

Radiation Safety. Amplified.

Simulation of radiation detectors at CANBERRA

SOFIE PUT, OLIVIER EVRARD

August 18, 2016 - p. 1 - PROPRIETARY

Presentation Summary

- Canberra at a glance
- Simulation tools
- Fixed charges and interface traps

Shockley-Ramo theorem
Applications on real detectors
Si Drift detectors
HPGe

August 18, 2016 - p. 2 - PROPRIETARY

CANBERRA at a Glance

- Worldwide leader in nuclear measurement
- 50 years in business
- 2012 revenues: over 200M Euros
- Approx 1,000 employees
- 250 customer-facing sales and service personnel
- 40 PhD's
- 7 industrial sites
- 26 sales and service offices
- 35 distributors
- Over 5,000 customers
- Parent company--AREVA

Applications

CANBERRA

August 18, 2016 - p. 4 - PROPRIETARY

Canberra Olen at a glance...

- Development and the production of innovative semiconductor detector solutions
- 2 production lines, 1 R&D line
- 2 product lines (Ge and Si) nearly equal size
- R&D cost covered for > 50% by external funding
- Actually 47 collaborators

August 18, 2016 - p. 5 - PROPRIETARY

PIPS Detectors

Passivated implanted planar silicon detectors

August 18, 2016 - p. 6 - PROPRIETARY

Radiation Safety. Amplified.

CANBERRA

PIPS production in Olen

Only site for Si-detector manufacturing and development for CANBERRA

Full production and assembly capacity in Olen

Engineering and fundamental research in-house

Radiochemistry segment A-Series

 Used for environmental monitoring, health physics, nuclear chemistry, earth and marine science

Health physics applications

- Continuous air monitoring of alpha and beta
- Smear and wipe samples in alpha beta counters

i-Solo®

CAM Sentry

SPAB-15

August 18, 2016 - p. 9 - PROPRIETARY

Research projects

PIPS detectors used to detect new elements 112, 113, 114, 116, 118...

Imaging devices used at CERN

CANBERRA

August 18, 2016 - p. 10 - PROPRIETARY

HPGe detectors

High purity germanium detectors

August 18, 2016 - p. 12 - PROPRIETARY

HPGe detector production in Olen

Engineering and fundamental research in-house

Manufacturing engineering focused on operational excellence

Leader in Gamma Spectroscopy Solutions

Proven Solutions for In Vivo Counting

Comprehensive Non-Destructive - Waste Assay

R&D at Olen

Image credit: NASA /JPL-Caltech/SwRI

Activities of the R&D division in Olen

- Develop novel and cost effective silicon and germanium based detector systems
 - For different radiations (α , β , γ and X ray detection)
 - ► For different applications (XRF, military, D&D,...)
- Collaborations: institutes and scientific community, funding novel research projects
- Creation and protection of IPs
- Maintain and upgrade an efficient technology watch process
- Support to local groups
 - Clean room and back end investments
 - Process development: devising of PFC, simulations: implantation, oxidation, carrier drift
 - Development of novel characterization techniques
 - Training and troubleshooting

Radiation Safety. Amplified.

Olen core competences

August 18, 2016 - p. 19 - PROPRIETARY

Core competences (1/3)

Expert knowledge on <u>HPGe detector processing</u> and physics

- Shaping (polishing, drilling...)
- Implant
- Etching
- Contacts
- Handling

- Material characterization
- Clean room expertise
- High quality oxide growing
- Thin implantations and annealing steps
- Etching
- Metallization (aluminium, Aluminium Silicon...)
- Detector characterization

Core competences (2/3)

Fundamentals of cooled assemblies

- < -100degr C => LN2, electrical pump, pulsed tube, JT-coolers
- < -50degr C => Thermo-coolers
- Vacuum encapsulation
- Expert knowledge on detector assemblies
 - Cryogenic assembly
 - Space qualified assemblies
 - Detector assembly as a whole
 - Wire bonding techniques (Au and Aluminium)
- Qualified soldering staff according to ESA norm

CANBERRA

August 18, 2016 - p. 21 - PROPRIETARY

Core competences (3/3)

- Expert knowledge detection
 - Gamma-ray
 - X-ray and photon
 - Charged particles
 - Fundamentals of extreme low noise front end electronics
- Open innovation structure with partnerships
- Trained staff in innovation
- Black belt certified 6sigma staff
- Black belt certified lean staff
- Highly dedicated team, each and everyone assuming ownership to meet and exceed customer expectations

Recognizing Canberra Olen as one of the fastest growers in the region

Presentation Summary

- Canberra at a glance
- Simulation tools
- Fixed charges and interface traps

Shockley-Ramo theorem
Applications on real detectors
Si Drift detectors
HPGe

August 18, 2016 - p. 24 - PROPRIETARY

Sentaurus TCAD

- Sentaurus TCAD simulates the fabrication, operation and reliability of semiconductor devices.
- Solve fundamental, physical partial differential equations in 2D and 3D:
 - Poisson equation, hole and electron continuity equations

$$\nabla^2 \Psi = -\frac{\rho_f}{\varepsilon} \qquad \rho_f = -q(p-n+N_d-N_a) - \rho_{trap}$$

$$\nabla \cdot \overset{\flat}{J}_n = qR_{\text{net}} + q\frac{\partial n}{\partial t}$$

$$-\nabla \cdot J_n = aR \frac{\partial p}{\partial r}$$

q is the elementary electronic charge. *n* and *p* are the electron and hole densities. $N_{\rm D}$ is the concentration of ionized donors. $N_{\rm A}$ is the concentration of ionized acceptors. ρ_{trap} is the charge density contributed by traps and fixed charges

 ε is the electrical permittivity.

