On recent anomalies in flavor physics

Diego Guadagnoli
LAPTh Annecy (France)

$\mathbf{b} \rightarrow \mathbf{S}$ data

LHCb and B factories measured several key $b \rightarrow s$ modes.
Agreement with the SM is less than perfect.

$\mathbf{b} \rightarrow \mathbf{s}$ data

LHCb and B factories measured several key $b \rightarrow s$ modes. Agreement with the SM is less than perfect.
(1) $\quad R_{K}=\frac{B R\left(B^{+} \rightarrow K^{+} \mu \mu\right)_{[1,6]}}{B R\left(B^{+} \rightarrow K^{+} e e\right)_{[1,6]}}=0.745 \cdot(1 \pm 13 \%) \quad\binom{$ whereas the SM predicts unity }{ within $\mathrm{O}\left(10^{-4}\right)}$

LHCb and B factories measured several key $b \rightarrow s$ modes.
Agreement with the SM is less than perfect.
(1) $\quad R_{K}=\frac{B R\left(B^{+} \rightarrow K^{+} \mu \mu\right)_{[1,6]}}{B R\left(B^{+} \rightarrow K^{+} e e\right)_{[1,6]}}=0.745 \cdot(1 \pm 13 \%) \quad\binom{$ whereas the SM predicts unity }{ within $\mathrm{O}\left(10^{-4}\right)}$
(2) $B R\left(B^{+} \rightarrow K^{+} \mu \mu\right)_{[1,6]}=(1.19 \pm 0.07) \cdot 10^{-7}$
vs.

$$
B R\left(B^{+} \rightarrow K^{+} \mu \mu\right)_{[1,6]}^{\mathrm{SM}}=1.75_{-0.29}^{+0.60} \times 10^{-7}
$$

[Bobeth, Hiller, van Dyk (2012)]

$\mathbf{b} \rightarrow \mathbf{s}$ data

$L H C b$ and B factories measured several key $b \rightarrow s$ modes. Agreement with the SM is less than perfect.
(1) $R_{K}=\frac{B R\left(B^{+} \rightarrow K^{+} \mu \mu\right)_{[1,6]}}{B R\left(B^{+} \rightarrow K^{+} e e\right)_{[1,6]}}=0.745 \cdot(1 \pm 13 \%)$
whereas the SM predicts unity within $\mathrm{O}\left(10^{-4}\right)$
(2) $B R\left(B^{+} \rightarrow K^{+} \mu \mu\right)_{[1,6]}=(1.19 \pm 0.07) \cdot 10^{-7}$
vs.

$$
B R\left(B^{+} \rightarrow K^{+} \mu \mu\right)_{[1,6]}^{\mathrm{SM}}=1.75_{-0.29}^{+0.60} \times 10^{-7}
$$

[Bobeth, Hiller, van Dyk (2012)]
(3) $B R\left(B^{+} \rightarrow K^{+} e e\right)_{[1,6]}$
agrees with the SM (within large errors)

$\mathbf{b} \rightarrow \mathbf{s}$ data

LHCb and B factories measured several key $b \rightarrow s$ modes. Agreement with the SM is less than perfect.
(1) $R_{K}=\frac{B R\left(B^{+} \rightarrow K^{+} \mu \mu\right)_{[1,6]}}{B R\left(B^{+} \rightarrow K^{+} e e\right)_{[1,6]}}=0.745 \cdot(1 \pm 13 \%)$
(2) $B R\left(B^{+} \rightarrow K^{+} \mu \mu\right)_{[1,6]}=(1.19 \pm 0.07) \cdot 10^{-7}$
vs.

$$
B R\left(B^{+} \rightarrow K^{+} \mu \mu\right)_{[1,6]}^{S M}=1.75_{-0.29}^{+0.60} \times 10^{-7}
$$

[Bobeth, Hiller, van Dyk (2012)]
(3)

$$
B R\left(B^{+} \rightarrow K^{+} e e\right)_{[1,6]}
$$

agrees with the SM (within large errors)

Note

- muons are among the most reliable objects within LHCb
- the electron channel would be an obvious culprit (brems + low stats).
But there is no disagreement

$\mathbf{b} \rightarrow \mathbf{s}$ data

LHCb and B factories measured several key $b \rightarrow s$ modes.
Agreement with the SM is less than perfect.
(1) $R_{K}=\frac{B R\left(B^{+} \rightarrow K^{+} \mu \mu\right)_{[1,6]}}{B R\left(B^{+} \rightarrow K^{+} e e\right)_{[1,6]}}=0.745 \cdot(1 \pm 13 \%)$
(2) $B R\left(B^{+} \rightarrow K^{+} \mu \mu\right)_{[1,6]}=(1.19 \pm 0.07) \cdot 10^{-7}$ vs.

$$
B R\left(B^{+} \rightarrow K^{+} \mu \mu\right)_{[1,6]}^{\mathrm{SM}}=1.75_{-0.29}^{+0.60} \times 10^{-7}
$$

[Bobeth, Hiller, van Dyk (2012)]

3

$$
B R\left(B^{+} \rightarrow K^{+} e e\right)_{[1,6]}
$$

agrees with the SM

 (within large errors)

Note

- muons are among the most reliable objects within LHCb
- the electron channel would be an obvious culprit (brems + low stats).
But there is no disagreement

$$
B_{s} \rightarrow \varphi \mu \mu
$$

The R_{K} pattern, with data in the muon channel lower than the SM prediction, is supported by LHCb measurements of another b-to-s transition: $B_{s} \rightarrow \varphi \mu \mu$

$$
B_{s} \rightarrow \varphi \mu \mu
$$

The R_{K} pattern, with data in the muon channel lower than the SM prediction, is supported by LHCb measurements of another b-to-s transition: $B_{s} \rightarrow \varphi \mu \mu$

- It occurs in the same kinematic range as R_{K} namely $m_{\mu \mu}^{2} \in[1,6] \mathrm{GeV}^{2}$
- It was initially found in $1 / f b$ of LHCb data, then confirmed by a full Run-I analysis (3/fb)

$$
B_{s} \rightarrow \varphi \mu \mu
$$

The R_{K} pattern, with data in the muon channel lower than the SM prediction, is supported by LHCb measurements of another b-to-s transition: $B_{s} \rightarrow \varphi \mu \mu$

- It occurs in the same kinematic range as R_{K} namely $m_{\mu \mu}^{2} \in[1,6] \mathrm{GeV}^{2}$
- It was initially found in $1 / f b$ of LHCb data, then confirmed by a full Run-I analysis (3/fb)

The measured branching fraction is compatible with the previous measurement [3] and lies below SM expectations. For the q^{2} region $1.0<q^{2}<6.0 \mathrm{GeV}^{2} / c^{4}$ the differential branching fraction of $\left(2.58_{-0.31}^{+0.33} \pm 0.08 \pm 0.19\right) \times 10^{-8} \mathrm{GeV}^{-2} c^{4}$ is more than 3σ below the SM prediction of $(4.81 \pm 0.56) \times 10^{-8} \mathrm{GeV}^{-2} c^{4}[4,5,32]$.

```
B}->\mp@subsup{K}{}{*}\mu\mu\mathrm{ angular analysis:
The P's
```

LHCb can perform a fully angular analysis of the decay products in $B \rightarrow K^{*} \mu \mu$

$B \rightarrow K^{*} \mu \mu$ angular analysis:

The P_{5}^{\prime} anomaly

LHCb can perform a fully angular analysis of the decay products in $B \rightarrow K^{*} \mu \mu$
One can then construct observables with limited sensitivity to form factors.

$B \rightarrow K^{*} \mu \mu$ angular analysis:

The P_{5}^{\prime} anomaly

LHCb can perform a fully angular analysis of the decay products in $B \rightarrow K^{*} \mu \mu$
One can then construct observables with limited sensitivity to form factors.
One of such "clean" observables is called P_{5}^{\prime}

- Tension seen in P_{5}^{\prime} in [PRL 111, 191801 (2013)] confirmed [4.0, 6.0] and $[6.0,8.0] \mathrm{GeV}^{2} / c^{4}$ show deviations of 2.9σ each
Naive combination results in a significance of 3.7σ
Compatible with $1 \mathrm{fb}^{-1}$ measurement

$B \rightarrow K^{*} \mu \mu$ angular analysis:

The P_{5}^{\prime} anomaly

LHCb can perform a fully angular analysis of the decay products in $B \rightarrow K^{*} \mu \mu$
One can then construct observables with limited sensitivity to form factors.
One of such "clean" observables is called P_{5}^{\prime}

Tension seen in P_{5}^{\prime} in [PRL 111, 191801 (2013)] confirmed [4.0,6.0] and $[6.0,8.0] \mathrm{GeV}^{2} / c^{4}$ show deviations of 2.9σ each
Naive combination results in a significance of 3.7σ
Compatible with $1 \mathrm{fb}^{-1}$ measurement

- Caveat:
this obs needs be taken cum grano salis
- What cancels is the dependence on the large- m_{b} form factors.

