Run Number: 206962 Event Number: 38652990 Date: 2012-07-14, 08:31:06 CET

LiCut > 0.5 GeV PtCut > 0.4 GeV Electron: black Cells: Thes, EMC

ATLAS Trigger Menu & Dilepton Searches

Tetiana Berger-Hryn'ova

3 June 2016

My timeline on ATLAS

2006-2009 Electron Triggers 2010-2012 Exotics Triggers 2013-2015 Trigger Menu for Run 2

2009-now Dilepton searches

My timeline on ATLAS

2006-2009 Electron Triggers 2010-2012 Exotics Triggers 2013-2015 Trigger Menu for Run 2

2009-now Dilepton searches

Heavy Ion data-taking is not discussed in this talk.

LHC timeline

ATLAS Detector

Inner Detector

Transition Radiation Tracker (TRT): drift tubes with gas (Xe or Ar), 350 k channels, 36 measurement points Semiconductor Tracker (SCT) Silicon, 6.2 M channels, 4 layers **Pixel Detector: Silicon,** 92 M channels, 4 layers

Muon Spectrometer

Trigger & DAQ

L1 Trigger Overview

L1 Muon Trigger

widths determines p_T threshold (6 possibilities L1_MU)

L1 Calorimeter Trigger

"V"

Threshold value (in GeV) can vary with η

Objet	Туре
Electron, Photon	EM
Tau	TAU
Jet	J
E_{T}^{Miss}	XE, XS
ΣE_{T}	TE

L1 Topo Trigger

Input "Objects": Muon, Missing E_T, EM, Tau & Jet cluster E_T/p_T, η, φ, & isolation.

All objects sorted into lists: "sorted" or "abbreviated"

Up to 128 L1 Topo trigger decisions possible

Central Trigger Processor

High Level Trigger

Typical HLT node: 2x12-core Intel Xeon Haswell → 96 cores/box 48 GB RAM, 10Gb Ethernet 4 motherboards in 2U box

- Software running on large commercial PC farms
 - Limitations
 - Size of the Farm:

Rate x Timing = CPU used

Total output rate ~1kHz

Object	Notation
electron	e
photon	g
muon	mu
tau	tau
jet	j
b-jet	jet_b[TagType]
$E_{\mathrm{T}}^{\mathrm{Miss}}$	xe

Electron Chain L1 RoI Fast calorimeter reconstruction Fast calorimeter selection Fast track reconstruction Fast electron reconstruction Fast electron selection **Precision calorimeter** reconstruction **Energy calibration** Precision calorimeter selection **Precision track** reconstruction **Precision electron** reconstruction Precision

Electrons

Electron Chain

Electrons

Electron Chain

•19

Trigger Menu = list of all triggers of interest

Physics Requests Summary

- Keep triggers as inclusive & simple as possible!
 - Single lepton (electron and muon triggers) below W
 - Single/di/tri-object triggers at thresholds as low as possible
- Topological, multi-object and dedicated triggers can be of huge benefit for certain analysis
- Menu should be stable throughout the Run 2

Single Electron Triggers

Level	0.5 10 ³⁴	1.0 10 ³⁴	1.5 10 ³⁴	2.0 10 ³⁴
L1	EM18VH 25kHz EM20VH 18kHz	EM20VHI ~20kHz	EM22VHI ~20kHz	EM24VHI ~20kHz
HLT	e24_mediumlh (i?)	e24_lhtight_ivarloose	e26_lhtight_i	e28_lhtight_i
•				• 25

Numbers in italic are my estimate

Single Muon Triggers

	0.5 10 ³⁴	1.0 10 ³⁴	1.5 10 ³⁴	2.0 10 ³⁴
L1	MU15 7kHz	MU15 ~14kHz	MU20 ~14kHz	MU20 ~18kHz
HLT	mu20i	mu22i	mu24i	mu26i

Numbers in italic are my estimate

Single Muon Triggers

	0.5 10 ³⁴	1.0 10 ³⁴	1.5 10 ³⁴	2.0 10 ³⁴
L1	MU15 7kHz	MU15 ~14kHz	MU20 ~14kHz	MU20 ~18kHz
HLT	mu20i	mu22i	mu24i	mu26i

Numbers in italic are my estimate

More on L1: single objects

Maximum of 512 L1 Trigger Items (including 128 of L1Topo) •28

More on L1: multiobject

Maximum of 512 L1 Trigger Items (including 128 of L1Topo)

Tau Topologies for Run 2 L1 selection

B Physics triggers

B Physics triggers

Thresholds for HLT primaries

	е	mu	tau	g	j	b-jet
Single	24	20i, 50	80	120	360	225
Di-	2x12	2x10; 18&8	35, 25	35&25	n/a	150&50
Tri-	15&2x7	3x6; 17&2x4		3x15	3x175	n/a
Four					4x85	n/a
Five					5x60	n/a
Six					6x45	n/a

There are also combined triggers (e.g. mixed object types)

Trigger Level Analysis

Menu Content

- 400 L1 trigger items and
 1500 HLT trigger chains
- Unprescaled primary triggers and backups for other lumi points
- Prescaled primary triggers (jets, photons)
- Alternative triggers including various algorithms or selections
- Support triggers for efficiency measurements, backgrounds studies etc.
- Triggers for calibration (partially built events)
- Triggers for monitoring
- Triggers for special runs

Menu Content

- 400 L1 trigger items and 1500 HLT trigger chains
- Unprescaled primary triggers and backups for other lumi points
- Prescaled primary triggers (jets, photons)
- Alternative triggers including various algorithms or selections
- Support triggers for efficiency measurements, backgrounds studies etc.
- Triggers for calibration (partially built events)
- Triggers for monitoring
- Triggers for special runs

