

Gerda Neyens KU Leuven, Belgium
with thanks to the COLLAPS and CRIS collaborations at ISOLDE-CERN

KU LEUVEN

Laser spectroscopy - observables, methods, applicability range
$\mathrm{Zn}(\mathrm{Z}=30)$ - intruder isomer, shape coexistence in 79 Zn
$\mathrm{Mn}(\mathrm{Z}=25)$ - deformation towards $\mathrm{N}=40$
$\mathrm{Cu}(\mathrm{Z}=29)-78 \mathrm{Ni}$ core polarization from moments towards 79Cu

Collinear laser spectroscopy

Measure nuclear ground state properties

Spin I

Magnetic moment μ

Quadrupole moment Qs

Charge radii fr2h

Via atomic hyperfine splitting and isotope shifts

Collinear laser spectroscopy at ISOLDE-CERN

COLLAPS

CRIS

low background (few /s) with bunched beams
from the ISCOOL RFQ at the HRS
moderate efficiency (0.01\%)
high resolution ($40-60 \mathrm{MHz}$)
need few 1.000 ions/s from ISOLDE
ultra-low background (1 event /10 min) high efficiency (~1-5 \%)
high resolution (~ 15-60 MHz)
need about 10 ions/s from ISOLDE

79Zn : intruder isomer and shape coexístence

R. Orlandi et al., PLB740, 298 (2015)
$78 Z n(\mathrm{~d}, \mathrm{p}) 79 \mathrm{Zn}$ at ISOLDE

Isomer (unknown lifetime) observed; suggested 1/2+

KU LEUVEN
Good candidate to be an intruder $1 \mathrm{p}-2 \mathrm{~h}$ state \rightarrow measure g-factor !

Shape coexistence in the chart of nuclei:

States with different shapes at low energy Near one magic shell and one mid-shell for p and n (or vice-versa)

Fingerprints of coexistence

Heyde et al., Physics Reports 102, 291 (1983).

- Static moments and isomer shift
- Band structure

Retarded electromagnetic transitions

Three types of static moments are commonly measured for nuclear states: (i) the nuclear charge volume; (ii) the magnetic dipole momenp; (iii) the electric quadrupole momen? The measurement, for a given excited state relative to the ground state, of the nuclear charge volume (isomer shift) provides, definitive evidence of shape coexistence. Such evidence is similarly provided by electric quadrupole moment measurements. Magnetic dipole moment measurements reveal essentially the single-particle nature of a given nuclear state, and thus can fingerprint a shell-model intruder configuration.

Laser spectroscopy technique is a perfect tool
=> spins, magnetic and quadrupole moments, and charge radii

HFS spectra of $79 \mathrm{~g}, \mathrm{mZn} \quad l=9 / 2+, 1 / 2+$

X.F. Yang et al., PRL 116, 182502 (2016)
g-factor of $9 / 2$ g.s. and $1 / 2$ isomeric state in $79 Z n$

$$
d 5 / 2
$$

$$
N=50
$$

$$
\cdots-\infty-\infty-\infty \quad \text { g9/2 }
$$

g-factor of $9 / 2$ g.s. and $1 / 2$ isomeric state in $79 Z n$

$\mathrm{N}=50$
$\cdots-0-\cdots-\infty-0 / 2$

KULEUVEN

g-factor of $9 / 2$ g.s. and $1 / 2$ isomeric state in $79 Z n$

F. Nowacki et al., Private communication

Charge radii of $\mathbf{Z n}$

M. L. Bissell et al., Phys. Rev. C 93, 064318 (2016)

Cu radii
T. J. Procter et al., Phys. Rev. C 86, 034329 (2012) Ga radii

Angeli and Marinova, At. Data Nucl. Data Tables99, 69 (2013) other radii N. Wang and T. Li, Phys. Rev. C 88, 011301 (2013)
toy model
L. Xie. X.F. Yang et al., In preparation

$79 \mathrm{~g}, \mathrm{mZn}$ radii \rightarrow signature for shape coexistence

\rightarrow Confirm by performing COULEX on the isomeric beam to measure its deformation !

Mn isotopes ($Z=25$, middle of $\mathrm{M} 7 / 2$ orbit): evolution of deformation from radii and quadrupole moments

Quadrupole moments: sensitive to correlations and deformation

Mn isotopes $(Z=25)$

gxpf1a

Honma, PRC65 (2002);
40Ca core
Mand Kin fp-shell

All isotopes have I=5/2
except 53 Mn (at $\mathrm{N}=28$) has normal $\mathrm{I}=7 / 2$

KULEUVEN

Quadrupole moments: sensitive to correlations and deformation

Mn isotopes ($\mathrm{Z}=25$)

- neutron excitations are needed from $\mathrm{N}=36$ onwards, into Kg9/2 and Kd5/2 !

