

ATLAS Searches for New Diphoton Resonances

Introduction

Run 1 : The γγ channel was critical for the Higgs boson discovery

- + Large yield: Small $H \rightarrow \gamma \gamma$ BR but all usable
- + Smooth backgrounds
- + Excellent photon energy resolution
- \Rightarrow Clean signature for narrow resonances

Run 2 : Focus on BSM searches but no clear indication where to look

(SM-like Higgs boson does not help)

Simplest solution: look at known signatures \Rightarrow Repurpose the H $\rightarrow\gamma\gamma$ search to look for resonances at higher masses

Models

Higgs-like spin-0 states

New Neutral spin-0 states (2HDM, NMSSM...)

• Typically ggF-produced, but also cascades, etc...

\Rightarrow Keep analysis model-independent

- Focus on narrow resonances:
 - $\Gamma_{\gamma\gamma}$ usually not large
 - $B_{\gamma\gamma} = \Gamma_{\gamma\gamma} / \Gamma_{\chi}$ must be not too small
- Consider $0 \le \Gamma_x/m_x \le 10\%$
- m_x > 200 GeV to avoid issues with H and
 Z→ee background at lower masses

Randall-Sundrum Graviton

- Width given by parameter k/M_{pl} : $\Gamma_{g}/m_{g} \sim 1.44 \ (k/M_{pl})^{2}$
- Consider $0.01 \le k/M_{pl} \le 0.3$ $\Rightarrow \sim 0.01\% \le \Gamma_G/m_G \le \sim 11\%$
- Already excluded below ~1 TeV (for k/M_{pl}=0.01-0.1)
- Anyway used as kinematic benchmark for m_G > 500 GeV

ATLAS

44m

Photon Reconstruction

- **Photons** reconstructed from energy deposits in the EM calorimeter
- Identified using shower shapes in layers 1 and 2
 - fine segmentation of EM layer 1 critical for $\pi^0 \rightarrow \gamma \gamma$ rejection
 - \rightarrow available only for $|\eta|$ <2.37
 - \rightarrow also exclude 1.37< η < 1.52
- Classify as unconverted/converted based on track information

Photon Reconstruction

- **Photons** reconstructed from energy deposits in the EM calorimeter
- Identified using shower shapes in layers 1 and 2
 - fine segmentation of EM layer 1 critical for $\pi^0 \rightarrow \gamma \gamma$ rejection
 - \rightarrow available only for $|\eta|$ <2.37
 - \rightarrow also exclude 1.37< η < 1.52
- Classify as unconverted/converted based on track information

Energy Calibration

- Compute photon energy from cluster E_{T} , position, shower shape
 - Correct for upstream material
 - Adjust relative calibration of EM layers
- Final adjustment on $Z \rightarrow ee$ electrons
 - \Rightarrow At high E₁, uncertainty ~ **0.2% to 1.2%**

 $m^2 = 2E_{T1}E_{T2}$ (1-cos $\alpha(z)$): use calorimeter pointing to measure z Uncertainty on mass resolution +110% - 40% at high invariant mass

Isolation

Further reject jet background by looking for activity around the photon

"Calorimeter Isolation" E_{T}^{iso}

- sum E_{T} of clusters within $\Delta R < 0.4$
- Use $E_T^{iso} 2.2\% E_T$ to account for energy leakage outside photon cluster
- Correct for ambient energy

"Track Isolation": p₁^{iso}

• sum the pT of tracks within $\Delta R < 0.2$

Analysis Selections

Common Selections					
Kinematic selections $E_{T1} > 40 \text{ GeV}, E_{T2} > 30 \text{ GeV}$ $ \eta < 2.37$, excluding 1.37 < $ \eta < 1.52$			Photon ide Isolation:	ntification $E_{T_{1,2}}^{iso} - 2.2\% E_{T_{1,2}} < 2.45 GeV$ $p_{T_{1,2}}^{iso} < 5\% E_{T_{1,2}}$	
spin-0			spin-2		
E_{τ1} > 0.4 m_{γγ}, E_{τ2} > 0.3 m_{γγ} +20% sensitivity			E _{11,2} > 55 GeV Retains wide kinematic acceptance		
Model	cos θ* Distribution	ed Distribution	2.5 2.5 2 2 2 - - - - - - - - - - - - -	Scalar Graviton (gluon-gluon production) Graviton (qq production)	
Scalar	flat	Normaliz	1.5		
gg→G* qq→G*	$\frac{1+6\cos^2\theta^*+\cos^4\theta^*}{1-\cos^4\theta^*}$		0.5	-	
			0 ¹ 0.1 0.	2 0.3 0.4 0.5 0.6 0.7 0.8 0.9	

