Dark matter searches at the Colliders (LHC)

Dilip Kumar Ghosh

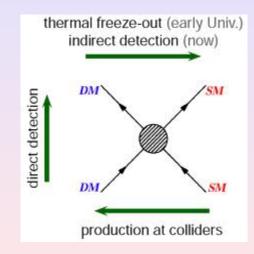
Department of Theoretical Physics Indian Association for the Cultivation of Science, India

Indo-French LIA THEP and CEFIPRA INFRE-HEPNET Kick Off meeting, CHEP,IISc, Bangalore May 2-5, 2016

- We have clear evidence for abundance of non-luminous matter in the universe
- This excess of matter is called Dark Matter, which constitute about 27% of the content of the Universe, while the ordinary matter accounts only for at most 5%
- Existence of Dark Matter : Support comes from several Astrophysical observations
- The exact nature of this new kind of matter is still not clear

• The requirement of dark matter \implies Physics beyond the SM

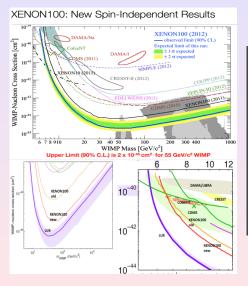
- The requirement of dark matter \implies Physics beyond the SM
- Several theoretical scenarios have been proposed to explain the nature of the DM and its interactions with the Standard Model (SM) sector

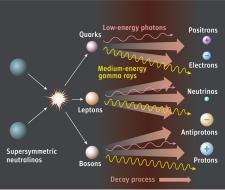

- The requirement of dark matter \implies Physics beyond the SM
- Several theoretical scenarios have been proposed to explain the nature of the DM and its interactions with the Standard Model (SM) sector
- The most attractive picture for DM : some kind of weakly interacting, massive particle (WIMP), with mass $\sim 100 \text{ GeV} \mathcal{O}(\text{TeV})$ with correct relic density

- The requirement of dark matter \implies Physics beyond the SM
- Several theoretical scenarios have been proposed to explain the nature of the DM and its interactions with the Standard Model (SM) sector
- The most attractive picture for DM : some kind of weakly interacting, massive particle (WIMP), with mass $\sim 100 \text{ GeV} \mathcal{O}(\text{TeV})$ with correct relic density
- WIMP : Spin, Electroweak charge, Real /Majorana or Complex /Dirac ?

- The requirement of dark matter \implies Physics beyond the SM
- Several theoretical scenarios have been proposed to explain the nature of the DM and its interactions with the Standard Model (SM) sector
- The most attractive picture for DM : some kind of weakly interacting, massive particle (WIMP), with mass $\sim 100 \text{ GeV} \mathcal{O}(\text{TeV})$ with correct relic density
- WIMP : Spin, Electroweak charge, Real /Majorana or Complex /Dirac ?
- WIMPs interact with SM particles with EW strength, which is much stronger than gravitational interactions

See lectures by Yann Mambrini in this meeting


Detection of Dark Matter



Detection of Dark Matter

- Different ways of Dark matter detection :
 - **Direct Detection** : WIMPs would scatter elastically with nuclei of detector material and produce recoil energy. Both spin dependent and spin independent cross-sections are measured
 - **Indirect Detection** : If DM exists, then the products of DM annihilation can be detectable.
 - Gamma-ray : PAMELA, HESS, VERITAS etc.
 - Neutrinos : Super-KamioKande, IceCube.
 - Antimatter : PAMELA, HEAT, AMS-01 and AMS-02.
 - **Collider Searches**: Producing DM particles at colliders associated with either a photon or jet : Large missing energy $+\gamma$ or jet. It can be produced also with W^{\pm} , Z and heavy fermions (t, b).

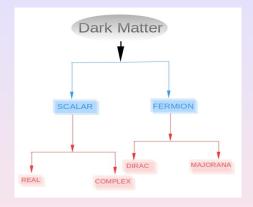
Direct and Indirect Detection

- All most all the physics beyond the standard model predicts a WIMP
- In principle, WIMP can be a Dirac or a Majorana fermion, it can be a scalar as well
- Beyond the Standard Model :
 - SUSY with *R*-parity : Lightest neutralino $(\tilde{\chi}_1^0)$
 - Little Higgs models with T-parity : Heavy photon A_H
 - Universal Extra Dimensions with KK-parity : Lightest KK excitation

BIG question ?

How does WIMP interact with SM fields ?

We need some kind of a theory for WIMP interaction with SM fields

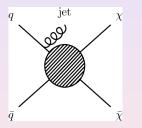

Theory of WIMP interactions

One needs a theory of DM interactions to interpret :

- the cross-section limits obtained from the LHC searches on $\not\!\!E_T$ events
- to make link between LHC limits and limits obtained from the DM direct and indirect searches
- Several DM models beyond the SM have been proposed
- Broadly they can be classified into three categories :
- Interaction Effective theory of DM interactions
- Simplified models of DM interactions
- Omplete model of DM

[Ref:J.Abdallah et al., arXiv:1506.03116v3[hep-ph]]

Effective theory of Dark Matter interactions



- Situation : DM (χ) + SM (No other new particles in the spectrum)
- Interactions of DM with SM particles are governed by the underlying gauge symmetry.

- Additional symmetry is needed to make DM stable : χ is odd under Z_2 , while all SM fields are even \implies stable WIMP & at colliders WIMPs are pair produced
- WIMP is singlet under the SM gauge groups ⇒ No tree-level couplings with the E-W gauge bosons. It can couple to *W*, *Z* by integrating out intermediate heavy particles.
- The flavour structure is such that WIMP does not introduce FCNC or CP violation.
- The LHC limits on the cross-sections is a function of only one parameter, the scale of new physics Λ . Processes with higher powers of Λ are highly suppressed

[Ref:arXiv:0912.4511,1005.1286,1005.3797,1008.1783,1009.0008, 1108.1196,1109.4398]

Effective theory of Dark Matter interactions

- In this approach, the interactions between the DM and the SM fields are described by a non-renormalizable operators:
- $\mathcal{L}_{\text{EFT}} = \frac{1}{M_*^2} (\bar{q}q)(\bar{\chi}\chi)$. Here, the interactions between the fermionic DM particle χ and quark qis communicated via a heavy scalar field, which has been integrated out \implies D=6 operator
- The strength of the interaction is controlled by the mass scale *M*_{*}
- The beauty of EFT : the same operator can describe DM annihilation, scattering, and production.