$B \rightarrow K^{*} \mu \mu$ angular analysis:

The P_{5}^{\prime} anomaly

LHCb can perform a fully angular analysis of the decay products in $B \rightarrow K^{*} \mu \mu$
One can then construct observables with limited sensitivity to form factors.
One of such "clean" observables is called P_{5}^{\prime}

Tension seen in P_{5}^{\prime} in [PRL 111, 191801 (2013)] confirmed [4.0,6.0] and $[6.0,8.0] \mathrm{GeV}^{2} / c^{4}$ show deviations of 2.9σ each Naive combination results in a significance of 3.7σ Compatible with $1 \mathrm{fb}^{-1}$ measurement

- Caveat:
this obs needs be taken cum grano salis
- What cancels is the dependence on the large- m_{b} form factors.
- Debate on the role of
- Subleading terms in $1 / m_{b}$
- cc loops and their resummation

See:

Jäger \& Martin-Camalich, PRD 2016
Ciuchini et al., 1512.07157

The P_{5}^{\prime} anomaly: continued

The above said, this anomaly remains interesting (and more and more so)

- It occurs in the same kinematic range as R_{K} namely $m_{\mu \mu}^{2} \in[1,6] \mathrm{GeV}^{2}$
- It was initially found in $1 / f b$ of LHCb data, then confirmed by a full Run-I analysis (3/fb)

The above said, this anomaly remains interesting (and more and more so)

- It occurs in the same kinematic range as R_{K} namely $m^{2}{ }_{\mu \mu} \in[1,6] \mathrm{GeV}^{2}$
- It was initially found in $1 / f b$ of LHCb data, then confirmed by a full Run-I analysis (3/fb)
- And it was recently confirmed by Belle! [1604.04042]

The P_{5}^{\prime} anomaly: continued

The above said, this anomaly remains interesting (and more and more so)

- It occurs in the same kinematic range as R_{K} namely $m_{\mu \mu}^{2} \in[1,6] \mathrm{GeV}^{2}$
- It was initially found in $1 / f b$ of LHCb data, then confirmed by a full Run-I analysis (3/fb)
- And it was recently confirmed by Belle! [1604.04042]

- Conclusion:

If it's new physics, it is expected to show up elsewhere in the $B \rightarrow K^{*} \mu \mu$ angular analysis.

Run II will tell for sure

$$
\begin{aligned}
& B_{s} \rightarrow \mu \mu \\
& \text { (5) } \frac{B R\left(B_{s} \rightarrow \mu \mu\right)_{\mathrm{exp}}}{B R\left(B_{\mathrm{s}} \rightarrow \mu \mu\right)_{\mathrm{SM}}}=0.77 \pm 0.20
\end{aligned}
$$

$$
B R\left(B_{s} \rightarrow \mu \mu\right)_{\text {exp }}=\left(2.8_{-0.6}^{+0.7}\right) \times 10^{-9}
$$

[LHCb\&CMS full-Run I combination]

$$
B R\left(B_{s} \rightarrow \mu \mu\right)_{\mathrm{SM}}=(3.65 \pm 0.23) \times 10^{-9}
$$

[C. Bobeth et al., PRL 14]

$$
\mathrm{B}_{\mathrm{s}} \rightarrow \mu \mu
$$

(5) $\frac{B R\left(B_{s} \rightarrow \mu \mu\right)_{\text {exp }}}{B R\left(B_{s} \rightarrow \mu \mu\right)_{s M}}=0.77 \pm 0.20$

$$
B R\left(B_{s} \rightarrow \mu \mu\right)_{\text {exp }}=\left(2.8_{-0.6}^{+0.7}\right) \times 10^{-9}
$$

[LHCb\&CMS full-Run I combination]

$$
B R\left(B_{s} \rightarrow \mu \mu\right)_{S M}=(3.65 \pm 0.23) \times 10^{-9}
$$

[C. Bobeth et al., PRL 14]

- Theory prediction now very solid. All (known) theory systematics included.
$B_{s} \rightarrow \mu \mu$
(5) $\frac{B R\left(B_{s} \rightarrow \mu \mu\right)_{\mathrm{exp}}}{B R\left(B_{\mathrm{s}} \rightarrow \mu \mu\right)_{\mathrm{sm}}}=0.77 \pm 0.20$

$$
B R\left(B_{s} \rightarrow \mu \mu\right)_{\text {exp }}=\left(2.8_{-0.6}^{+0.7}\right) \times 10^{-9}
$$

[LHCb\&CMS full-Run I combination]

$$
B R\left(B_{s} \rightarrow \mu \mu\right)_{S M}=(3.65 \pm 0.23) \times 10^{-9}
$$

[C. Bobeth et al., PRL 14]

- Theory prediction now very solid. All (known) theory systematics included.
- "large- $\Delta \Gamma_{\mathrm{s}}$ " effect [K. De Bruyn et al., PRL 12]
$B_{s} \rightarrow \mu \mu$
(5) $\frac{B R\left(B_{s} \rightarrow \mu \mu\right)_{\mathrm{exp}}}{B R\left(B_{\mathrm{s}} \rightarrow \mu \mu\right)_{\mathrm{sm}}}=0.77 \pm 0.20$

$$
B R\left(B_{s} \rightarrow \mu \mu\right)_{\text {exp }}=\left(2.8_{-0.6}^{+0.7}\right) \times 10^{-9}
$$

[LHCb\&CMS full-Run I combination]

$$
B R\left(B_{s} \rightarrow \mu \mu\right)_{S M}=(3.65 \pm 0.23) \times 10^{-9}
$$

[C. Bobeth et al., PRL 14]

- Theory prediction now very solid. All (known) theory systematics included.
= "large- $\Delta \Gamma_{\mathrm{s}}$ " effect [K. De Bruyn et al., PRL 12]
- soft-photon corr's [Buras, Girrbach, DG, Isidori, EPJC 12]
$B_{s} \rightarrow \mu \mu$
(5) $\frac{B R\left(B_{s} \rightarrow \mu \mu\right)_{\mathrm{exp}}}{B R\left(B_{\mathrm{s}} \rightarrow \mu \mu\right)_{\mathrm{sM}}}=0.77 \pm 0.20$
$B R\left(B_{s} \rightarrow \mu \mu\right)_{\text {exp }}=\left(2.8_{-0.6}^{+0.7}\right) \times 10^{-9}$
[LHCb\&CMS full-Run I combination]

$$
B R\left(B_{s} \rightarrow \mu \mu\right)_{\mathrm{SM}}=(3.65 \pm 0.23) \times 10^{-9}
$$

[C. Bobeth et al., PRL 14]

- Theory prediction now very solid. All (known) theory systematics included.
- "large- $\Delta \Gamma_{\mathrm{s}}$ " effect [K. De Bruyn et al., PRL 12]
- soft-photon corr's [Buras, Girrbach, DG, Isidori, EPJC 12]
- NLO EW \& NNLO QCD corr's [Bobeth, Gorbahn, Stamou, PRD 14; Hermann, Misiak, Steinhauser, JHEP 13]
$B_{s} \rightarrow \mu \mu$
(5) $\frac{B R\left(B_{s} \rightarrow \mu \mu\right)_{\text {exp }}}{B R\left(B_{s} \rightarrow \mu \mu\right)_{s M}}=0.77 \pm 0.20$
$B R\left(B_{s} \rightarrow \mu \mu\right)_{\text {exp }}=\left(2.8_{-0.6}^{+0.7}\right) \times 10^{-9}$
[LHCb\&CMS full-Run I combination]

$$
B R\left(B_{s} \rightarrow \mu \mu\right)_{\mathrm{SM}}=(3.65 \pm 0.23) \times 10^{-9}
$$

[C. Bobeth et al., PRL 14]

- Theory prediction now very solid. All (known) theory systematics included.
- "large- $\Delta \Gamma_{\mathrm{s}}$ " effect [K. De Bruyn et al., PRL 12]
- soft-photon corr's [Buras, Girrbach, DG, Isidori, EPJC 12]
- NLO EW \& NNLO QCD corr's [Bobeth, Gorbahn, Stamou, PRD 14; Hermann, Misiak, Steinhauser, JHEP 13]
- current error ($\sim 6 \%$) dominated by CKM and $f_{\text {Bs }}$
$B_{s} \rightarrow \mu \mu$

5

$$
\frac{B R\left(B_{s} \rightarrow \mu \mu\right)_{\text {exp }}}{B R\left(B_{s} \rightarrow \mu \mu\right)_{\mathrm{sm}}}=0.77 \pm 0.20
$$

$B R\left(B_{\mathrm{s}} \rightarrow \mu \mu\right)_{\text {exp }}=\left(2.8_{-0.6}^{+0.7}\right) \times 10^{-9}$
[LHCb\&CMS full-Run I combination]

$$
B R\left(B_{s} \rightarrow \mu \mu\right)_{S M}=(3.65 \pm 0.23) \times 10^{-9}
$$

[C. Bobeth et al., PRL 14]

- Theory prediction now very solid. All (known) theory systematics included.
- "large- $\Delta \Gamma_{\mathrm{s}}$ " effect [K. De Bruyn et al., PRL 12]
- soft-photon corr's [Buras, Girrbach, DG, Isidori, EPJC 12]
- NLO EW \& NNLO QCD corr's [Bobeth, Gorbahn, Stamou, PRD 14; Hermann, Misiak, Steinhauser, JHEP 13]
- current error ($\sim 6 \%$) dominated by CKM and $f_{\text {Bs }}$
- Exp error will go to: $\sim 10 \%$ by end of Run II
$\sim 5 \%$ w/ LHCb upgrade

More discrepancies:
 $b \rightarrow c$ decays

There are long-standing discrepancies in $b \rightarrow c$ transitions as well.

$$
R\left(D^{(*)}\right)=\frac{B R\left(B \rightarrow D^{(*)} \tau v\right)}{B R\left(B \rightarrow D^{(*)} \ell v\right)(\text { with } \ell=e, \mu)}
$$

More discrepancies:
$\mathrm{b} \rightarrow \mathrm{c}$ decays

There are long-standing discrepancies in $b \rightarrow c$ transitions as well.

$$
R\left(D^{(*)}\right)=\frac{B R\left(B \rightarrow D^{(*)} \tau v\right)}{B R\left(B \rightarrow D^{* *} \varphi v\right)(\text { with } \ell=e, \mu)}
$$