Sample Composition

Data sample: 3.2 fb⁻¹ collected at 13 TeV

Measure **fraction of γγ events** in the selection using control regions in photon ID and isolation

spin-2

Signal Modeling

Background Modeling

spin-0

Find **function** that describes bkg γγ MC +data-driven reducible bkg Check all variations: scales/PDF/purity... **Require max deviation from MC < 20% σ_{signal}** Check:

$$f_{(k)}(x; b, \{a_k\}) = N(1 - x^{1/3})^b x^{\sum_{j=0}^k a_j (\log x)^j}$$

k=0 fulfills all conditions

$$x = \frac{m_{\gamma\gamma}}{\sqrt{s}}$$

Check in data using F-test: **OK**

• N, a, b free in the fit

spin-2

Directly use prediction from bkg yy MC

+data-driven reducible bkg

γγ: use Sherpa, reweighted to diphox to account for NLO effects

- Normalization is free
- 4 **constrained** deformations:
 - theory (gg, gjet+jetjet) uncert.
 - purity uncertainty
 - isolation uncertainty

Mass Spectra

Signal Measurement

spin-2

Use total σ for the RS graviton model

Uncertainty	spin-2 search	spin-0 search	
Background	\pm 7% to \pm 35%	spurious signal	p_0 and limit
(mass dependent)	20	$0 - 0.04$ events for $\Gamma/M = 6\%$	
Signal mass resolution	(+55)	q_{c} (+110) q_{c}	p_0 and limit
(mass dependent)	(-20)	$\pi = (-40) \pi$	
Signal photon identification	$\pm (3-2)\%$		limit
(mass dependent)			
Signal photon isolation	$\pm (3-1)\%$	±(4-1)%	limit
(mass dependent)			
Signal production process	N/A	±(3-6)%	limit
Trigger efficiency		limit	
Luminosity		limit	

Significance

Properties of the Excess

Properties of the Excess (2)

spin-2 spin-0 0.045 0.045 0.04 $1/N dN/dE_T^{miss}$ [GeV⁻¹] 0.06 ATLAS Preliminary **ATLAS** Preliminary Data (700 GeV< m,, < 840 GeV) Data (700 GeV< m,, < 840 GeV) 0.04⊨ $\sqrt{s} = 13 \text{ TeV}, 3.2 \text{ fb}^{-1}$ $\sqrt{s} = 13 \text{ TeV}, 3.2 \text{ fb}^{-1}$ 0.05 Sherpa (700 GeV< m_< 840 GeV) Spin-2 Selection Sherpa (700 GeV< m_< 840 GeV) $1/N dN/dE_T^{miss}$ Spin-0 Selection 0.035 0.04 0.03 E_Miss E Miss 0.025 0.03 0.02 0.015 0.02 0.01 0.01 0.005 0 0 20 40 60 80 120 140 0 100 0 20 40 60 80 120 140 100 E^{miss} [GeV] E^{miss} [GeV] $1/N \ dN/dcos \theta_{\gamma\gamma}$ $1/N \ dN/dcos \theta_{\gamma\gamma}$ 6 ATLAS Preliminary **ATLAS** Preliminary Data (700 GeV< m,,< 840 GeV) Data (700 GeV< m, < 840 GeV) $\sqrt{s} = 13 \text{ TeV}, 3.2 \text{ fb}^{-1}$ 3.5 $\sqrt{s} = 13 \text{ TeV}, 3.2 \text{ fb}^{-1}$ 5 Sherpa (700 GeV< m_{yy}< 840 GeV) Spin-2 Selection Sherpa (700 GeV< m,, < 840 GeV) Spin-0 Selection 3 $\cos \theta^*$ 4 $\cos \theta^*$ 2.5 2 3 1.5 2 1 0.5 0 0 0.6 0.5 0.7 0.9 0.9 0 .3 0.8 0.8 0.1 0.2 0. 0.4 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 cosθ., cos0.

8 TeV Analyses : Scalar Search

Similar Analysis to the 13 TeV version **Differences**:

- Bkg modeling using simpler exp(ax²+bx) form in sliding window around the tested mass point (±200 GeV at m_x = 600 GeV)
- \Rightarrow Stop at m_x = 600 GeV (not enough data)
- Photon energy calibration was an older Run 1 version
- Analysis only for narrow resonances

Updates:

- Use same bkg modeling as for Run 2
- Update photon calibration (needed for 8 TeV vs. 13TeV compatibility test)
- Consider wider resonances

8 TeV Analyses : Exotics Search

Also similar analysis to 13 TeV. Main differences:

- Old Run-1 photon calibration
- Significance measured by counting inside a mass window ("BumpHunter" method)

Updates:

- Use most recent photon energy calibration
- Use same analysis method and as 13 TeV analysis

8 TeV Spectra for Updated Analyses

8 TeV vs. 13 TeV Compatibility

- Need to assume a production cross-section ratio for 8 TeV vs. 13 TeV.
 Two choices considered
 - single production through gluon fusion: $\sigma_{13 \text{ TeV}} / \sigma_{8 \text{ TeV}} = 4.7$
 - single production through qq annihilation: $\sigma_{13 \text{ TeV}} / \sigma_{8 \text{ TeV}} = 2.7$
- In both cases, assuming
 - $\Gamma/m = 6\%$ for scalar
 - $k/M_{pl} = 0.21$ for graviton

Compatibility	Scalar	Graviton
$gg \rightarrow X$	1.2σ	2.7σ
$qq \rightarrow X$	2.1σ	3.3σ

Everything is compatible, some cases more than others...

