Satus on Front-End Readout Electronics \rightarrow The FATALIC Project \leftarrow

Romain Madar on behalf of the LPC team

Laboratoire de Physique Corpusculaire Clermont-Ferrand – France

Tile Upgrade Week – Wednesday 17th of February 2016 –

Overview

1 Introduction

Introduction

Front-end ATIAs tiLe Integrated Circuit

FATALIC chip embedded in the "All-in-One" FE board

FATALIC microscop view

Main characteristics of FATALIC:

- A 3-gain PM-signal analog processing (current conveyor + 3 shapers)
- 3 embedded 12-bit ADCs (one per gain)
- An auto gain-selection (MEDIUM and {HIGH or LOW})
- A 12-bit data output bus with the data of the 2-selected gain multiplexed

Noise Studies

Noise Measurement

Definition

Averaging ADC output values when no signal is present

$$\sigma_{\rm noise} \equiv \sqrt{\langle \left({\rm ADC} - \langle {\rm ADC} \rangle \right)^2 \rangle}$$

This particular measurement: $\sigma_{\text{noise}} = 8.9 \text{ fC}$

Important comments:

- Final noise might depend on the configuration (PMT, HV, EMC, etc ...).
- Many tests are on going, over { many configurations \otimes many cards }
- Very robust intrinsic noise of FATALIC: 6.94 \pm 0.43 fC

Noise Studies

Noise Stability

Time Stability

Checking that the noise is stable, which is the case. Longer runs will be analyzed in the near future (over several hours)

Noise Studies

Noise Correlation

noise correlation between bins

Prepare signal reconstruction

Measurement of the sample-to-sample noise correlation, needed to OF algorithm Linearity Studies

Overview

1 Introduction

2 Noise Studies

3 Linearity Studies

4 Pulse Studies

Linearity Studies

Linearity

Fine scan of the response:

Study the full-chain reponse for *Q* between 0 and 15 pC. Very good linearity after removing pedestals (in a simple way - no OF here) Linearity Studies

Residus

Non-linearity:

At the level of few per milles for the high gain (medium gain irrelevant for this range of injected charge)

To come: investigate the linearity over the whole charge range

Overview

1 Introduction

2 Noise Studies

3 Linearity Studies

Motivations

Readout response should depend on pulse shape (different frequency spectrum)

Having a good understanding of the pulses shape is important for all aspects:

- readout characteristics measurement
- energy/time reconstruction
- simulation of electronics and full-chain up to energy reco

In the next few slides: few comparisons are shown

Full-chain Signal Comparison: Med vs High gain

Integral fraction in each sample

Both medium and high gain show same (similar) fractions, which is important to check for OF

PMT Signal Comparison

PMT Signal Comparison

Shaper Signal Comparison

FATALIC Shaper Signal Comparison

Analytical pulse analysis

Comment: might be useful for electronics simulation and to assess systematics on shape variations in different systems (CIS, LED, simulated pulses, etc ...)

Noise measurement: measurements are on going

Linearity measurement: low charge regime is now precisely characterised, need to go on the full range.

Pulse analysis: many studies on-going, need to propagate them to better establish readout performances, using simple OF to reconstruct time/energy.

Important pending point: read FATALIC data through the daughter board