Effective theory of Dark Matter interactions

• The EFT operators are non-renormalizable but predictive as long as the energy scale of the interaction $E << M_*$

• The EFT is a valid prescription for the calculation :

• indirect searches of DM. The energy scale for non-relativistic annihilation of DM particles in the halo is $\mathcal{O}(M_{\text{DM}})$

• Direct detection of the DM : non-relativistic interaction of the DM with nucleon takes place at the energy scale of $\mathcal{O}(MeV)$

Interaction between Dirac WIMP and SM quarks

• The interaction between the DM and quarks (mediated by a colorless scalar *S* and pseudo-scalar *P*:

$$\mathcal{L} \supset g_{\rm DM}^{s}(\bar{\chi}\chi)S + g_{\rm SM}^{S} \sum_{q} \frac{m_{q}}{v} (\bar{q}q)S + ig_{\rm DM}^{P}(\bar{\chi}\gamma_{5}\chi)P + ig_{\rm SM}^{P} \sum_{q} \frac{m_{q}}{v} (\bar{q}\gamma_{5}q)P$$

- Both S & P are exact CP eigenstates and g^{S,P}_{DM} and g^{S,P}_{SM} are all real ⇒ No additional contributions to EDMs
- For very heavy mediator masses $M_{S,P}$ ($M_{S,P} >> E_{\text{process}}$), integrating out the scalar and pseudo-scalar mediator \implies

$$\mathcal{O}^q_{\mathcal{S}} = rac{m_q}{\Lambda^3_{\mathcal{S}}} \left(ar{\chi} \chi
ight) (ar{q} q), \qquad \mathcal{O}^q_{\mathcal{P}} = rac{m_q}{\Lambda^3_{\mathcal{P}}} \left(ar{\chi} \gamma_5 \chi
ight) (ar{q} \gamma_5 q)$$

• where, the suppression scale Λ is related to mediator mass $M_{S/P}$ and fundamental couplings g_{SM}^S and g_{DM}^S by $\Lambda_S = \left(\frac{M_S^2}{g_{SM}^S g_{DM}^S}\right)^{1/3}$, for pseudoscalar interactions: $S \to P$

• For vector mediator, $\Lambda_V = \frac{M_V}{\sqrt{g_{SM}^V g_{DM}^V}}$

Higher dimensional operators for Dirac Dark Matter

Label	Operator	Usual coefficients	Dimension
$\mathcal{O}_{\mathrm{D1}}$	$ar{\chi}\chiar{q}q$	m_q/M_{*}^{3}	6
$\mathcal{O}_{\mathrm{D2}}$	$ar\chi i \gamma_5 \chi ar q q$	m_q/M_{*}^{3}	6
$\mathcal{O}_{\mathrm{D3}}$	$ar\chi\chiar q i\gamma_5 q$	m_q/M_{*}^{3}	6
$\mathcal{O}_{\mathrm{D4}}$	$ar\chi i \gamma_5 \chi ar q i \gamma_5 q$	m_q/M_{*}^{3}	6
$\mathcal{O}_{\mathrm{D5}}$	$ar{\chi}\gamma^\mu\chiar{q}\gamma_\mu q$	$1/M_{*}^{2}$	6
$\mathcal{O}_{\mathrm{D6}}$	$ar{\chi}\gamma^{\mu}\gamma_5\chiar{q}\gamma_{\mu}q$	$1/M_{*}^{2}$	6
$\mathcal{O}_{\mathrm{D7}}$	$ar{\chi}\gamma^\mu\chiar{q}\gamma_\mu\gamma_5 q$	$1/M_{*}^{2}$	6
$\mathcal{O}_{\mathrm{D8}}$	$ar{\chi}\gamma^{\mu}\gamma_5\chiar{q}\gamma_{\mu}\gamma_5q$	$1/M_{*}^{2}$	6
$\mathcal{O}_{\mathrm{D9}}$	$\bar{\chi}\sigma^{\mu u}\chi\bar{q}\sigma_{\mu u}q$	$1/M_{*}^{2}$	6
$\mathcal{O}_{\mathrm{D10}}$	$\bar{\chi}i\sigma^{\mu u}\gamma_5\chi\bar{q}\sigma_{\mu u}q$	$1/M_{*}^{2}$	6
$\mathcal{O}_{\mathrm{D11}}$	$ar{\chi}\chi G_{\mu u}G^{\mu u}$	$\alpha_S/4M_*^3$	7
$\mathcal{O}_{\mathrm{D12}}$	$ar{\chi}\gamma_5\chi G_{\mu u}G^{\mu u}$	$i\alpha_S/4M_*^3$	7
$\mathcal{O}_{\mathrm{D13}}$	$ar{\chi}\chi G_{\mu u} ilde{G}^{\mu u}$	$\alpha_S/4M_*^3$	7
$\mathcal{O}_{\mathrm{D14}}$	$ar{\chi}\gamma_5\chi G_{\mu u} ilde{G}^{\mu u}$	$i\alpha_S/4M_*^3$	7

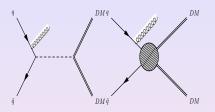
[Ref: Simone et al., arXiv:1603.08002v1]

Higher dimensional operators for Majorana Dark Matter

\mathcal{O}_{M1}	$\bar{\chi}\chi\bar{q}q$	$m_q/2M_*^3$	6
\mathcal{O}_{M2}	$ar{\chi} i \gamma_5 \chi ar{q} q$	$m_q/2M_*^3$	6
\mathcal{O}_{M3}	$ar\chi\chiar q i\gamma_5 q$	$m_q/2M_*^3$	6
\mathcal{O}_{M4}	$ar{\chi} i \gamma_5 \chi ar{q} i \gamma_5 q$	$m_q/2M_*^3$	6
\mathcal{O}_{M5}	$ar{\chi}\gamma^{\mu}\gamma_5\chiar{q}\gamma_{\mu}q$	$1/2M_{*}^{2}$	6
$\mathcal{O}_{\mathrm{M6}}$	$\bar{\chi}\gamma^{\mu}\gamma_5\chi\bar{q}\gamma_{\mu}\gamma_5q$	$1/2M_{*}^{2}$	6
$\mathcal{O}_{\mathrm{M7}}$	$ar{\chi}\chi G_{\mu u}G^{\mu u}$	$\alpha_S/8M_*^3$	7
$\mathcal{O}_{\mathrm{M8}}$	$ar{\chi}\gamma_5\chi G_{\mu u}G^{\mu u}$	$i\alpha_S/8M_*^3$	7
\mathcal{O}_{M9}	$ar{\chi}\chi G_{\mu u} ilde{G}^{\mu u}$	$\alpha_S/8M_*^3$	7
$\mathcal{O}_{\mathrm{M10}}$	$ar{\chi}\gamma_5\chi G_{\mu u} ilde{G}^{\mu u}$	$i\alpha_S/8M_*^3$	7

[Ref: Simone et al., arXiv:1603.08002v1]

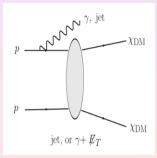
Higher dimensional operators for Complex Scalar Dark Matter


Label	Operator	Usual coefficient	Dimension
$-\mathcal{O}_{C1}$	$\phi^*\phi \bar{q}q$	m_a/M_*^2	5
\mathcal{O}_{C2}^{C1}	$\phi^*\phiar q i\gamma_5 q$	$m_q/M_st^2\ m_q/M_st^2$	5
\mathcal{O}_{C3}	$\phi^* i \overleftrightarrow{\partial_\mu} \phi \bar q \gamma^\mu q$	$1/M_{*}^{2}$	6
\mathcal{O}_{C4}	$\phi^*i\overleftrightarrow{\partial_\mu}\phiar q\gamma^\mu\gamma_5 q$	$1/M_{*}^{2}$	6
\mathcal{O}_{C5}	$\phi^* \phi G_{\mu u} G^{\mu u} \ \phi^* \phi G_{\mu u} ilde{G}^{\mu u}$	$lpha_S/4M_*^2$	6
\mathcal{O}_{C6}	$\phi^*\phi G_{\mu u} ilde{G}^{\mu u}$	$lpha_S/4M_*^2$	6

