Composite vector resonances and Top partners @ LHC

Bithika Jain

ΚΙΔ

Korea Institute for Advanced Study

Work in progress with Mihailo Backovic, Thomas Flacke, Seung Lee

Outline

- BSM & Hierarchy Problem
- Composite Higgs
- Nonlinear σ model
- Discrete Composite Higgs models
- Status of Heavy vector & Top partner searches
- Search strategy
- Summary

Why BSM?

- Higgs discovery is already old news
- Since 2012 main focus has been to measure Higgs boson properties:
 - Couplings , Mass , Spin/CP
- 125 GeV Higgs boson seems consistent with SM expectations¹.

- But BSM physics exists!
 - Experimental Facts: Neutrino masses, Dark matter, Inflation, baryon asymmetry, Dark energy
 - Theoretical inconsistencies: Strong CP problem, flavor hierarchies, gauge coupling unification, EW Hierarchy
- With all the LHC data we still DO NOT have a strong front-runner BSM model

BSM World now??

We face the **Lonely Higgs Problem**:-Higgs discovered but no sight of New physics.

SM is an EFT

- $\Lambda \gtrsim$ few Tev from Electro-weak data
- But also pretty small
 - $\epsilon \sim -(100 \text{ GeV})^2/\Lambda^2$ (naturalness problem)
- A strong motivation to look for non-SM physics.

Hierarchy problem

- In SM, m_h^2 receives quadratically divergent corrections from interactions with other SM fields.
- The largest contributions come from the:

• For ~10% fine-tuning, $m_h = 125$ GeV, requires that

 $\Lambda_{top} \lesssim 2 \text{ TeV} \qquad \Lambda_{gauge} \lesssim 5 \text{ TeV} \qquad \Lambda_{Higgs} \lesssim 10 \text{ TeV}$

• So, SM has to break down at scale, $\Lambda \sim O(1)$ TeV

Typical solutions to Hierarchy Problem

• We have met the enemy and it is this loop :

- A possible resolution of Hierarchy Problem via weakly coupled physics.
- This solution invariably **involves a top partner** .
- They help in cancelling the effects of SM loop contributions. The current lore has:
 - Supersymmetric extensions
 - Shift symmetry or other gauge extensions

1 possibility

- Shift symmetry or other gauge extensions ⇒ Spin-1/2 top partner (little Higgs models, twin Higgs models)
 - Higgs field(s) are pseudo Nambu-Goldstone bosons
 - The quadratic divergences are canceled by the same-spin partners of the SM top quark, gauge bosons and Higgs

2nd possibility

- Supersymmetric extensions ⇒ Spin-0 top partner ("stop")
 - There is a superpartner for each SM particle with opposite spin statistics.
 - Quadratic radiative corrections cancelled between fermions and bosons
 - The superpartners of the top are scalar particles in MSSM, and they are required to be around ~TeV to avoid excessive fine-tuning.

BSM models

• Natural explanations of 125 GeV Higgs

- "Natural" SUSY models with elaborate structure: tuning $\leq 5\%^3$ $^{3}_{1209.2115, 1212.5243}$
- LHC run 2 hope: a resonance or superpartner shows up!

Outline

- BSM & Hierarchy Problem
- Composite Higgs
- Nonlinear σ model
- Discrete Composite Higgs models
- Status of Heavy vector & Top partner searches
- Search strategy
- Summary

Composite Higgs

• Suppose Higgs is composite (Dugan, Kaplan, Georgi – 1980s)

- Hierarchy problem is resolved
- Corrections to m_H screened above $1/l_H$
- At low energies, Higgs behaves like an elementary particle

Composite Higgs Models

- **Higgs** as a **Goldstone** of a spontaneously broken global symmetry , $\mathcal{G} \to \mathcal{H}$
- Elementary sector induces a small (explicit) breaking of \mathcal{G}
- Higgs becomes a **pseudo-Goldstone**
- EW symmetry breaking is **radiatively induced**

Composite Higgs Models

Striking phenomenological features

Higgs sector is modified

- <u>Modification of the Higgs couplings</u>
 - Growth of WW scattering
 - Change in Higgs productions: $\kappa_{Z,W} = \sqrt{1 v^2/f^2}$
- <u>Double Higgs production-</u> contributions grow with energy squared [Contino, Dolan....]