Trigger menu did its job in 2015 run. Strategy is known for the rest of Run 2

My timeline on ATLAS

2006-2009 Electron Triggers 2010-2012 Exotics Triggers 2013-2015 Trigger Menu for Run 2

2009-now Dilepton searches

Before the start of LHC

Hierarchy problem of SM

- SM is an effective theory valid up to a cut off scale Λ_{SM}
- Radiative corrections to Higgs mass:

$$\Delta m_H^2 = -\frac{|y_f|^2}{16\pi^2} \left[2\Lambda^2 + \mathcal{O}\left(m_f^2 \ln\left(\frac{\Lambda}{m_f}\right)\right) \right]$$

Searches for Physics Beyond SM

Look for deviations from Standard Model predictions

Direct observation: new resonant or non-resonant structures In-direct observation: discrepancies in rates of rare processes, couplings measurements, etc.

Experimental Approach: Exotic Search

Search for any deviations from Standard Model predictions

Direct observation: new (e.g. Exotic) resonant or non-resonant structures LOOK FOR SIGNATURES MADE OF BASIC OBJECTS

Jets, b-jets, E_T^{Miss}

BosonsLeptons(γ, W, Z)(e, μ , τ)

Leptons Unconventional (e, μ, τ) Particles

AS MANY SIGNATURES AS POSSIBLE AS MODEL INDEPENDENT AS POSSIBLE PROVIDE BENCHMARK MODEL RESULTS

Constraints from LEP

Analysis Steps

Reconstruct and identify electrons & muons pairs

Compare dilepton mass distributions in data with (the best possible) SM background expectation: excess?

Muons

Chain 1: statistical combination of MS and ID tracks using their track parameter covariant matrices

Chain 2: global refit to hits in ID and MS

Analysis selection

Dielectron

- At least one primary vertex with more than two tracks
- Trigger on two EM calorimeter clusters with E_T>35(25) GeV
- |η|<1.37 or 1.52<|η|<2.47
- Two electrons $p_T > 40(30)$ GeV
- Medium identification requirements
- Isolation:

Leading: $\Sigma E_T(\Delta R < 0.2) < 0.05 E_T + 5 GeV;$ Subleading: $\Sigma E_T(\Delta R < 0.2) < 0.022 E_T + 6 GeV$

Dimuon

- At least one primary vertex with more than two tracks and |z_{PV}|<200mm
- Single muon trigger with p_T>25GeV (isolated) or >35GeV
- Two muons of opposite charge with p_T>25GeV
- High-quality inner detector track matched to high quality muon spectrometer track
- Also "Loose" channel (|η|<1.015) with less stringent requirements
- $d_0 < 0.2 \text{ mm}, z_0 < 1 \text{ mm}$
- Isolation: $\Sigma p_T(\Delta R < 0.2) < 0.05 p_T$

Retain highest p_T same–flavor dilepton pair per event above 80 GeV

Analysis Steps

Reconstruct and identify electrons & muons pairs

Compare dilepton mass distributions in data with (the best possible) SM background expectation: excess?

Process	Method
Drell-Yan	MC
Diboson	MC
ttbar	MC
Dijets & W+jets	Data- driven

Analysis Steps

Reconstruct and identify electrons & muons pairs

Compare dilepton mass distributions in data with (the best possible) SM background expectation: excess?

NO Set a limit in context of a benchmark model

Inputs to limit setting

Limits

2.5 M_A [TeV]

General Extension of SM: Effective Theory

Extra vectors: quantum numbers

Manuel Perez-Victoria

Vector Bosons decaying to Leptons

Singlet $\mathcal{B} \longrightarrow Z'$

(Universal, Neglecting mixing with Z)

 $M,\ g_l,\ g_e,\ g_q,\ g_u,\ g_d$

 $c_{u,d} = \left(g_q^2 + g_{u,d}^2\right) \frac{g_l^2 + g_e^2}{3\left(2g_l^2 + g_e^2 + 6g_q^2 + 3g_u^2 + 3g_d^2\right)}$ 1.61.4Combined Lepton+MET (CMS, 7 TeV, 5 fb^{-1}) 1.2Dilepton (CMS, 7 TeV, 5 fb^{-1}) Z', W' Triplet \mathcal{W} 1 0.80.6(Universal, Neglecting mixing with Z,W) 0.4 $c_u = c_d = \frac{\tilde{g}^2}{96}$ M, g_l, g_q 95% C.L. EW limits 0.2

95% C.L.

1000

1500

2000

 $M_{\mathcal{W}}$ [GeV]

 $\tilde{g} = \frac{2g_q g_l}{\sqrt{3q_q^2 + q_l^2}}$

3000

2500

W'/Z' Run 1 combination?

Heavy Vector Triplet combinations

Channel	$V^0 \in \left(1, 3\right)_{1}$	$V^+ \in (1,3)_{1}$	$V^0 \in (1,1)_{0}$	$V^+ \in (1,1)_{1}$
			$\in 3 \text{ of } SU(2)_R$	$\in 3 \text{ of } SU(2)_R$
11		×		×
l u	×		×	×
$l u_R$	×	×	×	
jj				
tb	×		×	
tt		×		×
WW		×		×
ZZ	×	×	×	×
Zh		×		×
WZ	×		×	
Wh	×		×	
$W\gamma$	×		×	
hh	×	×	×	×

A few words about LHC Run 2

The LHC has achieved a peak luminosity of 7.9 10³³cm⁻²s⁻¹

"Now"