For Real Scalar Dark Matter:

Label	Operator	Usual coefficient	Dimension
\mathcal{O}_{R1}	$\phi^2 \bar{q} q$	$m_q/2M_*^2$	5
\mathcal{O}_{R1}	$\phi^2 \bar{q} i \gamma_5 q$	$m_a/2M_{*}^2$	5
\mathcal{O}_{R3}	$\phi^2 G_{\mu u} G^{\mu u}$	$\alpha_s^2/8M_*^2$	6
$\mathcal{O}_{\mathrm{R4}}$	$\phi^2 G_{\mu u} ilde{G}^{\mu u}$	$\alpha_S/8M_*^2$	6

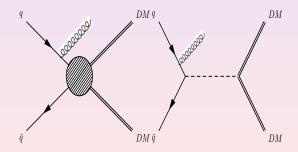
[Ref: Simone et al., arXiv:1603.08002v1]


Signature of DM at the LHC

- The existing LHC studies in most cases are performed in the frame work of effective theory (EFT)
- DM quark interactions are parametrised using EFT technique
- DM (χ)- quark (q) contact interaction is set by the scale Λ or M_{*}, which is related to the mediator mass M, its couplings to quark (g_q) and DM (g_χ) as Λ = M/√(g_qg_χ)
- *S*, *V*, *A* type of interactions between χq are studied. The DM is a Dirac particle
- LHC results are then translated as limit in $M_{\rm DM} \sigma_{\rm SI}$ plane in model independent way

DM searches at the LHC

- The production (pp → χχ) of WIMPs at the LHC would give rise to large ∉_T ⇒ hard to observe at the detector
- Signal observation requires : At least a hard jet or a photon in association with this $\not\!\!\!E_T$: (a) Mono-photon : $\gamma + \not\!\!\!E_T$ and (b) Monojet : jet + $\not\!\!\!E_T$


Another BIG question ?

Can we trust EFT interpretation of LHC results on DM searches ?

Yes, but with some limitations !!

Limitations of EFT of DM interactions

- The EFT description of DM interactions with the SM fields is valid as long as the mass of the heavy mediator is not within the kinematic reach of the collider
- As the heavy mediator particles mass scales and coupling strengths become accessible to the LHC, the validity of the EFT approximation can not be guaranteed

- Example:
- The heavy particle propagator in the process $q\bar{q} \rightarrow \bar{\chi}\chi + \gamma(g)$ is

$$rac{1}{\mathcal{Q}_{ ext{tr}}^2-M_{ ext{med}}^2}=-rac{1}{M_{ ext{med}}^2}\left(1+rac{\mathcal{Q}_{ ext{tr}}^2}{M_{ ext{med}}^2}+\mathcal{O}\left(rac{\mathcal{Q}_{ ext{tr}}^4}{M_{ ext{med}}^4}
ight)
ight)$$

- $Q_{\rm tr}^2$ is the momentum transfer in the process
- Retaining only the leading term $1/M_{med}^2 \implies$ truncation of the expansion to the lowest -dimensional EFT operator

•
$$M_{\star} = \frac{M_{\text{med}}}{\sqrt{8qg_{\chi}}}$$
 holds as long as $Q_{\text{tr}} << M_{\text{med}}$

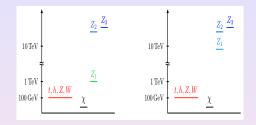
• In this s-channel process : $Q_{\text{tr}} > 2m_{\chi}$ (to produce the DM pair) $\implies M_* > \frac{Q_{\text{tr}}}{\sqrt{g_q g_{\chi}}} > 2 \frac{m_{\chi}}{\sqrt{g_q g_{\chi}}} > \frac{m_{\chi}}{2\pi}, \quad (g_q, g_{\chi} \le 4\pi)$

[Ref. arXiv:1603.08002[hep-ph]]

• A better measure of the validity of the EFT :

•
$$Q_{\rm tr}^2 < M_{\rm med}^2 \equiv g_q g_\chi M_*^2 \Longrightarrow {\rm EFT}$$
 valid

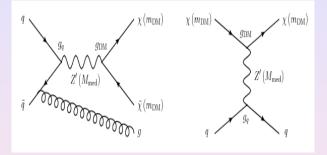
- $Q_{tr}^2 \sim M_{med}^2$: σ_{prod} receives resonant enhancement & EFT approximation gives conservative limits relative to the full theory
- $Q_{tr}^2 >> M_{med}^2$: EFT expansion fails, σ_{prod} falls like Q_{tr}^{-1} rather than M_{med}^{-1} \implies EFT constraints will stronger than the actual ones
- EFT validity condition : $Q_{\rm tr}^2 < M_{\rm med}^2 = g_q g_\chi M_*^2$
- Discard events which do not pass this condition and gives a truncated signal cross section as function of


$$(m_{\chi}, g_q, g_{\chi}, M_*)$$
 or $(m_{\chi}, M_{\text{med}})$

- The truncation to the lowest-dim operators of EFT expansion is accurate only if the momentum transfer is smaller than the energy scale of the order of M_* or Λ
- Compute the fraction of events with momentum transfer lower than the EFT cut off scale

$$\mathbf{R}_{\Lambda}^{\text{tot}} \equiv \frac{\sigma \mid_{\mathcal{Q}_{\text{tr}} < \Lambda}}{\sigma} = \frac{\int_{p_T^{\text{min}}}^{p_T^{\text{max}}} dp_T \int_{-2}^2 d\eta \frac{d^2 \sigma}{dp_T d\eta} \mid_{\mathcal{Q}_{\text{tr}} < \Lambda}}{\int dp_T \int d\eta \frac{d^2 \sigma}{dp_T d\eta}}$$

- $p_T^{\min} = 500 \text{ GeV}, \mid \eta \mid < 2 \text{ for } \sqrt{s} = 8 \text{ TeV} \& 14 \text{ TeV}$
- $p_T^{\text{max}} = 1, 2 \text{ TeV}$, for $\sqrt{s} = 8 \text{ TeV} \& 14 \text{ TeV}$
- R_{Λ}^{tot} gets closer to 1 for large $\Lambda \Longrightarrow$ the effect of cut off becomes negligible
- R_{Λ}^{tot} drops for large m_{χ} , because the momentum transfer increases in this mass regime
- Conclusion : EFT works better for large Λ and small m_{DM}


Simplified model of DM interactions

- The dark sector can have additional fields, but they should be somewhat decoupled
- The simplified Lagrangian should contain terms that are renormalizable, Lorentz & SM gauge invariant.
- four parameters : DM mass m_{χ} ; mediator mass M_{med} , universal mediator coupling to quarks g_q ; and mediator coupling to DM g_{χ}

[Ref: J. Abdallah et al., arXiv:1503.03116, O. Buchmueller et al., JHEP 01 (2014), A. De. Simone et al., JHEP 06 (2014), Godbole et al., arXiv:1506.01408]