First discrepancy found
by BaBar in 2012 in both $R(D)$ and $R\left(D^{*}\right)$

More discrepancies:
$\mathrm{b} \rightarrow \mathrm{c}$ decays

There are long-standing discrepancies in $b \rightarrow c$ transitions as well.

$$
R\left(D^{(*)}\right)=\frac{B R\left(B \rightarrow D^{(*)} \tau v\right)}{B R\left(B \rightarrow D^{* *} \varphi v\right)(\text { with } \ell=e, \mu)}
$$

First discrepancy found
by BaBar in 2012 in both $R(D)$ and $R\left(D^{*}\right)$

2015: BaBar's R(D*) beautifully confirmed by LHCb
D. Guadagnoli, Flavor physics

More discrepancies:

$b \rightarrow c$ decays

There are long-standing discrepancies in $b \rightarrow c$ transitions as well.

$$
R\left(D^{(*)}\right)=\frac{B R\left(B \rightarrow D^{(*)} \tau v\right)}{B R\left(B \rightarrow D^{* *} \varphi v\right)(\text { with } \ell=e, \mu)}
$$

First discrepancy found
by BaBar in 2012 in both $R(D)$ and $R\left(D^{*}\right)$

2015: Belle finds a more SM-like R(D*)
(hadronic tau)

2015: BaBar's R(D*) beautifully confirmed by LHCb

More discrepancies:

$b \rightarrow c$ decays

There are long-standing discrepancies in $b \rightarrow c$ transitions as well.

$$
R\left(D^{(*)}\right)=\frac{B R\left(B \rightarrow D^{(*)} \tau v\right)}{B R\left(B \rightarrow D^{(*)} \ell v\right)(\text { with } \ell=e, \mu)}
$$

$R(D) \& R\left(D^{*}\right):$
 continued

This is the big picture, excluding the latest Belle result (semilep. tau)

$R(D) \& R\left(D^{*}\right):$
 continued

This is the big picture, excluding the latest Belle result (semilep. tau)

$R(D) \& R\left(D^{*}\right):$
 continued

This is the big picture, excluding the latest Belle result (semilep. tau)

D. Guadagnoli, Flavor physics

$R(D) \& R\left(D^{*}\right):$
 continued

This is the big picture, excluding the latest Belle result (semilep. tau)

D. Guadagnoli, Flavor physics

$R(D) \& R\left(D^{*}\right):$
 continued

This is the big picture, excluding the latest Belle result (semilep. tau)

D. Guadagnoli, Flavor physics

But let's focus for the moment on the $b \rightarrow s$ discrepancies.

But let's focus for the moment on the $b \rightarrow s$ discrepancies.

- Each of the mentioned effects, taken singly, is at best a 3σ effect
$\Rightarrow \quad$ Need to wait for Run II before getting really excited

But let's focus for the moment on the $b \rightarrow s$ discrepancies.

- Each of the mentioned effects, taken singly, is at best a 3σ effect $\Rightarrow \quad$ Need to wait for Run II before getting really excited
- Yet: - Q1: Can we (easily) make sense of $\mathbf{0}$ to $\boldsymbol{\bullet}$?

But let's focus for the moment on the $b \rightarrow s$ discrepancies.

- Each of the mentioned effects, taken singly, is at best a 3σ effect
$\Rightarrow \quad$ Need to wait for Run II before getting really excited
- Yet: - Q1: Can we (easily) make sense of $\mathbf{0}$ to $\boldsymbol{\bullet}$?
- Q2: What are the most immediate signatures to expect?

Concerning Q2: most immediate signatures to expect

Basic observation:

- If R_{K} is signaling $L F N U$ at a non-SM level, we may also expect $L F V$ at a non-SM level.

Concerning Q2: most immediate signatures to expect

Basic observation:

- If R_{K} is signaling $L F N U$ at a non-SM level, we may also expect $L F V$ at a non-SM level.

In fact:

- Consider a new, LFNU interaction above the EWSB scale, e.g. with new vector bosons: $\bar{\ell} Z^{\prime} \ell \quad$ or leptoquarks: $\bar{\ell} \varphi q$

Concerning Q2: most immediate signatures to expect

Basic observation:

- If R_{K} is signaling LFNU at a non-SM level, we may also expect LFV at a non-SM level.

In fact:

- Consider a new, LFNU interaction above the EWSB scale, e.g. with new vector bosons: $\bar{\ell} Z^{\prime} \ell \quad$ or leptoquarks: $\bar{\ell} \varphi q$
- In what basis are quarks and leptons in the above interaction? In general, it's the "gauge" basis.

Concerning Q2: most immediate signatures to expect

Basic observation:

- If R_{K} is signaling $L F N U$ at a non-SM level, we may also expect $L F V$ at a non-SM level.

In fact:

- Consider a new, LFNU interaction above the EWSB scale, e.g. with new vector bosons: $\bar{\ell} Z^{\prime} \ell \quad$ or leptoquarks: $\bar{\ell} \varphi q$
- In what basis are quarks and leptons in the above interaction?

In general, it's the "gauge" basis.
Namely, it's not the mass eigenbasis.
(This basis doesn't yet even exist. We are above the EWSB scale.)

Concerning Q2: most immediate signatures to expect

Basic observation:

- If R_{K} is signaling $L F N U$ at a non-SM level, we may also expect $L F V$ at a non-SM level.

In fact:

- Consider a new, LFNU interaction above the EWSB scale, e.g. with new vector bosons: $\bar{\ell} Z^{\prime} \ell \quad$ or leptoquarks: $\bar{\ell} \varphi q$
- In what basis are quarks and leptons in the above interaction?

In general, it's the "gauge" basis.
Namely, it's not the mass eigenbasis.
(This basis doesn't yet even exist. We are above the EWSB scale.)

- Rotating q and ℓ to the mass eigenbasis generates LFV interactions.

Let's now turn to Q1:

Can we (easily) make sense of data $\mathbf{(1)}$ to $\boldsymbol{\Xi}$?

It is highly non-trivial that a simple consistent BSM picture exists to describe the above data $\mathbf{1}$ to $\boldsymbol{\bullet}$

Let's now turn to Q1:

Can we (easily) make sense of data $\mathbf{(1)}$ to $\boldsymbol{5}$?

It is highly non-trivial that a simple consistent BSM picture exists to describe the above data $\mathbf{1}$ to $\boldsymbol{\bullet}$

- Consider the following Hamiltonian

$$
H_{\mathrm{SM}+\mathrm{NP}}(\bar{b} \rightarrow \bar{s} \mu \mu)=-\frac{4 G_{F}}{\sqrt{2}} V_{t b}^{*} V_{t 5} \frac{\alpha_{\mathrm{em}}}{4 \pi}\left[\bar{b}_{L} \gamma^{\lambda} s_{L} \cdot\left(C_{9}^{(\mu)} \bar{\mu} \gamma_{\lambda} \mu+C_{10}^{(\mu)} \bar{\mu} \gamma_{\lambda} \gamma_{5} \mu\right)\right]
$$

Let's now turn to Q1:

Can we (easily) make sense of data $\mathbf{(1)}$ to $\boldsymbol{5}$?

It is highly non-trivial that a simple consistent BSM picture exists to describe the above data $\mathbf{1}$ to $\boldsymbol{\bullet}$

- Consider the following Hamiltonian

$$
\begin{aligned}
& \text { purely vector } \\
& \text { purely axial } \\
& \text { lepton current } \\
& H_{\mathrm{SM}+\mathrm{NP}}(\bar{b} \rightarrow \bar{s} \mu \mu)=-\frac{4 G_{F}}{\sqrt{2}} V_{t b}^{*} V_{t s} \frac{\alpha_{\mathrm{em}}}{4 \pi}\left[\bar{b}_{L} \gamma^{\lambda} s_{L} \cdot\left(C_{9}^{(\mu)}\left(\bar{\mu} \gamma_{\lambda} \mu\right)+C_{10}^{(\mu)}\left(\bar{\mu} \gamma_{\lambda} \gamma_{5} \mu\right)\right]\right.
\end{aligned}
$$

Let's now turn to Q1:

Can we (easily) make sense of data $\mathbf{(1}$ to $\mathbf{5}$?

It is highly non-trivial that a simple consistent BSM picture exists to describe the above data $\mathbf{1}$ to $\boldsymbol{\bullet}$

- Consider the following Hamiltonian

$$
H_{\mathrm{SM}+\mathrm{NP}}(\bar{b} \rightarrow \bar{s} \mu \mu)=-\frac{4 G_{F}}{\sqrt{2}} V_{t b}^{*} V_{t s} \frac{\alpha_{\mathrm{em}}}{4 \pi}\left[\bar{b}_{L} \gamma^{\lambda} s_{L} \cdot\left(C_{9}^{(\mu)} \overline{\bar{\mu} \gamma_{\lambda} \mu}+C_{10}^{(\mu)}{ }^{\text {purely vector }} \text { lepton current } \gamma_{\lambda} \gamma_{5} \mu\right)\right] \text { purely axial } \begin{aligned}
& \text { lepton current }
\end{aligned}
$$

- Note: $\quad C_{9}^{\mathrm{SM}}\left(m_{b}\right) \approx+4.2$

$$
C_{10}^{\mathrm{SM}}\left(m_{b}\right) \approx-4.4
$$

[Bobeth, Misiak, Urban, 99]
[Khodjamirian et al., 10]

Let's now turn to Q1:

Can we (easily) make sense of data $\mathbf{(1}$ to $\mathbf{5}$?