The strong sector gives rise to tower of resonances

- <u>Fermionic resonances</u>
- <u>Gauge resonances</u>

Description of CH

Specific implementations: Extra dimensions through Holography

- ➤ Extradimensional gauge theory
- ▶ Higgs comes from the 5th component of gauge fields (Gauge Higgs Unification)

Description of CH

• Warped extra dimensions can be useful

hep-ph/0612180

- **calculable** and **predictive** framework
- full description of the **resonances**
- But..
 - Calculations in warped EFT , while doable, are not easy, and
 - Its not really suited for the LHC collider phenomenology difficult to automate by computer
 - several parameters (also 'hidden' like the **metric**)
 - includes many states **not accessible at LHC**

Description of CH

Need for a **simplified** framework: **effective description** inspired by deconstruction

≻Simplified version of 5D model – as 4D EFT

≻Description of **resonances**

- \succ One set of resonances of the strong sector are included
- ≻ Small number of "measurable" parameters
- ➢ parametrize many extra-dim. models (eg. different metric)

Computable and predictable

≻ Higgs potential, EWP

► Important tool to analyze LHC phenomenology

Outline

- BSM & Hierarchy Problem
- Composite Higgs
- Nonlinear σ model
- Discrete Composite Higgs models
- Status of Heavy vector & Top partner searches
- Search strategy
- Summary

The non-linear σ –model

- "minimal" description of a composite Higgs with custodial symmetry
 - Contains pNGB Higgs and SM gauge fields and no composite sector
- non-linear σ -model of the SO(5)/SO(4) coset
- Parameterize the Goldstone by a $\Sigma\text{-}$ field

$$\Sigma_I = U_{I5}, \qquad U = \exp\left[i\frac{\sqrt{2}}{f}\Pi_{\widehat{a}}T^{\widehat{a}}\right]$$

Transforming in the fundamental representation of SO(5).

The non-linear σ –model

Elementary (SM) gauge fields are introduced by weak gauging

 $SU(2)_L \times U(1)_Y \subset SO(4) \simeq SU(2)_L \times SU(1)_R$

Covariant derivative of the Goldstone matrix is

$$D_{\mu} \Sigma = (\partial_{\mu} - iA_{\mu})\Sigma, \qquad A_{\mu} = g W_{\mu}^{\alpha} T_{L}^{\alpha} + g' B_{\mu} T_{R}^{3}$$

The leading order Lagrangian is

$$\mathcal{L}_{0} = \frac{f^{2}}{2} \sum_{I} D_{\mu} \Sigma_{I} D^{\mu} \Sigma^{I} - \frac{1}{4} \operatorname{Tr} \left[W_{\mu\nu} W^{\mu\nu} \right] - \frac{1}{4} B_{\mu\nu} B^{\mu\nu}$$

$$\mathcal{L}_{\pi} \qquad \qquad \mathcal{L}_{g}$$

The non- linear σ –model

Power counting to estimate size of terms in Lagrangian

$$\mathcal{L}_{i} = \Lambda^{2} f^{2} \left(\frac{\Lambda}{4\pi f}\right)^{2L} \left(\frac{\Pi}{f}\right)^{E_{\pi}} \left(\frac{gW}{\Lambda}\right)^{E_{W}} \left(\frac{\partial}{\Lambda}\right)^{d} \left(\frac{gf}{\Lambda}\right)^{2\eta}$$

Keeping cut-off Λ free we count the **degree of divergence**

The NDA estimate is obtained by putting

$$\Lambda = \Lambda_{Max} = 4 \ \pi f$$

The non- linear σ –model

- \hat{S} and \hat{T} parameters are **logarithmically divergent**
- **Calculable** but not **predictable** within the σ -model
- Description of the resonances (in particular, of the fermionic resonances which give the dominant contribution) would be **needed**.
- m_H too beyond the reach of σ -model
- Higgs potential diverges quadratically at one loop

The non- linear σ –model

• \hat{S} and \hat{T} parameters are **logarithmically divergent**

• Calculable but not predictable within the σ -model

• Desc fermi contr We must introduce more symmetries

- m_H too beyond the reach of σ –model
- Higgs potential diverges quadratically at one loop

Outline

- BSM & Hierarchy Problem
- Composite Higgs
- Nonlinear σ model
- Discrete Composite Higgs models
- Status of Heavy vector & Top partner searches
- Search strategy
- Summary