Vector and axial vector s-channel mediator

$$\mathcal{L}_{\text{vector}} = g_q \sum_{q=u,d,s,c,b,t} Z'_{\mu} \bar{q} \gamma^{\mu} q + g_{\text{DM}} Z'_{\mu} \bar{\chi} \gamma^{\mu} \chi$$
(1)
$$\mathcal{L}_{\text{axial-vector}} = g_q \sum_{q=u,d,s,c,b,t} Z'_{\mu} \bar{q} \gamma^{\mu} \gamma^5 q + g_{\text{DM}} Z'_{\mu} \bar{\chi} \gamma^{\mu} \gamma^5 \chi$$
(2)

[Ref: A. Boveia at el., arXiv:1603.04156]

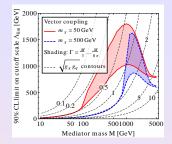
- The coupling g_q is assumed to universal to all quarks
- Parameters : $g_q, g_\chi, m_\chi, M_{med}$ controls the DM interactions with SM particles \implies LHC searches and direct detections
- At low energies $(E << M_{\text{med}})$ heavy mediator Z'_{μ} can be integrated out to get a tower of non-renormalizable operators for the Dirac DM interactions with quarks. The lowest-dimensional (D = 6) operator is of type $\mathcal{O}_{D5} = \frac{1}{M_{\pi}^2} \bar{\chi} \gamma^{\mu} \chi \bar{q} \gamma_{\mu} q$
- matching condition implies $\frac{1}{M_*^2} = \frac{g_q g_{\chi}}{M_{med}^2}$

Collider search vs direct detection cross section for light mediators

- In the case of *s*-channel operators, resonance effects can increase the production cross section of DM pair
- small decay width $\Gamma \Longrightarrow$ large enhancement
- the mediator has a non vanishing decay width to jets and DM pairs
- $pp \rightarrow \bar{\chi}\chi + X$ scales as

$$\sigma(pp
ightarrow ar{\chi}\chi + X) \sim rac{g_q^2 g_\chi^2}{(Q_{
m tr}^2 - M^2)^2 + rac{\Gamma^2}{4}} E^2$$

- $E \equiv \sqrt{\hat{s}}$
- q is the four momentum flowing through this mediator


[Ref. P.J. Fox et al., PRD85,056011(2012)]

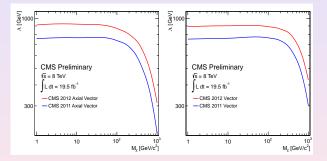
• The direct detection cross section is approximately given by

$$\sigma(\chi N \to \chi N) \sim \frac{g_q^2 g_\chi^2}{M^4} \mu_{\chi N}^2$$

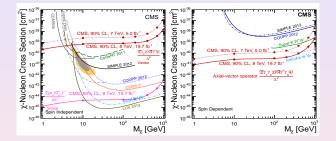
- For $M^2 << q^2$, the limit that collider sets on $g_{\chi}^2 g_q^2$ becomes independent of M
- limit on $g_q^2 g_{\chi}^2$ from $\sigma(\chi N \to \chi N) \to$ stronger for smaller $M \Longrightarrow$ the collider limit on direct detection becomes weaker as M becomes smaller
- when $m_{\chi} < M/2$ and the condition $\sqrt{q^2} \approx M$, collider production of $\bar{\chi}\chi + X$ experiences resonant enhancement \implies improved limits on Λ is expected

[Ref. P.J. Fox et al., PRD85,056011(2012)]

- $\Lambda \equiv M/\sqrt{g_q g_\chi}$
- Very large $M(\geq 5 \text{ TeV})$ limits on $\Lambda \Longrightarrow \text{EFT}$ frame work
- For 2m_χ << M ≤ 5 TeV ⇒ resonant enhancement leads to a significant improvement in the limit. Mediator is produced on shell, primary parton collision → 2 body rather than 3 body
- Strongest enhancement is possible when Γ is small
- $\Gamma = M/8\pi$ to $\Gamma = M/3$
- Below $M \approx 2m_{\chi}$, Z' can not decay in to DM pair, but only to $q\bar{q}$

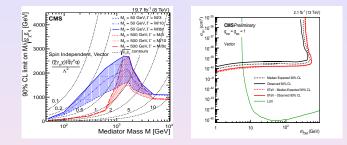

- DM quark interactions are parametrised using EFT technique
- DM (χ)- quark (q) contact interaction is set by the scale Λ , which is related to the mediator mass M, its couplings to quark (g_q) and DM (g_χ) as $\Lambda = \frac{M}{\sqrt{g_q g_\chi}}$
- S, V, A type of interactions between χq are studied. The DM is a Dirac particle
- S, V interactions can be related to σ_{SI}
- A interaction can be related to $\sigma_{\rm SD}$
- Simplified model with *s*-channel mediator with vector interactions also considered
- Mass of the mediator $M_{\rm med}$ varied for two values $m_{\chi} = 50$ GeV and 500 GeV
- $\Gamma_V = M_V/8\pi$ and $M_V/3$

- The main SM backgrounds : Z + jets, W + jets, $t\bar{t}$

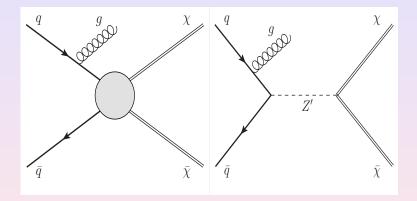

- Events with $N_j > 2$ with $p'_T > 30$ GeV and $|\eta_j| < 4.5$ are discarded
- Signal events contains jets from either ISR/FSR, a second jet (j_2) is allowed, provided $\Delta \phi(j_1, j_2) < 2.5 \implies$ suppresses QCD dijet events

[Ref. V. Khachatryan et al., CMS Collaboration, EPJC 75 (2015)]

CMS limit on $\Lambda - m_{\chi}$ plane



Lower limits at 90% CL on $\sigma_{\chi-N}^{SI} - m_{\chi}$ and $\sigma_{\chi-N}^{SD} - m_{\chi}$ plane


[Ref. V. Khachatryan et al., CMS Collaboration, EPJC 75 (2015), CMS PAS EXO-15-003]

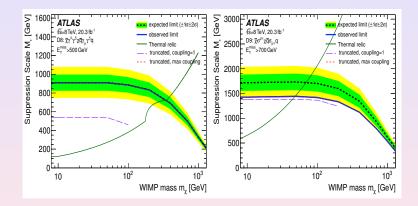
Lower limits at 90% CL on simplified model parameter space

- Γ_V is varied between the extremes of $M_V/8\pi$ and $M_V/3$, where $M_V/8\pi$ corresponds to a mediator that can only decay into quark pair.
- For 13 TeV study, simplified model (vector like interactions with $g_q = g_{\chi} = 1$) considered. The current bound is weaker than 8 TeV results
- From 13 TeV analysis : $M_{\rm med} > 1.3$ TeV at 90% CL

ATLAS study of the mono-jet signature of DM (arXiv:1502.01518)

 Jets + \$\vec{E}_T\$ signal interpretation in terms of (a) contact interaction described by EFT operators and (b) a simplified model with s-channel Z' boson exchange

List of Effective operators considered :