August 18, 2016 - p. 25 - PROPRIETARY

 $R_{\rm net}$ is the net recombination rate. J_n is the electron current density.

 J_p is the hole current density.

n and *p* are the electron and hole density

FLEX-PDE

- FLEXPDE is a scripted finite element model builder and numerical solver
- FLEXPDE has no pre-defined problem domain or equation list
 - The choice of partial differential equations and boundary conditions is totally up to the user
- CANBERRA developed the SEMPHASE module to solve the Poisson Equation

$$\nabla^2 \Psi = -\frac{\rho_f}{\varepsilon}$$

$$\rho_f = -q(p - n + N_d - N_a) - \rho_{trap}$$

Calculation of particle trajectories with FLEX-PDE & SEMPHASE

Shockley-Ramo theorem

- Detector output pulse forms as soon as incident particle deposit its energy
- The current pulse can be calculated from:

$$i = q \cdot \vec{v} \cdot \vec{E_0}$$

- With \vec{v} speed and $\vec{E_0}$ the weighting field
- $\overrightarrow{E_0}$ can be calculated by:
 - Voltage on electrode for which to induced charge = 1
 - Other electrodes to 0
 - Solve Poisson without trapped charge
 - Solution is weighting potential, its gradient is weighting field

Radiation Safety. Amplified.

Can be done with FLEX PDE

SPEEDY: Simulator of signal Pulse for Partial EnErgy Determination and Inference

Presentation Summary

- Canberra at a glance
- Simulation tools
- Fixed charges and interface traps

Shockley-Ramo theorem
Applications on real detectors
Si Drift detectors
HPGe

August 18, 2016 - p. 30 - PROPRIETARY

Baited-Andrew Andrew Control Control

Charges in Si/SiO₂ interface

The Current Understanding of Charges in the Thermally Oxidized Silicon Structure

Bruce E. Deal*

J. Electrochem. Soc.: REVIEWS AND NEWS

June 1974

Surface states: Positively or Negatively charged?

Interface traps are amphoteric

- Donor traps (positive when empty, neutral when charged)
- Acceptor traps (neutral when empty, negative when charged).

Presentation Summary

- Canberra at a glance
- Simulation tools
- Fixed charges and interface traps

Shockley-Ramo theorem
Applications on real detectors
Si Drift detectors
HPGe

August 18, 2016 - p. 33 - PROPRIETARY

Si Drift Detector

Small n+ anode

- Small read out capacitance
- Voltage gradiant at p+ junctions
 - Create a lateral drift field towards n+ anode

Structure simulated

Radiation Safety. Amplified.

Depletion of detector by increasing bias voltage

Title 18, 07°September 2016 - p.36

Leakage current as a function of biasing

$$J_{bulk} = \frac{q \cdot n_i \cdot W}{2 \cdot \tau} = 0.64 \ nA/cm^2$$

With q= 1.6e-19 C, n_i = 8e9 cm⁻³, W= 500 µm, τ = 50 ms

Close to simulation value

August 18, 2016 - p. 37 - PROPRIETARY

Convergence of the electron highway

Electron trajectory as a function of voltage at the radiation side (Vrad)

|Vrad| to low Detector not yet depleted

Electron current density as a function biasing

August 18, 2016 - p. 39 - PROPRIETARY

Radiation Safety. Amplified.

Electron trajectories: effect of saddle point

Saddle point: electrons generated at the right of the saddle point are collected by the edge ring

August 18, 2016 - p. 40 - PROPRIETARY

Presentation Summary

- Canberra at a glance
- Simulation tools
- Fixed charges and interface traps

Shockley-Ramo theorem
Applications on real detectors
Si Drift detectors
HPGe

August 18, 2016 - p. 41 - PROPRIETARY

HPGe Detector

Symmetry axis

August 18, 2016 - p. 43 - PROPRIETARY

Depletion of HPGe detector

August 18, 2016 - p. 44 - PROPRIETARY

LEGe

BEGe

LEGe

August 18, 2016 - p. 45 - PROPRIETARY

BEGe

No Qox, Dil

LEGe

No Qox, Dil

Leakage current vs Temperature (150K -> 88K)

August 18, 2016 - p. 48 - PROPRIETARY

Transient simulations

Pulse Optical Generation

- Electron hole pairs deposited in structure
- Gaussian Profile

Pulse Generation

Conclusions

Simulation of detectors has several advantages

- Narrowing experimental matrix
 - New detector design
 - Biasing
- Understand physical mechanisms of observations
- FLEX-PDE
 - Home-made module to solve Poisson equations
 - Carrier drift with simple calculations
 - Limited cost
- Sentaurus TCAD
 - Poisson equation, electron and hole continuity equations
 - Supported with several physical models