- Excesses seen at $m_x \sim 750$ GeV, $\Gamma/m \sim 6\%$ in both the scalar and graviton searches.
 - Scalar: 3.9 σ local significance, 2.0 σ global in 2015 data
 - Graviton: 3.6 σ local significance, 1.8 σ global in 2015 data
- The LHC restarted ahead of schedule last month:

- Excesses seen at $m_x \sim 750$ GeV, $\Gamma/m \sim 6\%$ in both the scalar and graviton searches.
 - Scalar: 3.9 σ local significance, 2.0 σ global in 2015 data
 - Graviton: 3.6 σ local significance, 1.8 σ global in 2015 data

- Excesses seen at $m_x \sim 750$ GeV, $\Gamma/m \sim 6\%$ in both the scalar and graviton searches.
 - Scalar: 3.9 σ local significance, 2.0 σ global in 2015 data
 - Graviton: 3.6 σ local significance, 1.8 σ global in 2015 data

When the little animal jumped onto the transformer, it created a small electrical arc, damaging high-voltage transformer connections.

- Excesses seen at $m_x \sim 750$ GeV, $\Gamma/m \sim 6\%$ in both the scalar and graviton searches.
 - Scalar: 3.9 σ local significance, 2.0 σ global in 2015 data
 - Graviton: 3.6 σ local significance, 1.8 σ global in 2015 data

Upper Limits on Scalar $\sigma_{fid} \times B_{\gamma}$

10⁴ BR [fb] 10^{3} →γγ) [fb] Observed CL_s limit ATLAS Preliminary Observed CL_s limit **ATLAS** Preliminary Expected CL_s limit $\sqrt{s} = 13 \text{ TeV}, 3.2 \text{ fb}^{-1}$ 10^{3} Expected CL_s limit $\sqrt{s} = 13 \text{ TeV}, 3.2 \text{ fb}^{-1}$ 95% CL Upper Limit on $\sigma_{\text{fid}} \times$ Expected $\pm 1\sigma$ $\Gamma_{\rm x}/m_{\rm x} = 1 \%$ Expected $\pm 1\sigma$ Spin-2 Selection 95% CL limits on σ×BR(G* Expected $\pm 2 \sigma$ 10² **Spin-0 Selection** Expected $\pm 2\sigma$ 10² ≡ $G^* \rightarrow \gamma \gamma, k / \overline{M}_{PI} = 0.05$ 10 ⊨ 10 10 1600 1800 200 800 1000 1200 1400 600 500 1000 1500 2000 2500 3000 3500 m_v [GeV] m_{c*} [GeV] 10⁴ 10³ 95% CL Upper Limit on $\sigma_{ m fid}$ × BR [fb] →γγ) [fb] Observed CL_s limit **ATLAS** Preliminary Observed CL_s limit ATLAS Preliminary ··· Expected *CL*_s limit $\sqrt{s} = 13 \text{ TeV}, 3.2 \text{ fb}^{-1}$ Expected CL_s limit $\sqrt{s} = 13 \text{ TeV}, 3.2 \text{ fb}^{-1}$ 10^{3} Expected $\pm 1\sigma$ $\Gamma_x/m_x = 2\%$ Expected \pm 1 σ Spin-2 Selection 95% CL limits on σ×BR(G* 10² Expected $\pm 2 \sigma$ Spin-0 Selection Expected $\pm 2\sigma$ $G^* \rightarrow \gamma \gamma, k / \overline{M}_{PI} = 0.10$ 10² 10 = 10 10 200 1600 1800 500 600 800 1000 1200 1400 1000 1500 2500 3000 3500 400 2000 m_{G*} [GeV] m_x [GeV]

27

Upper Limits on Graviton $\sigma \times B_{\gamma}$

Photon pointing

- z position of diphoton primary vertex obtained by combining average beam-spot position with photon pointing, enhanced by using tracks from photon conversions with conversion radii in Si volume
 - Resolution ~15 mm in z direction
- NN discriminant with Σp_T , Σp_T^2 , diphoton balancing with vertex tracks, trajectory from calorimeter segmentation (z pointing) to choose best vertex candidate
 - ✓ After this procedure contribution of the opening angle resolution to the mass resolution is negligible.
 - \checkmark Efficiency to reconstruct the correct primary vertex within ±0.3 mm is about 88%.

Number of Primary Vertices

Photon identification 2015

30

Photon isolation

Calorimetric isolation energy corrected event-by-event

- Leakage of photon cluster
- Underlying event and pileup contributions
 - Average correction for 1 PV ~540MeV

Cacciari, Salam and Soyez, JHEP 04, 005 (2008) Cacciari, Salam and Sapeta, JHEP 04, 065 (2010)

Number of primary vertices

Photon isolation 2015

32

Background estimates

Properties

Properties (2)

Run 1 RS Graviton Limit

36