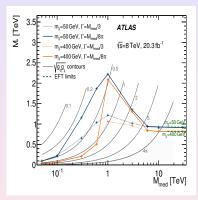

Name	Initial state	Туре	Operator
C1	qq	S	$rac{m_q}{M_{+}^2}\chi^{\dagger}\chiar{q}q$
C5	88	S	$rac{lpha_s}{M^2}\chi^\dagger\chi(G^a_{\mu u})^2$
D1	qq	S	${}^*\frac{m_q}{M^3_+}ar\chi\chiar q q$
D5	qq	V	$rac{1}{M_{\star}^2}ar{\chi}^{*}\gamma^{\mu}\chiar{q}\gamma_{\mu}q$
D8	qq	А	$rac{1}{M_{*}^{2}}ar{ar{\chi}}^{*}\gamma^{\mu}\gamma_{5}\chiar{q}\gamma_{\mu}\gamma_{5}q$
D9	qq	Т	$rac{1}{M_*^2}ar\chi\sigma^{\mu u}\chiar q\sigma_{\mu u}q$
D11	88	S	$rac{lpha_s}{M^3_*}ar\chi\chi(G^a_{\mu u})^2$

- Mono-jet events are selected with $p(j_1)_T > 120 \text{ GeV}$ and $|\eta| < 2.0, p(j_1)_T/\not E_T > 0.5$
- Additional cut : $\Delta \phi(p(j_1)_T, \not \!\!\! E_T) > 1.0 \Longrightarrow$ removes the QCD multijet background
- Events with any additional jets are rejected with $p_T^j > 20$ GeV and $|\eta| < 4.5$

ATLAS study of the mono-jet signature of DM (arXiv:1502.01518)

- 9 signal regions are selected based on $\not\!\!E_T$ cut
- $(SR1, SR2, SR3, ...SR9) \equiv (\not\!\!E_T/\text{GeV} = 150, 200, 250, ...700)$
- In EFT approach, the bounds on M_* for a given DM mass (m_{χ}) can be converted to bounds on WIMP-nucleon scattering cross-section
- σ_{SD} limits are based on D8 and D9
- Both *D*8 and *D*9 cross-section limits are significantly stronger than those from σ_{SD}
- truncated events : events are omitted where interaction energy scale exceeds the mediator particle mass ⇒ events are kept for which *Q*_{tr} < *M*_{med}
- Perturbative limits on couplings : $0 < \sqrt{g_q g_\chi} < 4\pi$

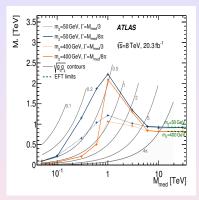
Lower limits at 95% CL on M_* as function of the WIMP mass m_χ for D8~&~D9



• The Thermal relic line for D8 has a bump feature at m_t where the annihilation channel to top quark opens.

Lower limits at 90% CL on $\sigma_{\chi-N}^{SI}$ and $\sigma_{\chi-N}^{SD}$ as a function of WIMP mass (m_{χ})

Interpretation in terms of simplified model

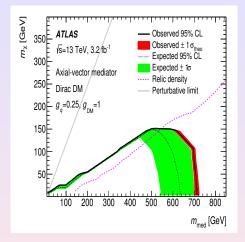

- Dirac WIMP interacts with SM particles via Z'
- For each WIMP mass, mediator particle mass M_{med} between 50 GeV and 30 TeV are considered each for two values of mediator particle width

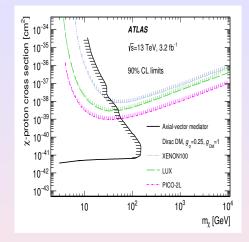
$$(\Gamma = M_{\rm med}/3 \& M_{\rm med}/8\pi)$$

•
$$M_* = M_{\rm med} / \sqrt{g_q g_\chi}$$

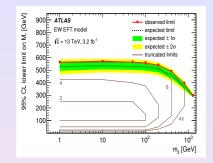
 For a given M_{med} and two values of Γ, the real value of the mass suppression scale would compare to the M_{*} value derived assuming a contact interaction (dashed lines in the figure)

• This contact interaction regime is reached for $M_{\rm med} \simeq 5 \text{ TeV}$

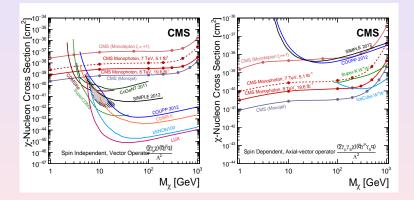

- This contact interaction regime is reached for $M_{\rm med} \simeq 5 \,{\rm TeV}$
- For (700 GeV $< M_{med} < 5$ TeV), the mediator Z' produced resonantly and actual M_* value is higher than in the contact interaction regime
- In this case, the contact interaction limits would be pessimistic; they would underestimate the actual values
- For small M_{med} mass < 700 GeV, very small M_∗ limits because the WIMP would be than the mediator ⇒ WIMP pair production via Z' would be kinematically suppressed
- In this limit, the contact interaction limit would be optimistic and overestimate the actual M_* values.


- Events are selected based on

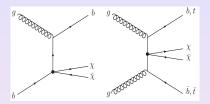
 - **2** $p_T^{\gamma} > 150 \, \text{GeV}$
 - 3 $|\eta| < 2.37$


 - Solution Events with more than one jet or with a jet with $\Delta \phi(\text{jet}, \not \!\!\! E_T) < 0.4$ are rejected
- Two scenarios are considered to interpret the results in the context of DM:
 - Obirac DM produced via *s*-channel mediator with axial-vector interactions Five parameters : $m_{\chi}, M_{\text{med}}, g_q, g_{\chi}, \Gamma_{\text{med}}$
 - ② γγ χ̄χ D=7 EFT operator: DM is produced via qq̄ → γ → γχ̄χ, no need for ISR photons. four free parameters : k₁, k₂, m_χ, Λ

- perturbative unitarity limit : $m_{\chi} = \sqrt{\pi/2} M_{\rm med}$
- $M_{\rm med} > 710 \text{ GeV} @ 95\% \text{ CL}$ for m_{χ} masses up to 150 GeV



- Assuming $g_q = 0.25$ and $g_{\chi} = 1$ for both collider and direct detection
- stringent limits on $\sigma_{\chi-p} \sim \mathcal{O}(10^{-41} \text{cm}^2)$ up to $m_{\chi} \sim 150 \text{ GeV}$
- Note that PICO-2L expt. provides stringent limit on $\sigma_{\chi-p}^{\text{SD}}$ for WIMP masses < 50 GeV


- For $\gamma \gamma \bar{\chi} \chi$ interactions, lower limits are put on $M_* m_{\chi}$ plane
- Truncated limits are given, the scale at which EFT description is invalid (M_{cut}) is assumed to be related to M_* through $M_{cut} = g^*M_*$, where g^* is the EFT couplings
- Events with $\sqrt{s} > M_{\text{cut}}$ are removed and limits is recomputed
- For various values g^* limits are shown
- search excludes $M_* < 570 \text{ GeV}$

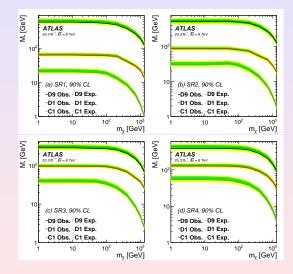
CMS lower limits at 90% CL on σ_{SI} and σ_{SD} as a function of WIMP mass $(m_{\chi}) (\gamma + \not{\!\!\! E}_T)$