2-site model

- Nonlinear σ model • $\mathcal{L}_{\pi} = \frac{f^2}{2} Tr \left[\left(D_{\mu} \mathcal{U} \right)^T D^{\mu} \mathcal{U} \right]$ where \mathcal{U} is Goldstone matrix of $SO(5)_I \times SO(5)_R / SO(5)_V$ • $\mathcal{U}[\Pi] = \exp\left(i\frac{\sqrt{2}}{f}\Pi_A T^A\right)$ which transforms linearly under $SO(5)_L \times SO(5)_R$
 - Gives 10 d.o.f s in adjoint of
 SO(5)_V

2-site model: gauge sector

The extra **symmetries** are related to the resonances of the composite sector

 $W_{\!\mu},\,B_{\!\mu}$ gauge subgroup of $1^{\rm st}$ site, $\,SU(2)_L\times U(1)_Y\subset SO(5)_L$

- $\tilde{\rho}_{\mu}$ comes from gauging 2nd site SO(4) \subset SO(5)_R 3 fold purpose
- 1. Eats 6 Goldstones
- 2. Breaks extra $SO(5)_R$ invariance
- 3. a description of the massive vector resonances

SM gauge fields \rightarrow combination of elementary, W_{μ} , B_{μ} and composite $\tilde{\rho}_{\mu}$ - partial compositeness

[Kaplan (1991), Contino, Kramer, Son and Sundrum (2006)]

2-site model: Higgs

The Higgs is a Goldstone with respect to $SO(5)_L \times SO(5)_R$

We need to **break all the symmetries** to generate a term which depends on the Higgs VEV

₩

EWSB effects through **collective breaking**: cancellation of divergences [Arkani-Hamed et al. (2001), ...]

 \hat{S} , \hat{T} and Higgs mass are calculable(finite)

Matsedonskyi et al. (2004)

2-site model: top sector

• q_L and t_R embedded in Q_L and T_R which are **incomplete** $SO(5)_L$ **fiveplets**

$$Q_L = \frac{1}{\sqrt{2}} \begin{bmatrix} -t \ D_L \\ -b_L \\ -it_L \\ t_L \\ 0 \end{bmatrix}, \ T_R = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ t_R \end{bmatrix}$$

• $\psi \in (\mathbf{2}, \mathbf{2}) \oplus (\mathbf{1}) = \begin{pmatrix} T & X_{5/3} \\ B & X_{2/3} \end{pmatrix} \oplus (\tilde{T})$

2-site model: top sector

$$D_{\mu}q_{L} = \left(\partial_{\mu} - i \frac{\hat{g}}{2}W_{\mu}^{\alpha}\sigma_{\alpha} - i \frac{\hat{g}'}{2}B_{\mu}\right)q_{L}$$
$$D_{\mu}t_{R} = \left(\partial_{\mu} - i \frac{\hat{2g}'}{3}B_{\mu} - ig_{s} G_{\mu}\right)t_{R}$$

$$D_{\mu}\tilde{\psi} = \left(\partial_{\mu} - i\frac{\widehat{2g'}}{3}B_{\mu} - i\widetilde{g_{\rho}}\widetilde{\rho}_{\mu}\right)\tilde{\psi}$$

Elementary and composite sector kinetic Lagrangians is

$$\mathcal{L}_{el}^{f} = i\overline{q}_{L}\gamma^{\mu}D_{\mu}q_{L} + i\overline{t}_{R}\gamma^{\mu}D_{\mu}t_{R},$$

$$\mathcal{L}_{cs}^{f} = i\overline{\widetilde{\psi}}\gamma^{\mu}D_{\mu}\widetilde{\psi} + \widetilde{m}^{IJ}\overline{\widetilde{\psi}}_{I}\widetilde{\psi}_{J},$$

$$\begin{array}{ll} \text{Mass term} & \widetilde{m} = \text{diag}(\widetilde{m}_Q, \widetilde{m}_T) \\ & \downarrow & \searrow \end{array}$$

4plet singlet

2-site model: fermionic sector

	$\left(\begin{array}{c}t'_L\\b'_L\end{array}\right)$	t'_R	b_R'	$\begin{pmatrix} X_{5/3} \\ X_{2/3} \end{pmatrix}$	$\left(\begin{array}{c}T'\\B'\end{array}\right)$	$ ilde{T}$
$SU(3)_c$	3	3	3	3	3	3
SO(5)	5 *	5 *	5 *			
SO(4)	4 *	1	1	4		1
$SU(2)_L$	2	1	1	2	2	1
$U(1)_X$	2/3	2/3	2/3	2/3	2/3	2/3
$U(1)_Y$	1/6	2/3	-1/3	7/6	1/6	2/3