It is highly non-trivial that a simple consistent BSM picture exists to describe the above data $\mathbf{1}$ to $\boldsymbol{\bullet}$

- Consider the following Hamiltonian

$$
H_{\mathrm{SM}+\mathrm{NP}}(\bar{b} \rightarrow \bar{s} \mu \mu)=-\frac{4 G_{F}}{\sqrt{2}} V_{t b}^{*} V_{t s} \frac{\alpha_{\mathrm{em}}}{4 \pi}\left[\bar{b}_{L} \gamma^{\lambda} s_{L} \cdot\left(C_{9}^{(\mu)} \bar{\mu} \gamma_{\lambda} \mu+C_{10}^{(u)} \bar{\mu} \gamma_{\lambda} \gamma_{5} \mu\right)\right] \text { purely vector } \quad \text { lepton current }
$$

i.e. in the SM

- Note: $C_{9}^{\mathrm{SM}}\left(m_{b}\right) \approx+4.2$

$$
C_{10}^{\mathrm{SM}}\left(m_{b}\right) \approx-4.4
$$

$$
\square C_{9}^{\mathrm{SM}}\left(m_{b}\right) \approx-C_{10}^{\mathrm{SM}}\left(m_{b}\right)
$$ also the lepton current has nearly V - A structure

[Bobeth, Misiak, Urban, 99]

[Khodjamirian et al., 10]

Let's now turn to Q1:

Can we (easily) make sense of data $\mathbf{(1}$ to $\mathbf{5}$?

It is highly non-trivial that a simple consistent BSM picture exists to describe the above data $\mathbf{1}$ to $\boldsymbol{\bullet}$

- Consider the following Hamiltonian

$$
\left.H_{\mathrm{SM}+\mathrm{NP}}(\bar{b} \rightarrow \bar{s} \mu \mu)=-\frac{4 G_{F}}{\sqrt{2}} V_{t b}^{*} V_{t s} \frac{\alpha_{\mathrm{em}}}{4 \pi}\left[\bar{b}_{L} \gamma^{\lambda} s_{L} \cdot\left(C_{9}^{(\mu)} \bar{\mu} \gamma_{\lambda} \mu\right)+C_{10}^{(u)} \bar{\mu} \gamma_{\lambda} \gamma_{5} \mu\right)\right]
$$

i.e. in the SM also the lepton current has nearly $V-A$ structure

- Note: $\quad C_{9}^{\mathrm{SM}}\left(m_{b}\right) \approx+4.2$

$$
C_{10}^{\mathrm{SM}}\left(m_{b}\right) \approx-4.4
$$

$$
\square C_{9}^{\mathrm{SM}}\left(m_{b}\right) \approx-C_{10}^{\mathrm{SM}}\left(m_{b}\right)
$$

[Bobeth, Misiak, Urban, 99]

[Khodjamirian et al., 10]

Let's assume the above $V-A$ structure to hold also beyond the SM, namely

$$
C_{9}^{(\ell)} \approx-C_{10}^{(\ell)} \quad \text { with } \quad C_{9,10}^{(\ell)}=C_{9,10}^{\mathrm{SM}}+C_{9,10}^{(\ell), \mathrm{NP}}
$$

Our main motivation is phenomenological: it fits the data.
However, there is more: see later
D. Guadagnoli, Flavor physics

Model example:

Glashow, DG, Lane, PRL 2015

- Our model requirements are:

$$
\begin{aligned}
& -C_{9}^{(\ell)} \approx-C_{10}^{(\ell)} \quad(V-A \text { structure }) \\
& =\left|C_{9, \mathrm{NP}}^{(\mu)}\right| \gg\left|C_{9, \mathrm{NP}}^{(e)}\right| \quad \text { (LFNU) }
\end{aligned}
$$

Model example:

Glashow, DG, Lane, PRL 2015

- Our model requirements are:

$$
\begin{aligned}
& -C_{9}^{(\ell)} \approx-C_{10}^{(\ell)} \quad(V-A \text { structure }) \\
& =\left|C_{9, \mathrm{NP}}^{(\mu)}\right| \gg\left|C_{9, \mathrm{NP}}^{(e)}\right| \quad(L F N U)
\end{aligned}
$$

- This structure can be generated from a purely $3^{\text {rd }}$-generation interaction of the kind

$$
\begin{gathered}
H_{\mathrm{NP}}=G \bar{b}_{L}^{\prime} \gamma^{\lambda} b_{L}^{\prime} \bar{\tau}_{L}^{\prime} \gamma_{\lambda} \tau_{L}^{\prime} \\
\text { with } G=1 / \Lambda_{\mathrm{NP}}^{2} \ll G_{F}
\end{gathered}
$$

expected e.g. in partial-compositeness frameworks (see later)

Model example:

Glashow, DG, Lane, PRL 2015

- Our model requirements are: $\quad-C_{9}^{(\ell)} \approx-C_{10}^{(\ell)} \quad(V-A$ structure)
- $\left|C_{9, \mathrm{NP}}^{(\mu)}\right| \gg\left|C_{9, \mathrm{NP}}^{(e)}\right| \quad$ (LFNU)
- This structure can be generated from a purely $3^{\text {rd }}$-generation interaction of the kind

$$
\begin{gathered}
H_{\mathrm{NP}}=G \bar{b}_{L}^{\prime} \gamma^{\lambda} b_{L}^{\prime} \bar{\tau}_{L}^{\prime} \gamma_{\lambda} \tau_{L}^{\prime} \\
\text { with } G=1 / \Lambda_{\mathrm{NP}}^{2} \ll G_{F}
\end{gathered}
$$

- Note: primed fields
- Fields are in the "gauge" basis (= primed)

Model example:

Glashow, DG, Lane, PRL 2015

- Our model requirements are: $\quad-C_{9}^{(\ell)} \approx-C_{10}^{(\ell)} \quad(V-A$ structure)
- $\left|C_{9, \mathrm{NP}}^{(\mu)}\right| \gg\left|C_{9, \mathrm{NP}}^{(e)}\right| \quad$ (LFNU)
- This structure can be generated from a purely $3^{\text {rd }}$-generation interaction of the kind

$$
\begin{aligned}
& H_{\mathrm{NP}}=G \bar{b}_{L}^{\prime} \gamma^{\lambda} b_{L}^{\prime} \bar{\tau}_{L}^{\prime} \gamma_{\lambda} \tau_{L}^{\prime} \\
& \quad \text { with } G=1 / \Lambda_{\mathrm{NP}}^{2} \ll G_{F}
\end{aligned}
$$

expected e.g. in partial-compositeness frameworks (see later)

- Note: primed fields
- Fields are in the "gauge" basis (= primed)
- They need to be rotated to the mass eigenbasis

$$
\begin{aligned}
{b^{\prime}}_{L} \equiv\left(d_{L}^{\prime}\right)_{3}=\left(U_{L}^{d}\right)_{3 i} \underbrace{\substack{\text { mass } \\
\text { basis }}}_{\left(d_{L}\right)_{i}} \\
\left.\tau_{L}^{\prime} \equiv\left(\ell_{L}^{\prime}\right)_{3}=\left(U_{L}^{\ell}\right)_{3 i} \ell_{L}\right)_{i}
\end{aligned}
$$

Model example:

Glashow, DG, Lane, PRL 2015

- Our model requirements are: $\quad-C_{9}^{(\ell)} \approx-C_{10}^{(\ell)} \quad(V-A$ structure)
- $\left|C_{9, \mathrm{NP}}^{(\mu)}\right| \gg\left|C_{9, \mathrm{NP}}^{(e)}\right| \quad$ (LFNU)
- This structure can be generated from a purely $3^{\text {rd }}$-generation interaction of the kind

$$
\begin{gathered}
H_{\mathrm{NP}}=G \bar{b}_{L}^{\prime} \gamma^{\lambda} b_{L}^{\prime} \bar{\tau}_{L}^{\prime} \gamma_{\lambda} \tau_{L}^{\prime} \\
\text { with } G=1 / \Lambda_{\mathrm{NP}}^{2} \ll G_{F}
\end{gathered}
$$

expected e.g. in partial-compositeness frameworks (see later)

- Note: primed fields
- Fields are in the "gauge" basis (= primed)
- They need to be rotated to the mass eigenbasis
- This rotation induces LFNU and LFV effects

Explaining $\mathbf{b} \rightarrow \mathbf{s}$ data

- Recalling our full Hamiltonian

$$
H_{\mathrm{SM}+\mathrm{NP}}(\bar{b} \rightarrow \bar{s} \mu \mu)=-\frac{4 G_{F}}{\sqrt{2}} V_{t b}^{*} V_{t s} \frac{\alpha_{\mathrm{em}}}{4 \pi}\left[\bar{b}_{L} \gamma^{\lambda} s_{L} \cdot\left(C_{9}^{(\mu)} \bar{\mu} \gamma_{\lambda} \mu+C_{10}^{(\mu)} \bar{\mu} \gamma_{\lambda} \gamma_{5} \mu\right)\right]
$$

Explaining $\mathbf{b} \rightarrow \mathbf{s}$ data

- Recalling our full Hamiltonian

$$
k_{S M}(S M \text { norm. factor) }
$$

$$
H_{\mathrm{SM}+\mathrm{NP}}(\bar{b} \rightarrow \overline{\mathrm{~s}} \mu \mu)=-\frac{4 G_{F}}{\sqrt{2}} V_{t b}^{*} V_{t s} \frac{\alpha_{\mathrm{em}}}{4 \pi}\left[\bar{b}_{L} \gamma^{\lambda} s_{L} \cdot\left(C_{9}^{(\mu)} \bar{\mu} \gamma_{\lambda} \mu+C_{10}^{(u)} \bar{\mu} \gamma_{\lambda} \gamma_{5} \mu\right)\right]
$$