[Ref: CMS Collaboration, arXiv:1410.8812]

$\bar{\chi}\chi + QQ \ (Q = t, b)$ at the LHC

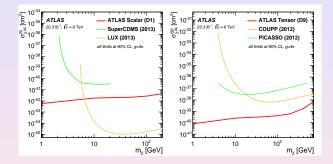
• Integrating out heavy scalar & pseudo-scalars one can generate following set of the most simplest EFT operators, suppressed by the scale *M*_{*}:

$$\mathcal{O}^Q_S = \frac{m_Q}{M^3_*}(\bar{\chi}\chi)\bar{Q}Q; \quad \mathcal{O}^Q_P = \frac{m_Q}{M^3_*}(\bar{\chi}\gamma_5\chi)\bar{Q}\gamma_5Q; \quad (Q=t,b)$$


• ATLAS collaboration has looked into this channel. They have also considered Tensor operator in addition to $\mathcal{O}_S, \mathcal{O}_P. \mathcal{O}_T = \frac{1}{M^2} \bar{\chi} \sigma^{\mu\nu} \chi \bar{Q} \sigma_{\mu\nu} Q$

[Ref: ATLAS Collaboration, arXiv:1410.4031, for other details, see Q.-H. Cao *et al.*, JHEP 1108, 018(2011), Beltran *et al.*, JHEP 1009, 037
 (2010), J. Goodman *et al.*, PLB695, 185 (2011); PRD 82, 11610 (2010), Bhattacherjee *et al.*, arXiv:1212.5013]

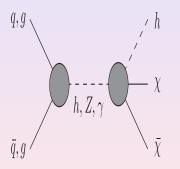
ATLAS study of DM in association with heavy flavours (arXiv:1410.4031)


- Two types of signals are studied :
 - $pp \rightarrow \bar{\chi}\chi + \bar{b}b$; *SR*1 & *SR*2
 - $pp \rightarrow \bar{\chi}\chi + \bar{t}t$; SR3 & SR4
- *SR*1 : DM produced in association with one *b*-quark in the final state
- SR2: DM produced in association with two *b*-quark in the final state
- *SR3* : DM produced in association with top pair, where both top decay hadronically
- *SR*4: DM produced in association with top pair, where one top decays hadronically other one decays leptonically

Lower limits at 90% CL on M_* as function of m_{χ} for C1, D1 and D9 operators (arXiv:1410.4031)

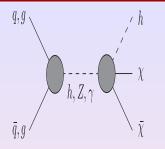
• These limits are then converted into limits on $\sigma_{\chi N}$

Lower limits at 90% CL on $\sigma_{\chi-N}^{\text{SI}}$ and $\sigma_{\chi-N}^{\text{SD}}$ as function of m_{χ} for *D*1 and *D*9 operators (arXiv:1410.4031)

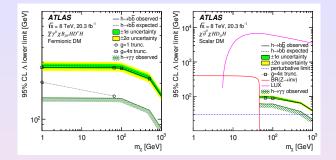


- Limits are strong for low mass region
- The couplings is assumed to be $g_q g_{\chi} = g = 4\pi$
- The sensitivity for D1 operator is approximately $\sigma_{\chi-N}^{SI} = 10^{-42} \text{cm}^2$ for $m_{\chi} = 10 \text{ GeV}.$

ATLAS study of DM in association with a Higgs $(\rightarrow b\bar{b})$ (arXiv:1510.06218)

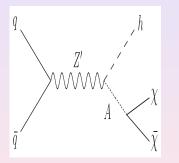

- Dark matter pair production in association with a Higgs boson decaying to a pair of bottom quarks.
- $\sqrt{s} = 8$ TeV and with 20.3 fb⁻¹ data
- Signal : $b\bar{b} + \not\!\!\!E_T$
- The Higgs boson is reconstructed as a high $p_T b\bar{b}$ system with a pair of small radius jets canonical search or a single fat jet with jet-substructure
- Results are presented based :
 - IEFT operators describing interaction between the DM-Higgs
 - 2 Simplified model : 2HDM + Z'

Set of EFT operators studied by ATLAS:



$$\begin{split} \lambda &| \chi |^{2} |H|^{2} \quad (S, D = 4) \\ \frac{1}{M_{*}} \bar{\chi} i \gamma_{5} \chi |H|^{2} \quad (F, D = 5) \\ \frac{1}{M_{*}^{2}} \chi^{\dagger} \partial^{\mu} \chi H^{\dagger} D_{\mu} H \quad (S, D = 6) \\ \frac{1}{M_{*}^{4}} \bar{\chi} \gamma^{\mu} \chi B_{\mu\nu} H^{\dagger} D^{\nu} H \quad (F, D = 8) \end{split}$$

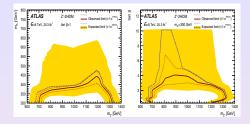
- *χ* is the DM particle (S/F), which is SM gauge singlet
- $D_{\mu}(^{\nu})$ is the covariant derivative for the full SM gauge group
- $B_{\mu\nu}$ is the $U(1)_Y$ field strength tensor
- parameters : DM mass m_χ, the coupling λ and the suppression scale M_{*}



- χ is the DM, *h* is the 125 GeV observed Higgs boson
- the left dark circle denotes the coupling from qq̄ or gg to h, Z, γ that mediates the DM + h production
- the right dark circle represents the contact interaction in EFT framework between DM, the Higgs and the mediator
- Mediator can be a spin 1 heavy gauge boson
- signal : $b\bar{b} + \not\!\!\!E_T$
- SM backgrounds : $Z(\rightarrow \nu \bar{\nu}) + jets$, W + jets, $t\bar{t}$ as well as single top events

- Limits at 95% CL in Λm_{χ} plane for EFT operators $\bar{\chi}\gamma^{\mu}\chi B_{\mu\nu}H^{\dagger}D^{\nu}H$ (left) and $\chi^{\dagger}\partial^{\mu}\chi H^{\dagger}D_{\mu}H$ (right)
- Solid black line : $h(\rightarrow b\bar{b}) + \not\!\!\!E_T$: regions below the line is excluded
- The solid green line with hash marks indicates regions excluded by collider searches for h(→ γγ) + ∉_T
- On right figure, the regions below the dashed blue line fails the perturbativity requirement
- red line indicates regions excluded by the limits on the $Br(Z \rightarrow \nu \bar{\nu})$
- the magenta line indicates regions excluded by the LUX Collaboration

Simplified model (Z' - 2HDM) interpretation



- Z' gauge boson with 2HDM where the DM particle is coupled to the heavy pseudoscalar Higgs boson Ai
- the Z' is produced resonantly
- $Z' \rightarrow h + A$ in a Type 2 two-Higgs-doublet model
- *h* is the observed Higgs boson, and *A* has a large BR to DM pair
- $Z' \rightarrow Z + h$ also possible, followed by $Z \rightarrow \nu\nu \Longrightarrow$ mimicking the expected signature.
- *Ah* decay mode is dominant for most of the parameter space probed in this analysis

[Ref. G. Aad et al., ATLAS Collaboration, arXiv:1510.06218, A.Berlin et al., PRD 89 (2014); G.C. Branco et al., Phys. Rept 516 (2012)]

- results presented are for the alignment limit, $\alpha = \beta \pi/2$.
- regions of parameter space consistent with precision electroweak constraints on the ρ_0 parameter and with constraints from direct searches for dijet resonances are considered.
- Z' does not couple to leptons in this model
- the *A* boson is produced on-shell and decays into DM, the mass of the DM particle does not affect the kinematic properties or cross-section of the signal process when it is below half of the *A* boson mass.
- Hence, the Z'-2HDM model is interpreted in the parameter spaces of m_{Z'}, m_A, and tan β, with the Z' coupling fixed to its 95% confidence level (CL) upper limit per Z' mass and tan β value from the aforementioned electroweak and dijet search constraints.