* indicates incomplete representations

2-site model: top sector

Invoking partial compositeness via y's

$$\mathcal{L}_{mix} = y_L f \, \overline{Q_L^I} \mathcal{U}_{IJ} \widetilde{\psi^J} + y_R f \, \overline{T_R^I} \mathcal{U}_{IJ} \widetilde{\psi^J}$$

For correct hypercharges, B_{μ} comes out of gauging $SO(5)_L \times U(1)_X$ \widetilde{W}_{μ} and $\widetilde{\rho}_{\mu}$ come from gauging $SU(2)_L \subset SU(5)_L$ and $SO(4) \subset SU(5)_R$

2-site model: top sector

$$\mathcal{L}_{top} = i\overline{q_L} \not\!\!D q_L + i\overline{t_R} \not\!\!D t_R + i\overline{\psi_4} (\not\!\!D - M_4) \psi_4 + i\overline{\psi_1} (\not\!\!D - M_1) \psi_1 + y_L f \overline{q_L} (U\psi) + y_R f \overline{t_R} (U\psi) + h.c \cdots$$

The leading order Lagrangian contains four parameters

- the fourplet and singlet mass scales $M^{}_4\,$ and $M^{}_1\,$ and
- the left and right-handed pre- Yukawa couplings $y_{L,R}$
- y_L fixed to reproduce the correct top mass

Partially Composite vectors : Mass and couplings

Partially Composite fermions : Mass and couplings

How to (qualitatively) understand the "mixing" couplings:

Outline

- BSM & Hierarchy Problem
- Composite Higgs
- Nonlinear σ model
- Discrete Composite Higgs models
- Status of Heavy vector & Top partner searches
- Search strategy
- Summary

Production rates of ρ

Production rates of ρ

VBF subleading in motivated part of parameter space

Production rates of ρ

VBF subleading in motivated part of parameter space

Decay widths

• Relevant decay channels:

- SM (di-quark, di-lepton, di-boson)
- Exotics (t T, TT) Top partner production channels

Decay widths

- Relevant decay channels:
 - SM (di-quark, di-lepton, di-boson)
 - Exotics (t T, TT) Top partner production channels

Vector-like quarks: exp limits

- ATLAS and CMS determined bounds on (QCD) pair-produced top partners with charge 5/3 (the $X_{5/3}$) in the same-sign di-lepton channel. $M_{X_{5/3}} > 770 \text{ GeV}$ ATLAS [JHEP 1411 (2014) 104] , $M_{X_{5/3}} > 800 \text{ GeV}$ CMS [PRL 112 (2014) 171801] Run II: $M_{X_{5/3}} > 940(960)$ GeV CMS [B2G-15-006]
- ATLAS and CMS determined a bound on (QCD) pair-produced top partners with charge 2/3 (applicable for the T_s , T_{f1} , T_{f2}). [Similar bounds for *B*]

Heavy vector resonances

- di-lepton signature- $M_{Z'}$ > 3.5 TeV @ 13 TeV [CMS-PAS-EXO-15-005]
- $M_{W} > 2 \text{ TeV} @ 13 \text{ TeV}$ in di-boson channel [CMS-PAS-EXO-15-002]
- ... do not forget hints from 8 TeV data from ATLAS ... and CMS

Outline

- BSM & Hierarchy Problem
- Composite Higgs
- Nonlinear σ model
- Discrete Composite Higgs models
- Status of Heavy vector & Top partner searches
- Search strategy
- Summary

Status of natural CHMs

- a reasonably tuned pNGB Higgs generically requires, $M_{\rm T} \sim {\rm TeV}$
- EWPT pushes $M_{\rho} > 2-3$ TeV
- If kinematically allowed ρ decays to VLQs become dominant
- VLQ production processes via ρ_0 (Z') become viable

"No loose" strategy for Z'

 ho_0

- Additional signatures to be added to support the "no loose" strategy for Z' (neutral heavy resonances)
- Can be combined with di-lepton, VV, VH
- resonance searches if some excess is observed
- Bounds on ρ_{\pm} using X5/3's