Radii of Mn isotopes

Consistent with conclusion from Q-moments

Onset of deformation from N=36 onwards
H. Heylen, C.Babcock, et al., PRC November 2016, accepted

Moments: probing the wave function

Mn isotopes ($\mathrm{Z}=25$)
LNPS reproduces the moments \rightarrow correct wave function

Excitations across $\mathrm{N}=40$ induce increase in proton excitations across $Z=28$ (type-II shell evolution
Tsunoda et al., PRC89, 2014)
C.Babcock, H. Heylen et al., PLB 750 (2015) 176

Cu isotopes:
Core polarization between $\mathrm{N}=28$ and $\mathrm{N}=50$

Magnetic and Quadrupole moments: probe different correlations (M1/E2)

$$
\begin{aligned}
& \mathrm{g} 9 / 2 Z=50 \\
& \begin{array}{l}
\mathrm{p} 1 / 2 \\
\mathrm{f} 5 / 2= \\
\mathrm{p} 3 / 2 \\
\hline Z=28
\end{array} \\
& \hline
\end{aligned}
$$

jj44b and JUN45 model space
\rightarrow Overall OK but miss the decrease before and after $\mathrm{N}=40$

Sieja et al., PRC81, 061303(R) (2010): include M7/2 in model space
Need $4 \mathrm{p}-\mathbf{4 h}$ proton excitations across $\mathbf{Z}=\mathbf{2 8}$
to reproduce magnetic moments $71-77 \mathrm{Cu}$ (no calculations for n-deficient)

Magnetic and Quadrupole moments: probe different correlations

$$
\begin{aligned}
& \mathrm{g} 9 / 2 \\
& \mathrm{p} 1 / 2 \\
& \mathrm{f} 5 / 2 \\
& \mathrm{p} 3 / 2 \\
& \hline
\end{aligned}
$$

jj44b and JUN45 model space

- Good reproduction of n-rich Q-moments
- Miss correlations towards $\mathrm{N}=28$
(missing p-n excitations across $\mathrm{N}, \mathrm{Z}=28$)

No quadrupole moments calculated for $71-79 \mathrm{Cu}$

- What if proton excitations are included ?
- What about excitations across the $\mathrm{N}=50$ shell gap

CRIS

Injection seeded pulsed Ti:Sa laser for 249 nm (Tripled)

- 75Cu measured yield of 20,000 ions/s
- Estimated yield of 78 Cu of < 20 ions/s

R.P. de Groote et al.. In orenaration (2016)

Magnetic and Quadrupole moments: probe different correlations

Quadrupole moments from $\mathrm{N}=28$ to $\mathrm{N}=48$

$$
\begin{aligned}
& \mathrm{g} 9 / 2 \\
& \mathrm{p} 1 / 2 \\
& \mathrm{f} 5 / 2 \\
& \mathrm{p} 3 / 2 \\
& \hline
\end{aligned}
$$

jj44b and JUN45 model space

- Good reproduction of n-rich Q-moments
- Miss correlations towards $\mathrm{N}=50$?

Calculated Q-moments for 71-77Cu in extended model spaces.
\rightarrow Only proton excitations sufficient?

- Weakening of $\mathrm{N}=50$ shell gap ?
- Calculations needed!

CONCLUSIONS

Nuclear moments and radii are complementary probes to study nuclear structure far from stability

moments: probing the single particle components and correlations in the wave function
in combination with radii: establish deformation and shape coexistence

> Collinear laser spectroscopy gives spin, moments and radii from 1 measurement of HFS

Future cases

Main focus: - transition regions between/towards closed shells

- towards exotic doubly-magic nuclei
- neutron-deficient proton emitters

CRIS for most exotic cases

KU LEUVEN

Current regions of interest

Main focus: - transition regions between/towards closed shells

- towards exotic doubly-magic nuclei

Fr, Ra

Sn : structure beyond $\mathrm{N}=82$
132Sn
126
CRIS for most exotic cases
Ga : structure changes beyond $\mathrm{N}=50$
Ni : charge radii (and moments)
Cu: moments, spins and radii towards $\mathrm{N}=50$

g-factor of $9 / 2$ g.s. and $1 / 2$ isomeric state in $79 Z n$

Shape coexistence around $N=50$?

Intruder states confirmed for $\mathrm{N}=49$ isotones for more than 3 decades
K. Heyde et al., Physics Reports 102, 291 (1983)

Experimental evidence for shape coexistence is still missing!!