[Ref. G. Aad et al., ATLAS Collaboration, arXiv:1510.06218, A.Berlin et al., PRD 89 (2014); G.C. Branco et al., Phys. Rept 516 (2012)]

- 95% CL upper limit on the σ is derived and used to exclude regions of parameter space in $m_{Z'} m_A$ and $m_{Z'} \tan \beta$ plane
- For a particular value of $m_{Z'}$ and $\tan \beta$ value the Z' gauge coupling satisfy the 95% CL upper limit from EW precision constraints and dijet searches
- $m_A \ge 300$ GeV in accordance with $b \to s\gamma$ limit
- For tan $\beta = 1$, $m_{Z'} = 700 1300$ GeV is excluded for m_A up to 350 GeV
- $0.3 \le \tan \beta < 10$, the lower bound comes from perturbative requirement of the Y_t , and the upper limit is based on direct searches for the A
- For $m_A = 300$ GeV, where $A \rightarrow \overline{\chi}\chi$, $m_{Z'} = 700 1300$ is excluded for $\tan \beta < 2$

Higgs Portal DM

- The SM Higgs boson couples with a particle that constitutes all or part of the dark matter in the universe.
- The dark matter sector communicates with matter/ gauge sector of the SM through the SM Higgs boson
- Higgs boson plays key role in the dark matter annihilation, direct detection and production at colliders
- DM: could be scalar(s), vector (V) or fermion (Majorana) (χ)
- DM: SM gauge singlet.

[Ref: C.P. Burgess et al., NPB 619(2001), V. Barger et al., PRD77 (2008), A. Djuadi et al., PLB 709 (2012), EPJC 73 (2013), J. Abdallah et al., arXiv:1506.03116[hep-ph]]

$$\Delta \mathcal{L}_S = -\frac{1}{2}m_s^2 s^2 - \frac{\lambda_s}{4}s^4 - \frac{\lambda_{hss}}{4}s^2 \mid H \mid^2$$
(3)

$$\Delta \mathcal{L}_{V} = \frac{1}{2} m_{V}^{2} V_{\mu} V^{\mu} + \frac{\lambda_{v}}{4} (V_{\mu} V^{\mu})^{2} + \frac{\lambda_{hVV}}{4} V_{\mu} V^{\mu} \mid H \mid^{2}$$
(4)

$$\Delta \mathcal{L}_F = -\frac{1}{2} m_f \bar{\chi} \chi - \frac{\lambda_{hff}}{4\Lambda} |H|^2 \bar{\chi} \chi$$
(5)

• Impose
$$Z_2$$
 parity \Longrightarrow stable DM

• After EWSB

$$M_s^2 = m_s^2 + \frac{1}{2}\lambda_{hss}v^2 \tag{6}$$

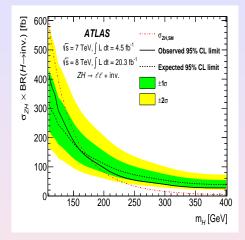
$$M_V^2 = m_v^2 + \frac{1}{2}\lambda_{hVV}v^2$$
 (7)

$$M_F = m_f + \frac{1}{2\Lambda} \lambda_{hff} v^2 \tag{8}$$

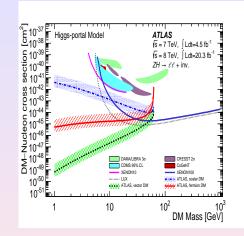
[Ref: C.P. Burgess et al., NPB 619(2001), V. Barger et al., PRD77 (2008), A. Djuadi et al., PLB 709 (2012), EPJC 73 (2013), J. Abdallah et al., arXiv:1506.03116[hep-ph]]

• For $M_H > 2M_{\rm DM}$:

$$\Gamma(H \to ss) = \frac{\lambda_{hss}^2 v^2 \beta_s}{128\pi M_H}$$


$$\Gamma(H \to \bar{\chi}\chi) = \frac{\lambda_{hff}^2}{\Lambda^2} \frac{v^2 \beta_f^3 M_H}{64\pi}$$

$$\Gamma(H \to VV) = \lambda_{hVV}^2 \frac{v^2 \beta_v M_H^3}{512\pi M_V^4} \times \left(1 - 4\frac{M_V^2}{M_H^2} + 12\frac{M_V^4}{M_H^4}\right)$$
(11)


where, $\beta_{\rm DM} = (1 - \frac{4M_{\rm DM}^2}{M_H^2})^{1/2}$ and the scale Λ is set well above the TeV scale

• AT colliders this would lead to invisible decay of the SM Higgs boson. Both ATLAS & CMS have studied this channel. For $M_s \leq 10$ GeV, the collider limits are stronger than the SI results.

[Ref: C.P. Burgess et al., NPB 619(2001), V. Barger et al., PRD77 (2008), A. Djuadi et al., PLB 709 (2012), EPJC 73 (2013)]

- 95% CL upper limits on $\sigma_{ZH} \times BR(H \rightarrow inv.)$ in the mass range 110 < M_H < 400 GeV for the combined 7 & 8 TeV data

•
$$\sigma_{S-N}^{SI} = \frac{\lambda_{hss}^2}{16\pi M_H^4} \frac{M_N^4 f_N^2}{(M_s + M_N)^2}$$

• Limits on the DM-nucleon scattering cross section at 90% CL

[Ref. G. Aad et al., ATLAS Collaboration, PRL 112 (2014), 201802]

- Different astrophysical observations \Longrightarrow DM exists
- WIMPs are good candidate for the cold dark matter
- WIMPs require physics beyond the SM
- The existance of WIMPs can be tested in direct detection, indirect detection experiments
- WIMPs can also leave its footprint at colliders as large $\not\!\!\!E_T$ signature, but it is very difficult to confirm
- jets +∉_T and γ + ∉_T are the two most popular search channels for the WIMP at the LHC

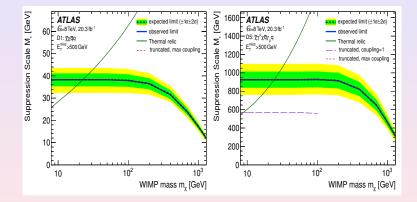
- EFT technique is the simplest way to interpret the results
- Collider results can be translated on $\sigma_{\chi N-\chi N} m_{\chi}$ plane
- EFT has limitations : valid for energy scale $E << M_{med}$
- To resolve this, several simplified scenarios have been proposed to interpret the collider and direct detection results
- So far no signature of WIMP
- For low WIMP mass ($m_{\chi} \le 10$ GeV) collider limits are stronger than direct detection limits
- It is very hard to confirm the existance of DM even if the LHC finds a large $\not\!\!\!E_T$ signal

Thank You!