Explaining $\mathbf{b} \rightarrow \mathbf{s}$ data

- Recalling our full Hamiltonian

$$
k_{\text {SM }} \text { (SM norm. factor) }
$$

$$
H_{\mathrm{SM}+\mathrm{NP}}(\bar{b} \rightarrow \bar{s} \mu \mu)=-\frac{4 G_{F}}{\sqrt{2}} V_{t b}^{*} V_{t s} \frac{\alpha_{\mathrm{em}}}{4 \pi}\left[\bar{b}_{L} \gamma^{\lambda} s_{L} \cdot\left(C_{9}^{(\mu)} \bar{\mu} \gamma_{\lambda} \mu+C_{10}^{(\mu)} \bar{\mu} \gamma_{\lambda} \gamma_{5} \mu\right)\right]
$$

the shift to the C_{9} Wilson coeff. in the $\mu \mu$-channel becomes

$$
k_{\mathrm{SM}} C_{9}^{(u)}=k_{\mathrm{SM}} C_{9, \mathrm{SM}}+\frac{G}{2}\left(U_{L}^{d}\right)_{33}^{*}\left(U_{L}^{d}\right)_{32}\left|\left(U_{L}^{p}\right)_{32}\right|^{2}
$$

Explaining $\mathbf{b} \rightarrow \mathbf{s}$ data

- Recalling our full Hamiltonian

$$
k_{\text {SM }} \text { (SM norm. factor) }
$$

$$
H_{\mathrm{SM}+\mathrm{NP}}(\bar{b} \rightarrow \overline{\mathrm{~s}} \mu \mu)=-\frac{4 G_{F}}{\sqrt{2}} V_{t b}^{*} V_{t s} \frac{\alpha_{\mathrm{em}}}{4 \pi}\left[\bar{b}_{L} \gamma^{\lambda} s_{L} \cdot\left(C_{9}^{(\mu)} \bar{\mu} \gamma_{\lambda} \mu+C_{10}^{(u)} \bar{\mu} \gamma_{\lambda} \gamma_{5} \mu\right)\right]
$$

the shift to the C_{9} Wilson coeff. in the $\mu \mu$-channel becomes

$$
\begin{aligned}
k_{\mathrm{SM}} C_{9}^{(u)} & =k_{\mathrm{SM}} C_{9, \mathrm{SM}}+\frac{G}{2}\left(U_{L}^{d}\right)_{33}^{*}\left(U_{L}^{d}\right)_{32}\left|\left(U_{L}^{\ell}\right)_{32}\right|^{2} \\
& =\beta_{\mathrm{SM}}
\end{aligned}
$$

Explaining $\mathbf{b} \rightarrow \mathbf{s}$ data

- Recalling our full Hamiltonian

$$
k_{S M} \text { (SM norm. factor) }
$$

$$
H_{\mathrm{SM}+\mathrm{NP}}(\bar{b} \rightarrow \overline{\mathrm{~s}} \mu \mu)=-\frac{4 G_{F}}{\sqrt{2}} V_{t b}^{*} V_{t s} \frac{\alpha_{\mathrm{em}}}{4 \pi}\left[\bar{b}_{L} \gamma^{\lambda} s_{L} \cdot\left(C_{9}^{(\mu)} \bar{\mu} \gamma_{\lambda} \mu+C_{10}^{(u)} \bar{\mu} \gamma_{\lambda} \gamma_{5} \mu\right)\right]
$$

the shift to the C_{9} Wilson coeff. in the $\mu \mu$-channel becomes

$$
\begin{aligned}
k_{\mathrm{SM}} C_{9}^{(\mu)} & =k_{\mathrm{SM}} C_{9, \mathrm{SM}}+\frac{G}{2}\left(U_{L}^{d}\right)_{33}^{*}\left(U_{L}^{d}\right)_{32}\left|\left(U_{L}^{\ell}\right)_{32}\right|^{2} \\
& =\beta_{\mathrm{SM}}+\quad \beta_{\mathrm{NP}}
\end{aligned}
$$

Explaining $\mathbf{b} \rightarrow \mathbf{s}$ data

- Recalling our full Hamiltonian

$$
k_{S M} \text { (SM norm. factor) }
$$

$$
H_{\mathrm{SM}+\mathrm{NP}}(\bar{b} \rightarrow \bar{s} \mu \mu)=-\frac{4 G_{F}}{\sqrt{2}} V_{t b}^{*} V_{t s} \frac{\alpha_{\mathrm{em}}}{4 \pi}\left[\bar{b}_{L} \gamma^{\lambda} s_{L} \cdot\left(C_{9}^{(\mu)} \bar{\mu} \gamma_{\lambda} \mu+C_{10}^{(\mu)} \bar{\mu} \gamma_{\lambda} \gamma_{5} \mu\right)\right]
$$

the shift to the C_{9} Wilson coeff. in the $\mu \mu$-channel becomes

$$
\begin{aligned}
k_{\mathrm{SM}} C_{9}^{(\mu)} & =k_{\mathrm{SM}} C_{9, \mathrm{SM}}+\frac{G}{2}\left(U_{L}^{d}\right)_{33}^{*}\left(U_{L}^{d}\right)_{32}\left|\left(U_{L}^{\ell}\right)_{32}\right|^{2} \\
& =\beta_{\mathrm{SM}}+\quad \beta_{\mathrm{NP}}
\end{aligned}
$$

The NP contribution has opposite sign than the SM one if

$$
G\left(U_{L}^{d}\right)_{32}<0
$$

Explaining $\mathbf{b} \rightarrow \mathbf{s}$ data

- Recalling our full Hamiltonian

$$
k_{S M} \text { (SM norm. factor) }
$$

$$
H_{\mathrm{SM}+\mathrm{NP}}(\bar{b} \rightarrow \overline{\mathrm{~s}} \mu \mu)=-\frac{4 G_{F}}{\sqrt{2}} V_{t b}^{*} V_{t \mathrm{~s}} \frac{\alpha_{\mathrm{em}}}{4 \pi}\left[\bar{b}_{L} \gamma^{\lambda} s_{L} \cdot\left(C_{9}^{(\mu)} \bar{\mu} \gamma_{\lambda} \mu+C_{10}^{(\mu)} \bar{\mu} \gamma_{\lambda} \gamma_{5} \mu\right)\right]
$$

the shift to the C_{9} Wilson coeff. in the $\mu \mu$-channel becomes

$$
\begin{aligned}
k_{\mathrm{SM}} C_{9}^{(\mu)} & =k_{\mathrm{SM}} C_{9, \mathrm{SM}}+\frac{G}{2}\left(U_{L}^{d}\right)_{33}^{*}\left(U_{L}^{d}\right)_{32}\left|\left(U_{L}^{\ell}\right)_{32}\right|^{2} \\
& =\beta_{\mathrm{SM}}+\quad \beta_{\mathrm{NP}}
\end{aligned}
$$

The NP contribution has opposite sign than the SM one if

$$
G\left(U_{L}^{d}\right)_{32}<0
$$

- On the other hand, in the ee-channel

$$
k_{\mathrm{SM}} C_{9}^{(e)}=k_{\mathrm{SM}} C_{9, \mathrm{SM}}+\frac{G}{2}\left(U_{L}^{d}\right)_{33}^{*}\left(U_{L}^{d}\right)_{32}\left|\left(U_{L}^{\ell}\right)_{31}\right|^{2}
$$

Explaining $\mathbf{b} \rightarrow \mathbf{s}$ data

- Recalling our full Hamiltonian

$$
H_{\mathrm{SM}+\mathrm{NP}}(\bar{b} \rightarrow \bar{s} \mu \mu)=-\frac{4 G_{F}}{\sqrt{2}} V_{t b}^{*} V_{t s} \frac{\alpha_{\mathrm{em}}}{4 \pi}\left[\bar{b}_{L} \gamma^{\lambda} s_{L} \cdot\left(C_{9}^{(\mu)} \bar{\mu} \gamma_{\lambda} \mu+C_{10}^{(\mu)} \bar{\mu} \gamma_{\lambda} \gamma_{5} \mu\right)\right]
$$

the shift to the C_{9} Wilson coeff. in the $\mu \mu$-channel becomes

$$
\begin{aligned}
k_{\mathrm{SM}} C_{9}^{(u)} & =k_{\mathrm{SM}} C_{9, \mathrm{SM}}+\frac{G}{2}\left(U_{L}^{d}\right)_{33}^{*}\left(U_{L}^{d}\right)_{32}\left|\left(U_{L}^{\ell}\right)_{32}\right|^{2} \\
& =\beta_{\mathrm{SM}}+\quad+\quad \beta_{\mathrm{NP}}
\end{aligned}
$$

The NP contribution has opposite sign than the SM one if

$$
G\left(U_{L}^{d}\right)_{32}<0
$$

The NP contrib. in the eechannel is negligible, as

$$
\left|\left(U_{L}^{\ell}\right)_{31}\right|^{2} \ll\left|\left(U_{L}^{\ell}\right)_{32}\right|^{2}
$$

Explaining $\mathbf{b} \rightarrow \mathbf{s}$ data

- The above setup implies:
$-\left|C_{9}\right| \simeq\left|C_{10}\right|$ also beyond the SM
- Corrections in the μ channel much larger than in the electron channel

Explaining $\mathbf{b} \rightarrow \mathbf{s}$ data

- The above setup implies:
- $\left|C_{9}\right| \simeq\left|C_{10}\right|$ also beyond the SM
- Corrections in the μ channel much larger than in the electron channel
ㄷ

$$
R_{K} \approx \frac{\left|C_{9}^{(u)}\right|^{2}+\left|C_{10}^{(u)}\right|^{2}}{\left|C_{9}^{(e)}\right|^{2}+\left|C_{10}^{(e)}\right|^{2}} \simeq \frac{2\left|C_{10}^{\mathrm{SM}}+\delta C_{10}\right|^{2}}{2\left|C_{10}^{\mathrm{SM}}\right|^{2}}
$$