 ho_0

Barducci, Delauney-1511.01101

2 site: Phenomenological Lagrangian

$$\begin{split} \mathcal{L}_{\rho} &= ig_{\rho+WZ} \left[(\partial_{\mu}\rho_{\nu}^{+} - \partial_{\nu}\rho_{\mu}^{+}) W^{\mu-} Z^{\nu} - (\partial_{\mu}W_{\nu}^{+} - \partial_{\nu}W_{\mu}^{+}) \rho^{\mu-} Z^{\nu} + (\partial_{\mu}Z_{\nu} - \partial_{\nu}Z_{\mu}) \rho^{\mu-} W^{\nu+} + h.c. \right] \\ &+ ig_{\rho_{0}WZ} \left[(\partial_{\mu}W_{\nu}^{+} - \partial_{\nu}W_{\mu}^{+}) W^{\mu-} \rho^{0\nu} + (\partial_{\mu}\rho_{\nu}^{0} - \partial_{\nu}\rho_{\mu}^{0}) W^{\mu+} W^{\nu-} + h.c. \right] \\ &+ g_{\rho+Wh} \left(h\rho_{\mu}^{+} W^{\mu-} + h.c. \right) + g_{\rho_{0}Zh} \left(h\rho_{\mu}^{0} Z^{\mu} \right) \\ &+ \sqrt{2} \sum_{X,Y} \left[\left(g_{\rho_{\sigma}XY}^{L} X_{L} \rho_{0} \bar{Y}_{L} + g_{\rho_{0}XY}^{R} X_{R} \rho_{0} \bar{Y}_{R} \right) + \left(g_{\rho^{+}XY}^{L} X_{L} \rho^{+} \bar{Y}_{L} + h.c. \right) + \left(g_{\rho^{+}XY}^{R} X_{R} \rho^{+} \bar{Y}_{R} + h.c. \right) \right] \\ &+ \sqrt{2} \sum_{l,l} \left[g_{\rho_{\sigma}qq}^{L} q_{L} \rho_{0} \bar{q}_{L} + g_{\rho^{+}qq}^{L} \left(q_{L} \rho^{+} \bar{q}_{L} + h.c. \right) \right] \\ &+ \sqrt{2} \sum_{l,l} \left[g_{\rho_{\sigma}ll}^{L} (l_{L} \rho_{0} \bar{l}_{L} + g_{\rho^{+}ll}^{L} (l_{L} \rho^{+} \bar{l}_{L} + h.c.) \right] \\ &+ \sqrt{2} \sum_{l,l} \left[g_{\rho_{\sigma}ll}^{L} (l_{L} \rho_{0} \bar{l}_{L} + g_{\rho^{+}ll}^{L} (l_{L} \rho^{+} \bar{l}_{L} + h.c.) \right] \\ &+ \sqrt{2} \sum_{l,l} \left[g_{\rho_{\sigma}ll}^{L} (l_{L} \rho_{0} \bar{l}_{L} + g_{\rho^{+}ll}^{L} (l_{L} \rho^{+} \bar{l}_{L} + h.c.) \right] \\ &+ \sqrt{2} \sum_{l,l} \left[g_{\rho_{\sigma}ll}^{L} (l_{L} \rho_{0} \bar{l}_{L} + g_{\rho^{+}ll}^{L} (l_{L} \rho^{+} \bar{l}_{L} + h.c.) \right] \\ &+ \sqrt{2} \sum_{l,l} \left[g_{\rho_{\sigma}ll}^{L} (l_{L} \rho_{0} \bar{l}_{L} + g_{\rho^{+}ll}^{L} (l_{L} \rho^{+} \bar{l}_{L} + h.c.) \right] \\ &+ \sqrt{2} \sum_{l,l} \left[g_{\rho_{\sigma}ll}^{L} (l_{L} \rho_{0} \bar{l}_{L} + g_{\rho^{+}ll}^{L} (l_{L} \rho^{+} \bar{l}_{L} + h.c.) \right] \\ &+ \sqrt{2} \sum_{l,l} \left[g_{\rho_{\sigma}ll}^{L} (l_{L} \rho^{+} \bar{l}_{L} + h.c.) \right] \\ &+ \sqrt{2} \sum_{l,l} \left[g_{\rho_{\sigma}ll}^{L} (l_{L} \rho^{+} \bar{l}_{L} + h.c.) \right] \\ &+ \sqrt{2} \sum_{l,l} \left[g_{\rho_{\sigma}ll}^{L} (l_{L} \rho^{+} \bar{l}_{L} + h.c.) \right] \\ &+ \sqrt{2} \sum_{l,l} \left[g_{\rho_{\sigma}ll}^{L} (l_{L} \rho^{+} \bar{l}_{L} + h.c.) \right] \\ &+ \sqrt{2} \sum_{l,l} \left[g_{\rho_{\sigma}ll}^{L} (l_{L} \rho^{+} \bar{l}_{L} + h.c.) \right] \\ &+ \sqrt{2} \sum_{l,l} \left[g_{\rho_{\sigma}ll}^{L} (l_{L} \rho^{+} \bar{l}_{L} + h.c.) \right] \\ &+ \sqrt{2} \sum_{l,l} \left[g_{\rho_{\sigma}ll}^{L} (l_{L} \rho^{+} \bar{l}_{L} + h.c.) \right] \\ &+ \sqrt{2} \sum_{l,l} \left[g_{\rho_{\sigma}ll}^{L} (l_{L} \rho^{+} \bar{l}_{L} + h.c.) \right] \\ &+ \sqrt{2} \sum_{l,l} \left[g_{\rho_{\sigma}ll}^{L} (l_{L} \rho^{+} \bar{l}_{L} + h.c.) \right] \\ &+ \sqrt{2} \sum_{l,l} \left[g_{\rho_{\sigma}ll}^{L} (l_{L} \rho$$