Backups

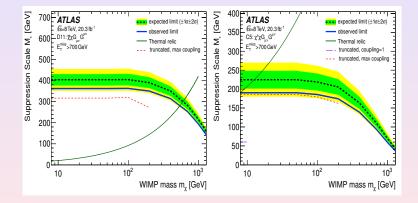
Implications for direct detection

- Some of these EFT operator can have contribution to WIMP-direct detection process in the limit of low momentum transfer
- WIMP-nucleon cross-section (cm²):

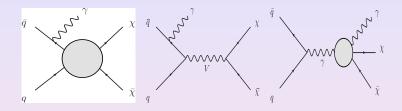

$$\sigma^{D1} = 1.60 \times 10^{-37} \left(\frac{\mu_{\chi}}{1 \text{GeV}}\right) \left(\frac{20 \text{GeV}}{M_*}\right)^6$$
(12)
$$\sigma^{D5,C3} = 1.38 \times 10^{-37} \left(\frac{\mu_{\chi}}{1 \text{GeV}}\right) \left(\frac{300 \text{GeV}}{M_*}\right)^4$$
(13)
$$\sigma^{D8,D9} = 9.18 \times 10^{-40} \left(\frac{\mu_{\chi}}{1 \text{GeV}}\right) \left(\frac{300 \text{GeV}}{M_*}\right)^4$$
(14)

Implications for direct detection

$$\sigma^{D11} = 3.83 \times 10^{-41} \left(\frac{\mu_{\chi}}{1 \text{GeV}}\right) \left(\frac{100 \text{GeV}}{M_*}\right)^6$$
(15)
$$\sigma^{C1,R1} = 2.56 \times 10^{-36} \left(\frac{\mu_{\chi}}{1 \text{GeV}}\right) \left(\frac{10 \text{GeV}}{M_*}\right)^4 \left(\frac{10 \text{GeV}}{m_{\chi}}\right)^2$$
(16)
$$\sigma^{C5,R3} = 7.40 \times 10^{-39} \left(\frac{\mu_{\chi}}{1 \text{GeV}}\right) \left(\frac{60 \text{GeV}}{M_*}\right)^4 \left(\frac{10 \text{GeV}}{m_{\chi}}\right)^2$$
(17)


[Ref. G. Belanger et al., arXiv:0803.2360, J.Goodman et al., PRD 82, (2010)]

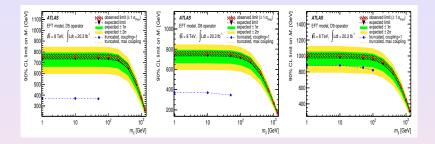
Lower limits at 95% CL on M_* as function of the WIMP mass m_χ for D1~&~D5


[[]Ref: ATLAS Collaboration, arXiv:1502.01518]

Lower limits at 95% CL on M_* as function of the WIMP mass m_χ for D11~&~C5

[Ref: ATLAS Collaboration, arXiv:1502.01518]

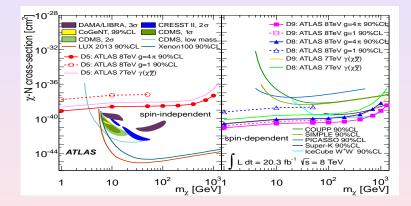
ATLAS study of the mono-photon signature of DM (arXiv:1411.1559) at $\sqrt{s} = 8$ TeV


- EFT approach : m_{DM} and M_*
- Simplified model : Mediator $V = Z', M_* = m_V / \sqrt{g_q g_{\chi}}$, Four parameters : m_{χ}, m_V, Γ_V and overall coupling $\sqrt{g_q g_{\chi}}$
- $\gamma \gamma \overline{\chi} \chi$ effective vertex : D= 7 operator

•
$$\mathcal{L} = \frac{1}{\Lambda_{C1,2}^3} \bar{\chi} \chi \sum_i k_i F_i^{\mu\nu} F_{\mu\nu}^i + \frac{1}{\Lambda_{C3,4}^3} \bar{\chi} \chi \sum_i k_i F_i^{\mu\nu} \tilde{F}_{\mu\nu}^i$$

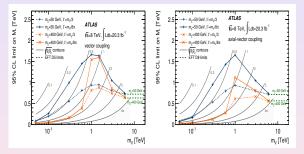
• parameters k_1 and k_2 which controls the strength of DM coupling to U(1) and SU(2) gauge fields

- $\gamma + \not\!\!\! E_T$ signal at $\sqrt{s} = 8$ TeV with an integrated luminosity of 20.3 fb⁻¹
- $Z(\rightarrow \nu \bar{\nu}) + \text{ISR } \gamma$: the main SM background
- Secondary background come from $W\gamma$ and $Z\gamma$ with unidentified leptons, WZ production where leptons or a jet is misidentified as a photon
- Signal events are selected with these set of cuts:
 - $\not\!\!\!E_T > 150 \text{ GeV}$
 - $p_T^{\gamma} > 125 \text{ GeV}$
 - $\mid\eta\mid<1.37$
 - $\Delta \phi(\gamma, \not\!\!\!E_T) > 0.4$
 - Events with more than one jet or with a jet with $\Delta \phi(\text{jet}, \not \!\!\! E_T) < 0.4$ are rejected


90% CL lower limits on $M_* - m_{\chi}$ plane

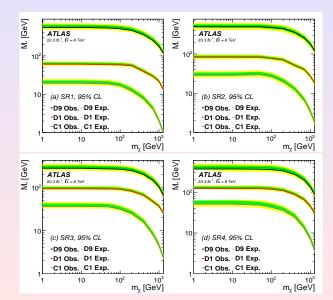
- EFT truncation is applied assuming couplings values $\sqrt{g_q g_{\chi}} = 1, 4\pi$
- For unit coupling, the truncated limits are less stringent than the non-truncated limits at low m_{χ}
- For unit coupling truncated case : For D5&D8 : sample generated up to $m_{\chi} = 50$ GeV, for D9 : up to $m_{\chi} = 100$ GeV
- Lower limits on M_{*} now translated into upper limits on σ_{χ-N} as a function of m_χ

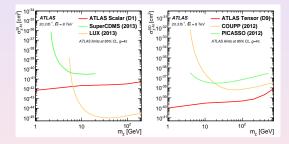
[Ref: ATLAS Collaboration, arXiv:1411.1559]



[[]Ref: ATLAS Collaboration, arXiv:1411.1559]

Result interpretation using simplified model


• For the simplified model : Z' model with vector & axial-vector interactions are considered


- 95%CL limits on the EFT suppression scale M_* as a function of m_V .
- When $m_V >> \sqrt{\hat{s}}_{LHC}$, the EFT provides a good approximation of the simplified model with $M_* = m_V / \sqrt{g_f g_{\chi}}$

[Ref: ATLAS Collaboration, arXiv:1411.1559]

Lower limits at 95% CL on M_* as function of m_{χ} for C1, D1 and D9 operators (arXiv:1410.4031)

Lower limits at 95% CL on $\sigma_{\chi N}$ as function of m_{χ} for D1 and D9 operators arXiv:1410.4031