Explaining $\mathbf{b} \rightarrow \mathbf{s}$ data

- The above setup implies:
- $\left|C_{9}\right| \simeq\left|C_{10}\right|$ also beyond the SM
- Corrections in the μ channel much larger than in the electron channel

$$
R_{K} \approx \frac{\left|C_{9}^{(u)}\right|^{2}+\left|C_{10}^{(u)}\right|^{2}}{\left|C_{9}^{(e)}\right|^{2}+\left|C_{10}^{(e)}\right|^{2}} \simeq \frac{2\left|C_{10}^{\mathrm{SM}}+\delta C_{10}\right|^{2}}{\ddots\left|C_{10}^{\mathrm{SM}}\right|^{2}}
$$

factors of 2:
equal contributions from $\left|C_{9}\right|^{2}$ and $\left|C_{10}\right|^{2}$

Explaining $\mathbf{b} \rightarrow \mathbf{s}$ data

- The above setup implies:
$-\left|C_{9}\right| \simeq\left|C_{10}\right|$ also beyond the SM
- Corrections in the μ channel much larger than in the electron channel

$$
\sqrt{\int R_{K} \approx \frac{\left|C_{9}^{(u)}\right|^{2}+\left|C_{10}^{(u)}\right|^{2}}{\left|C_{9}^{(e)}\right|^{2}+\left|C_{10}^{(e)}\right|^{2}} \simeq \frac{2\left|C_{10}^{\mathrm{SM}}+\delta C_{10}\right|^{2}}{\ddots 2\left|C_{10}^{\mathrm{SM}}\right|^{2}}} \text { factors of 2: }
$$

equal contributions from $\left|C_{9}\right|^{2}$ and $\left|C_{10}\right|^{2}$

- Note as well

$$
0.77 \pm 0.20=\frac{B R\left(B_{s} \rightarrow \mu \mu\right)_{\exp }}{B R\left(B_{s} \rightarrow \mu \mu\right)_{\mathrm{SM}}}=\frac{B R\left(B_{s} \rightarrow \mu \mu\right)_{\mathrm{SM}+\mathrm{NP}}}{B R\left(B_{s} \rightarrow \mu \mu\right)_{\mathrm{SM}}}=\frac{\left|C_{10}^{\mathrm{SM}}+\delta C_{10}\right|^{2}}{\left|C_{10}^{\mathrm{SM}}\right|^{2}}
$$

Explaining $\mathbf{b} \rightarrow \mathbf{s}$ data

- The above setup implies:
$-\left|C_{9}\right| \simeq\left|C_{10}\right|$ also beyond the $S M$
- Corrections in the μ channel much larger than in the electron channel

factors of 2 :
equal contributions from $\left|C_{9}\right|^{2}$ and $\left|C_{10}\right|^{2}$
- Note as well

$$
0.77 \pm 0.20=\frac{B R\left(B_{s} \rightarrow \mu \mu\right)_{\exp }}{B R\left(B_{s} \rightarrow \mu \mu\right)_{S M}}=\frac{B R\left(B_{s} \rightarrow \mu \mu\right)_{\mathrm{SM}+\mathrm{NP}}}{B R\left(B_{s} \rightarrow \mu \mu\right)_{\mathrm{SM}}}=\frac{\left|C_{10}^{\mathrm{SM}}+\delta C_{10}\right|^{2}}{\left|C_{10}^{S \mathrm{~S}}\right|^{2}}
$$

implying (within our model) the correlations

$$
\frac{B R\left(B_{s} \rightarrow \mu \mu\right)_{\exp }}{B R\left(B_{s} \rightarrow \mu \mu\right)_{\mathrm{SM}}} \simeq R_{K} \simeq \frac{B R\left(B^{+} \rightarrow K^{+} \mu \mu\right)_{\exp }}{B R\left(B^{+} \rightarrow K^{+} \mu \mu\right)_{\mathrm{SM}}}
$$

D. Guadagnoli, Flavor physics

Explaining $\mathbf{b} \rightarrow \mathbf{s}$ data

- So, the equal-size, opposite-sign corrections to $C_{9}{ }^{\text {SM }}$ and to $C_{10}{ }^{\text {SM }}$ (in the $\mu \mu$-channel only) would account for:
- $\quad R_{K}$ lower than 1
- B $\rightarrow K \mu \mu \& B_{s} \rightarrow \mu \mu \quad B R$ data below predictions

Explaining $\mathbf{b} \rightarrow \mathbf{s}$ data

- So, the equal-size, opposite-sign corrections to $C_{9}{ }^{\text {SM }}$ and to $C_{10}{ }^{\text {SM }}$ (in the $\mu \mu$-channel only) would account for:
- $\quad R_{K}$ lower than 1
- $B \rightarrow K \mu \mu \& B_{s} \rightarrow \mu \mu \quad B R$ data below predictions
- This pattern of corrections turns out to also accommodate the anomaly [LHCb, PRL 2013] in $B \rightarrow K^{*} \mu \mu$ angular data measured by $L H C b$, especially in $P_{5}{ }^{\prime}$

Explaining $\mathbf{b} \rightarrow \mathbf{s}$ data

- So, the equal-size, opposite-sign corrections to $C_{9}{ }^{S M}$ and to $C_{10}{ }^{\text {SM }}$ (in the $\mu \mu$-channel only) would account for:
- $\quad R_{K}$ lower than 1
- B $\rightarrow K \mu \mu \& B_{s} \rightarrow \mu \mu \quad B R$ data below predictions
- This pattern of corrections turns out to also accommodate the anomaly [LHCb, PRL 2013] in $B \rightarrow K^{*} \mu \mu$ angular data measured by LHCb, especially in $P_{5}{ }^{\prime}$
- A fully quantitative test requires a global fit.

See in particular [Ghosh, Nardecchia, Renner, JHEP '14] and [Altmannshofer, Straub, EPJC '15]

```
new physics contributions to the Wilson coefficients. We find that the by far largest de-
crease in the \chi}\mp@subsup{\chi}{}{2}\mathrm{ can be obtained either by a negative new physics contribution to C}\mp@subsup{C}{9}{}\mathrm{ (with
C
(with C}\mp@subsup{C}{9}{\textrm{NP}}~-12%\times\mp@subsup{C}{9}{\textrm{SM}}\mathrm{ ). A positive NP contribution to Clo alone would also improve the
fit, although to a lesser extent.
[Altmannshofer, Straub, EPJC '15]
```


LFV model signatures

As mentioned: if R_{K} is signaling BSM LFNU, then expect BSM LFV as well

$$
\nabla \frac{B R\left(B^{+} \rightarrow K^{+} \mu e\right)}{B R\left(B^{+} \rightarrow K^{+} \mu \mu\right)}=\frac{\left|\delta C_{10}\right|^{2}}{\left|C_{10}^{S M}+\delta C_{10}\right|^{2}} \cdot \frac{\left|\left(U_{L}^{\ell}\right)_{31}\right|^{2}}{\left|\left(U_{L}^{\ell}\right)_{32}\right|^{2}} \cdot 2
$$

LFV model signatures

As mentioned: if R_{K} is signaling BSM LFNU, then expect BSM LFV as well
$\nabla \frac{B R\left(B^{+} \rightarrow K^{+} \mu e\right)}{B R\left(B^{+} \rightarrow K^{+} \mu \mu\right)}=\underbrace{\text { a.1592}}_{\begin{array}{c}\left|\delta C_{10}\right|^{2} \\ \left|C_{10}^{S M}+\delta C_{10}\right|^{2} \\ \text { according to } \mathbf{R}_{\mathrm{K}}\end{array}} \cdot \frac{\left|\left(U_{L}^{\ell}\right)_{31}\right|^{2}}{\left|\left(U_{L}^{\ell}\right)_{32}\right|^{2}} \cdot 2$

LFV model signatures

As mentioned: if R_{K} is signaling BSM LFNU, then expect BSM LFV as well
$\nabla \frac{B R\left(B^{+} \rightarrow K^{+} \mu e\right)}{B R\left(B^{+} \rightarrow K^{+} \mu \mu\right)}=\frac{\left|\delta C_{10}\right|^{2}}{\left\lvert\, \begin{array}{c}C_{10}^{S M}+\left.\delta C_{10}\right|^{2} \\ =0.159^{2} \\ \text { according to } \mathbf{R}_{\kappa}\end{array}\right.} \cdot \frac{\left|\left(U_{L}^{\ell}\right)_{31}\right|^{2}}{\left|\left(U_{L}^{\ell}\right)_{32}\right|^{2}} \begin{gathered}2 \\ \begin{array}{c}\mu^{+} \mathrm{e}^{-} \& \mu^{-} \mathrm{e}^{+} \\ \text {modes }\end{array}\end{gathered}$

LFV model signatures

As mentioned: if R_{K} is signaling BSM LFNU, then expect BSM LFV as well

$$
\square B R\left(B^{+} \rightarrow K^{+} \mu e\right)<2.2 \times 10^{-8} \cdot \frac{\left|\left(U_{L}^{\ell}\right)_{31}\right|^{2}}{\left|\left(U_{L}^{\ell}\right)_{32}\right|^{2}}
$$

