T.R.Rodríguez and J.L.Egido,

Phys. Rev. C 81, 064323 (2010)
HFB, Gogny D1S interaction to define the energy density functional
\rightarrow Particle number and angular momentum symmetry restoration
\rightarrow Quadrupole (axial and non-axial) shape mixing within generator coordinate method

Both approaches predict:
0_{1} - SPHERICAL
$\mathbf{0}_{2}$ - TRIAXIAL/PROLATE
\qquad 7435

	$\left\langle I_{i}\\|E 2\\| I_{f}\right\rangle\left[e \mathrm{fm}^{2}\right]$					$B\left(E 2 \downarrow ; I_{i}^{+} \rightarrow I_{f}^{+}\right)[$W.u. $]$	
$I_{i}^{+} \rightarrow I_{f}^{+}$	Present	SM	BMF		Present	Previous	
$2_{1}^{+} \rightarrow 0_{1}^{+}$	$20.5_{-0.6}^{+0.6}$	11.5	9.14		$9.7_{-0.6}^{+0.6}$	$9.3 \pm 1[36]$	
						$11 \pm 2[28]$	
					$9.5 \pm 1.9[45]$		
$4_{1}^{+} \rightarrow 2_{1}^{+}$	$24.3_{-1.2}^{+1.2}$	11.3	12.2		$7.6_{-0.7}^{+0.7}$	$50 \pm 15[28]$	
						$11 \pm 3[27]$	
						$10_{-8}^{+10}[45]$	

$6_{1}^{+} \rightarrow 4_{1}^{+} \quad 9.3_{-0.2}^{+0.2} \quad 8.2 \quad 14.3 \quad 0.77_{-0.03}^{+0.03} \quad 0.7 \pm 0.3$ [27] $\begin{array}{llllll}0_{2}^{+} \rightarrow 2_{1}^{+} & 22.2_{-1.1}^{+1.1} & 11.9 & 6.1 & 57_{-6}^{+6} & 64 \pm 4[27]\end{array}$ 100 ± 6 [28] 55 ± 1 [42] $\begin{array}{llllll}2_{2}^{+} \rightarrow 0_{1}^{+} & -6.4_{-0.3}^{+0.3} & 9.4 & 4.4 & 1.0_{-0.1}^{+0.1} & 2.2 \pm 0.6[28]\end{array}$ 1.5 ± 0.5 [27] 1.2 ± 0.3 [45] $2_{2}^{+} \rightarrow 2_{1}^{+}-23.7_{-2.7}^{+2.3}-13.6-7.7 \quad 12.9_{-25}^{+25} \begin{gathered}17 \pm 11[28] \\ \\ \end{gathered}$ 14_{-9}^{+35} [45]
$4_{2}^{+} \rightarrow 2_{1}^{+} \quad 42_{-4}^{+3} \quad 21.9 \quad 10.1 \quad 23_{-4}^{+3} \quad 30 \pm 11[28]$ 16 ± 5 [27]

$2_{2}^{+} \rightarrow 0_{2}^{+}$	26_{-3}^{+5}	32	42	15_{-4}^{+6}	$12_{-4}^{+7}[45]$ $4_{2}^{+} \rightarrow 2_{2}^{+}$${46_{-6}^{+3}}^{527]}$
		52	70	27_{-6}^{+4}	$60 \pm 30[45]$
				$40_{-30}^{+40}[45]$	

2^{+} \qquad

6^{+}	4715
2^{+}	3392
4^{+}	$\begin{aligned} & 3254 \\ & 3189 \end{aligned}$
$4+$	2752
$2^{+}-2424$	
0^{+}	1837
	1525

	$\left\langle I_{i}\\|E 2\\| I_{f}\right\rangle\left[e \mathrm{fm}^{2}\right]$			$\mathrm{Q}_{s p}\left[e \mathrm{fm}^{2}\right]$	
$2_{1}^{+} \rightarrow 2_{1}^{+}$	-16_{-3}^{+9}	-4.3	0.1	-12_{-2}^{+7}	$-19 \pm 8[36]$

$2_{2}^{+} \rightarrow 2_{2}^{+} \quad-55_{-15}^{+15} \quad-31 \quad-42 \quad-42_{-12}^{+12}$
0^{+} \qquad 0
$3^{+}-5770$
$4^{+}-5446$
$2^{+}-5029$
$6^{+}-4807$
$6^{+}-4275$
$4^{+} \quad 3509$
3352
2^{+} \qquad

1666 $2^{+}=1531$

$$
60 \pm 20[28]
$$

$$
40_{-30}^{+40}[45]
$$

0^{+} \qquad

What does it mean SUPERDEFORMED?

 Shell configuration in A~40 region\rightarrow complex particle-hole configuration
${ }^{40} \mathrm{Ca}: 8 p-8 \mathrm{~h}, \beta_{2} \simeq 0.6$
TABLE IV. Percentage of $n \mathrm{p}-n \mathrm{~h}$ components and energy of the first three 0^{+}states (GS, ND, and SD) of ${ }^{40} \mathrm{Ca}$.

	$0 \mathrm{p}-0 \mathrm{~h}$	$2 \mathrm{p}-2 \mathrm{~h}$	$4 \mathrm{p}-4 \mathrm{~h}$	$6 \mathrm{p}-6 \mathrm{~h}$	$8 \mathrm{p}-8 \mathrm{~h}$	E (th)	E (exp)
$\mathrm{O}_{\mathrm{GS}}^{+}$	65	29	5	-	-	0	0
$\mathrm{O}_{\mathrm{ND}}^{+}$	1	1	64	25	9	3.49	3.35
$\mathrm{O}_{\mathrm{SD}}^{+}$	-	-	9	4	87	4.80	5.21

$4 p-4 h:{ }^{36,40} \mathrm{Ar}, \beta_{2}=0.46$ and $\beta_{2}=0.48$
$3 p-3 h:{ }^{35} \mathrm{Cl}: \beta_{2} \simeq 0.37$
${ }^{42} \mathrm{Ca}, \beta_{2}=0.43(2)\left(0_{2}\right)$ and $\beta_{2}=0.45(2)\left(2_{2}\right)$

J_ipi	2pOh	4p2h	6p4h	8p6h
0_1+	40\%	40\%	17\%	3\%
$2 _1^{+}$	45\%	36\%	16\%	3\%
4_1+	55\%	35\%	9\%	1\%
6_1+	55\%	35\%	9\%	1\%
0_2+	10\%	18\%	49\%	23\%
2_2+	12\%	13\%	50\%	24\%
2_3+	0\%	14\%	59\%	26\%
3_1+	0\%	4\%	66\%	30\%
4_2+	1\%	15\%	62\%	22\%
6_2+	1\%	24\%	61\%	14\%

Conclusion:
a quantitative definition of superdeformation does not seem to exist