The current $B R(B+\rightarrow K+\mu e)$ limit yields the weak bound

$$
\left|\left(U_{L}^{t}\right)_{31} 1\left(U_{L}^{t}\right)_{32}\right|<3.7
$$

LFV model signatures

As mentioned: if R_{K} is signaling BSM LFNU, then expect BSM LFV as well

$\checkmark \quad B R\left(B^{+} \rightarrow K^{+} \mu \tau\right) \quad$ would be even more promising, as it scales with $\left|\left(U_{L}^{\ell}\right)_{33} /\left(U_{L}^{\ell}\right)_{32}\right|^{2}$

LFV model signatures

As mentioned: if R_{K} is signaling BSM LFNU, then expect BSM LFV as well

$\checkmark \quad B R\left(B^{+} \rightarrow K^{+} \mu \tau\right) \quad$ would be even more promising, as it scales with $\left|\left(U_{L}^{\ell}\right)_{33} /\left(U_{L}^{\ell}\right)_{32}\right|^{2}$
$\checkmark \quad$ An analogous argument holds for purely leptonic modes

LFV model signatures

As mentioned: if R_{K} is signaling BSM LFNU, then expect BSM LFV as well

The current $B R(B+\rightarrow K+\mu e)$ limit yields the weak bound

$$
\left|\left(U_{L}^{\ell}\right)_{31} 1\left(U_{L}^{\ell}\right)_{32}\right|<3.7
$$

$\checkmark \quad B R\left(B^{+} \rightarrow K^{+} \mu \tau\right) \quad$ would be even more promising, as it scales with $\left|\left(U_{L}^{\ell}\right)_{33} /\left(U_{L}^{\ell}\right)_{32}\right|^{2}$
$\checkmark \quad$ An analogous argument holds for purely leptonic modes
$\checkmark \quad$ There is even an interesting signature outside B physics: $K \rightarrow(\pi) \ell \ell^{\prime}$ It is measurable at NA62, that just started taking data

More signatures

- Being defined above the EWSB scale, our assumed operator $G \bar{b}^{\prime}{ }_{L} \gamma^{\lambda} b^{\prime}{ }_{L} \bar{\tau}^{\prime}{ }_{L} \gamma_{\lambda} \tau^{\prime}{ }_{L}$ must actually be made invariant under $S U(3)_{c} \times S U(2)_{L} \times U(1)_{Y}$

More signatures

- Being defined above the EWSB scale, our assumed operator $G \bar{b}^{\prime}{ }_{L} \gamma^{\lambda} b^{\prime}{ }_{L} \bar{\tau}^{\prime}{ }_{L} \gamma_{\lambda} \tau^{\prime}{ }_{L}$ must actually be made invariant under $\operatorname{SU}(3)_{c} \times S U(2)_{L} \times U(1)_{Y}$

```
    Bhattacharya,
\[
\bar{b}_{L}^{\prime} \gamma^{\lambda} b^{\prime}{ }_{L} \bar{\tau}^{\prime}{ }_{L} \gamma_{\lambda} \tau^{\prime}{ }_{L}
\]
```


More signatures

- Being defined above the EWSB scale, our assumed operator $G \bar{b}^{\prime}{ }_{L} \gamma^{\lambda} b^{\prime}{ }_{L} \bar{\tau}^{\prime}{ }_{L} \gamma_{\lambda} \tau^{\prime}{ }_{L}$ must actually be made invariant under $\operatorname{SU}(3)_{c} \times S U(2)_{L} \times U(1)_{Y}$

```
See: 
    Bhattacharya, Dara, PLB 15
\[
\bar{b}_{L}^{\prime} \gamma^{\lambda} b^{\prime}{ }_{L} \bar{\tau}^{\prime}{ }_{L} \gamma_{\lambda} \tau^{\prime}{ }_{L}
\]
```


- Thus, the generated structures are all of:
$t^{\prime} t^{\prime} v_{\tau}^{\prime} v_{\tau}^{\prime}$,
$t^{\prime} t^{\prime} \tau^{\prime} \tau^{\prime}$,
$b^{\prime} b^{\prime} v^{\prime}{ }_{\tau} v^{\prime}{ }_{\tau}$,
$b^{\prime} b^{\prime} \tau^{\prime} \tau^{\prime}$,
$t^{\prime} b^{\prime} \tau^{\prime} v_{\tau}^{\prime}$

More signatures

- Being defined above the EWSB scale, our assumed operator $G \bar{b}^{\prime}{ }_{L} \gamma^{\lambda} b^{\prime}{ }_{L} \bar{\tau}^{\prime}{ }_{L} \gamma_{\lambda} \tau^{\prime}{ }_{L}$ must actually be made invariant under $\operatorname{SU}(3)_{c} \times S U(2)_{L} \times U(1)_{Y}$

```
See:
```

See:
Bhattacharya, Datta, London,
Shivashankara, PLB 15

$$
\bar{b}_{L}^{\prime} \gamma^{\lambda} b^{\prime}{ }_{L} \bar{\tau}^{\prime}{ }_{L} \gamma_{\lambda} \tau^{\prime}{ }_{L}
$$

- Thus, the generated structures are all of:

$$
t^{\prime} t^{\prime} v_{\tau}^{\prime} v_{\tau}^{\prime}, \quad t^{\prime} t^{\prime} \tau^{\prime} \tau^{\prime}, \quad b^{\prime} b^{\prime} v_{\tau}^{\prime} v_{\tau}^{\prime}, \quad b^{\prime} b^{\prime} \tau^{\prime} \tau^{\prime}, \quad t^{\prime} b^{\prime} \tau^{\prime} v_{\tau}^{\prime}
$$

More signatures

- Being defined above the EWSB scale, our assumed operator $G \bar{b}^{\prime}{ }_{L} \gamma^{\lambda} b^{\prime}{ }_{L} \bar{\tau}^{\prime}{ }_{L} \gamma_{\lambda} \tau^{\prime}{ }_{L}$ must actually be made invariant under $\operatorname{SU}(3)_{c} \times S U(2)_{L} \times U(1)_{Y}$

```
See: 
    Bhattacharya, , PLB 15
\[
\bar{b}_{L}^{\prime} \gamma^{\lambda} b_{L}^{\prime} \bar{\tau}_{L}^{\prime} \gamma_{\lambda} \tau_{L}^{\prime}
\]
```


- Thus, the generated structures are all of:
$t^{\prime} t^{\prime} v_{\tau}^{\prime} \nu_{\tau}^{\prime}, \quad t^{\prime} t^{\prime} \tau^{\prime} \tau^{\prime}$,
$b^{\prime} b^{\prime} v^{\prime}{ }_{\tau} v^{\prime}{ }_{\tau}$,
$b^{\prime} b^{\prime} \tau^{\prime} \tau^{\prime}$,
$t^{\prime} b^{\prime} \tau^{\prime} v_{\tau}^{\prime}$
- After rotation to the mass basis (unprimed), the last structure contributes to $\Gamma\left(b \rightarrow c \tau \bar{v}_{i}\right)$

$$
\square \text { Can explain BaBar }+ \text { Belle }+L H C b \text { deviations on } R\left(D^{(*)}\right)=\frac{B R\left(\bar{B} \rightarrow D^{(*)+} \tau^{-} \bar{v}_{\tau}\right)}{B R\left(\bar{B} \rightarrow D^{(*)+} \ell^{-} \bar{v}_{\ell}\right)}
$$

Some models explaining R_{k} and $R\left(D^{*}\right)$

- Introduce one single leptoquark scalar, transforming as (3, 1, $-1 / 3$) under $\operatorname{SU}(3)_{c} \times S U(2)_{L} \times U(1)_{Y}$
- One coupling does all the job: $\bar{Q}^{c}{ }_{L i} \lambda_{i j} i \tau_{2} L_{L j} \phi$

Some models explaining R_{K} and $R\left(D^{*}\right)$

- Introduce one single leptoquark scalar, transforming as (3, 1, $-1 / 3$) under $\operatorname{SU}(3)_{c} \times S U(2)_{L} \times U(1)_{Y}$

Picks up an up-type quark with a down-type lepton or viceversa

- One coupling does all the job: $\bar{Q}^{c}{ }_{L i} \lambda_{i j, \ldots} i \tau_{2} L_{L j} \phi$

Some models explaining R_{K} and $R\left(D^{*}\right)$

- Introduce one single leptoquark scalar, transforming as (3, 1, $-1 / 3$) under $\operatorname{SU}(3)_{c} \times S U(2)_{L} \times U(1)_{Y}$

Picks up an up-type quark with a down-type lepton or viceversa

- One coupling does all the job: $\bar{Q}^{c}{ }_{L i} \lambda_{i j \ldots} i \tau_{2} L_{L j} \phi$
- Two insertions (making a tree diag.) contribute to $B \rightarrow D$ Tv

Some models explaining R_{K} and $R\left(D^{*}\right)$

- Introduce one single leptoquark scalar, transforming as (3, 1, $-1 / 3$) under $\operatorname{SU}(3)_{c} \times S U(2)_{L} \times U(1)_{Y}$

Picks up an up-type quark with a down-type lepton or viceversa

- One coupling does all the job: $\bar{Q}^{c}{ }_{L i} \lambda_{i j} i \tau_{2} L_{L j} \phi$
- Two insertions (making a tree diag.) contribute to $B \rightarrow D$ Tv
- Four insertions (making a box) contribute to $B \rightarrow K$ ¢८

Some models explaining R_{K} and $R\left(D^{*}\right)$

- Introduce one single leptoquark scalar, transforming as (3, 1, $-1 / 3$) under $\operatorname{SU}(3)_{c} \times S U(2)_{L} \times U(1)_{Y}$

Picks up an up-type quark with a down-type lepton or viceversa

- One coupling does all the job: $\bar{Q}^{c}{ }_{L i} \lambda_{i j \ldots} i \tau_{2} L_{L j} \phi$
- Two insertions (making a tree diag.) contribute to $B \rightarrow D$ iv
- Four insertions (making a box) contribute to $B \rightarrow K$ ¢८

- With $M_{\phi} \sim 1 \mathrm{TeV}$ and $O(1)$ generation-diagonal couplings, contributions are just the right size

One model explaining all flavor

 anomalies and the diphoton resonance- New non-Abelian strongly interacting sector with $N_{\text {TC }}$ new "techni-fermions"

$$
\begin{aligned}
& \text { Buttazzo, Greljo, } \\
& \text { Isidori, Marzocca } \\
& \text { 1604.030^с }
\end{aligned}
$$ (TC fermions).

One model explaining all flavor anomalies and the diphoton resonance

- New non-Abelian strongly interacting sector with $N_{\text {TC }}$ new "techni-fermions"

$$
\begin{aligned}
& \text { Buttazzo, Greljo, } \\
& \text { Isidori, Marzocca } \\
& 1604.03940
\end{aligned}
$$ (TC fermions).

The basic idea can easily be understood in analogy to QCD:

- The TC-fermion condensate breaks spontaneously a large global symmetry G to a smaller group H, at a scale of about 1 TeV

One model explaining all flavor anomalies and the diphoton resonance

- New non-Abelian strongly interacting sector with $N_{\text {TC }}$ new "techni-fermions"

$$
\begin{aligned}
& \text { Buttazzo, Greljo, } \\
& \text { Isidori, Marzocca } \\
& 1604.02010 c
\end{aligned}
$$ (TC fermions).

The basic idea can easily be understood in analogy to QCD:

- The TC-fermion condensate breaks spontaneously a large global symmetry G to a smaller group H, at a scale of about 1 TeV
- The broken G/H symmetry gives rise to (pseudo) Goldstone bosons. "Pseudo" because G/H is also broken explicitly by the TC-fermion masses

One model explaining all flavor anomalies and the diphoton resonance

- New non-Abelian strongly interacting sector with $N_{T C}$ new "techni-fermions" (TC fermions).

The basic idea can easily be understood in analogy to QCD:

- The TC-fermion condensate breaks spontaneously a large global symmetry G to a smaller group H, at a scale of about 1 TeV
- The broken G/H symmetry gives rise to (pseudo) Goldstone bosons. "Pseudo" because G/H is also broken explicitly by the TC-fermion masses

One of the pNGB is the $750-G e V$ state seen by Atlas \& CMS It couples to 2 gluons and decays to 2γ via the anomaly

One model explaining all flavor

 anomalies and the diphoton resonance: continued- There are also vector mesons, like QCD's rho.

$$
\begin{aligned}
& \text { Buttazzo, Greljo, } \\
& \text { Isidori, Marzocca } \\
& \text { 1604.03010 }
\end{aligned}
$$

Their coupling to quarks and leptons nicely explains the flavor anomalies.

One model explaining all flavor anomalies and the diphoton resonance: continued

- There are also vector mesons, like QCD's rho.

Buttazzo, Greljo, Isidori, Marzocca, 1604.03940

Their coupling to quarks and leptons nicely explains the flavor anomalies.

- Vector mesons couple to techni-baryons, which in turn linearly mix with SM fermions.

One model explaining all flavor anomalies and the diphoton resonance:
 continued

Buttazzo, Greljo Isidori, Marzocca,

- There are also vector mesons, like QCD's rho.

Their coupling to quarks and leptons nicely explains the flavor anomalies.

- Vector mesons couple to techni-baryons, which in turn linearly mix with SM fermions.

- To explain the flavor deviations, the mixing needs be hierarchical across generations (largest for the $3^{\text {rd }}$ one, as in partial compositeness)

One model explaining all flavor anomalies and the diphoton resonance:
 continued

- There are also vector mesons, like QCD's rho.

Their coupling to quarks and leptons nicely explains the flavor anomalies.

- Vector mesons couple to techni-baryons, which in turn linearly mix with SM fermions.

- To explain the flavor deviations, the mixing needs be hierarchical across generations (largest for the $3^{\text {rd }}$ one, as in partial compositeness)
- Integrating out the vector mesons then yields automatically (among the others) the effective operator

$$
H_{\mathrm{NP}}=G \bar{b}_{L}^{\prime} \gamma^{\lambda} b_{L}^{\prime} \bar{\tau}_{L}^{\prime} \gamma_{\lambda} \tau_{L}^{\prime}
$$

proposed in [Glashow, DG, Lane, PRL 15]

Conclusions

- In flavor physics there are by now several persistent discrepancies with respect to the SM. Their most convincing aspects are the following:
- Experiments: Results are consistent between LHCb and B factories.

Conclusions

- In flavor physics there are by now several persistent discrepancies with respect to the SM. Their most convincing aspects are the following:
- Experiments: Results are consistent between LHCb and B factories.
- Data: Deviations concern two independent sets of data: $b \rightarrow s$ and $b \rightarrow c$ decays.

Conclusions

- In flavor physics there are by now several persistent discrepancies with respect to the SM.

Their most convincing aspects are the following:

- Experiments: Results are consistent between LHCb and B factories.
- Data: Deviations concern two independent sets of data: $b \rightarrow s$ and $b \rightarrow c$ decays.
- Data vs. theory: Discrepancies go in a consistent direction.

A BSM explanation is already possible within an EFT approach.

Conclusions

- In flavor physics there are by now several persistent discrepancies with respect to the SM.

Their most convincing aspects are the following:

- Experiments: Results are consistent between LHCb and B factories.
- Data: Deviations concern two independent sets of data: $b \rightarrow s$ and $b \rightarrow c$ decays.
- Data vs. theory: Discrepancies go in a consistent direction.

A BSM explanation is already possible within an EFT approach.

- Early to draw conclusions. But Run II will provide a definite answer

Conclusions

- In flavor physics there are by now several persistent discrepancies with respect to the SM.

Their most convincing aspects are the following:

- Experiments: Results are consistent between LHCb and B factories.
- Data: Deviations concern two independent sets of data: $b \rightarrow s$ and $b \rightarrow c$ decays.
- Data vs. theory: Discrepancies go in a consistent direction.

A BSM explanation is already possible within an EFT approach.

- Early to draw conclusions. But Run II will provide a definite answer
- Timely to propose further tests. One promising direction is that of LFV. Plenty of channels, many of which largely untested.

Conclusions

- In flavor physics there are by now several persistent discrepancies with respect to the SM.

Their most convincing aspects are the following:

- Experiments: Results are consistent between LHCb and B factories.
- Data: Deviations concern two independent sets of data: $b \rightarrow s$ and $b \rightarrow c$ decays.
- Data vs. theory: Discrepancies go in a consistent direction.

A BSM explanation is already possible within an EFT approach.

- Early to draw conclusions. But Run II will provide a definite answer
- Timely to propose further tests. One promising direction is that of LFV. Plenty of channels, many of which largely untested.
- Most promising theory direction (to me): Seeking for a correlated explanation of the diphoton excess and of the flavor anomalies.

Spares

Frequently made objection:

what about the SM? It has LFNU, but no LFV

Take the SM with zero v masses.

- Charged-lepton Yukawa couplings are LFNU, but they are diagonal in the mass eigenbasis (hence no LFV)

Or more generally, take the SM plus a minimal mechanism for v masses.

- Physical LFV will appear in W couplings, but it's suppressed by powers of $\left(m_{v} / m_{w}\right)^{2}$

Bottom line: in the $S M+v$ there is LFNU, but LFV is nowhere to be seen (in decays)

- But nobody ordered that the reason (=tiny m_{1}) behind the above conclusion be at work also beyond the SM

More quantitative LFV predictions

- More quantitative LFV predictions require knowledge of the $U_{L}{ }^{\ell}$

Reminder:

$$
\left(U_{L}^{\ell}\right)^{\dagger} Y_{\ell} U_{R}^{\ell}=\hat{Y}_{\ell}
$$

- One approach:

DG, Lane, 1507.01412

- Appelquist-Bai-Piai ansatz:
the flavor-SU(3) rotations are not all independent. Choosing 3 to be the independent ones allows to predict one SM Yukawa in terms of the other two.
- One can thereby determine Y_{t} in terms of Y_{u} and Y_{d}
- But we don't know Y_{u} and Y_{d} entirely, so we take an (independently motivated) model for them, reproducing quark masses and the CKM matrix [Martin-Lane, PRD 2005].
- Another approach:

Boucenna, Valle, Vicente, PLB 2015

- One has $\left(U_{L}^{\ell}\right)^{\dagger} U_{L}^{\nu}=$ PMNS matrix
- Taking $U_{L}^{\nu}=1, U_{L}^{\ell}$ can be univocally predicted

More quantitative LFV predictions

LFV predictions in one of the two scenarios of [DG, Lane]

	$B^{+} \rightarrow K^{+} \mu^{ \pm} \tau^{\mp}$	$B^{+} \rightarrow K^{+} e^{ \pm} \tau^{\mp}$	$B^{+} \rightarrow K^{+} e^{ \pm} \mu^{\mp}$
	1.14×10^{-8}	3.84×10^{-10}	0.52×10^{-9}
Exp:	$<4.8 \times 10^{-5}$	$<3.0 \times 10^{-5}$	$<9.1 \times 10^{-8}$

	$B_{s} \rightarrow \mu^{ \pm} \boldsymbol{r}^{\mp}$	$B_{s} \rightarrow e^{ \pm} \tau^{\mp}$	$B_{s} \rightarrow e^{ \pm} \mu^{\mp}$
1.37×10^{-8}	4.57×10^{-10}	1.73×10^{-12}	
Exp:	-	-	$<1.1 \times 10^{-8}$

All predictions are phase-space corrected.