		$g ho_0 tt^L$	0.202911		
		$g ho_0 tt^R$	0.0471	$\lambda h t_R T_{f1,L}$	1.36804
	l	$g\rho_0 t T_{f_1}^L$	0.225294	$\lambda h t_L T_{f1,R}$	0.169354
$g ho_0WW$	0.00244019	$a\rho_0 t T_{f_1}^R$	0.991918	$\lambda h t_R T_{f1,L}$	1.36804
$g\rho_+WZ$	0.00276068	$a_{00}tT_{m}^{R}$	0.398755	$\lambda h t_L T_{f1,R}$	0.169354
$a \rho_0 Z h$	88,8538	$g\rho_{0} = f_{2}$	1.04508	$gW_+bT_{f1}^L$	0.0113745
970210	00.0000	$gp_{0} \iota_{f_2}$	1.04030	gZtTf1L	0.0640996
$g ho_+Wh$	88.8538	$g ho_0 bb^L$	0.257927	qZtTf1R	0.308658
	-	$g ho_0 bB^L$	1.16253		

2-site: Benchmark points

for f = 1.3 TeV , M_4 = 1.5 TeV, M_1 = 4.5 TeV , $y_{\scriptscriptstyle \rm R}$ = 6 and g_ρ = 2:5

BR	$s_{L,q} = 0$	$s_{L,q} = 0.1$
${\rm BR}(\rho^0 {\rightarrow} W^{\pm} W^{\pm})$	14.8528	15.1532
${\rm BR}(\rho^0 \rightarrow tt)$	4.9727	5.07327
${\rm BR}(\rho^0\!\!\rightarrow{\rm bb})$	7.86043	8.0194
${\rm BR}(\rho^0 {\rightarrow} {\rm ll})$	3.95841	4.0384
${\rm BR}(\rho^0\!\!\rightarrow jj)$	7.91682	6.0545
$\mathbb{BR}(\rho^0 \to t \ T_{\rm f1})$	22.8233	23.2849
$BR(\rho^0 \rightarrow bB)$	18.1072	18.4735

Partially composite light quarks

	BR	$s_{L,q}=0$	$s_{L,q} = 0.1$	
	$\mathrm{BR}(\rho^{\pm} \to W^{\pm}\mathrm{h})$	19.7267	20.2601	
	${\rm BR}(\rho^\pm\to W^\pm {\rm Z})$	19.7267	20.2601	
	$\mathrm{BR}(\rho^{\pm} \to tb)$	16.5903	17.0389	
	$BR(\rho^{\pm} \rightarrow l)$	3.5049	3.59967	
	$BR(\rho^{\pm} \to jj)$	10.5147	8.09498	
	$BR(\rho^{\pm} \to bT_{f1})$	2.49319	2.56061	
<	$BR(\rho^{\pm} \to tX_{5/3})$	13.9152	14.2915	\sum
	$BR(\rho^{\pm} \to tb)$	6.33486	6.50616	
	$BR(\rho^{\pm} \to T_{f2} B)$	5.441	5.58812	

2-site: Benchmark points

Production of T' from $\rho_0 \sim 40$ fb @ 14TeV

Production of $X_{5/3}$ from $\rho_{\mp} \sim 4$ fb @ 14TeV

Top partner decays

• Dominant couplings to W;Z; h and an SM quark are chiral (either left- or right-handed coupling dominates).

$$\begin{split} \Gamma(F \to Wf) &= M_F \frac{M_F^2}{m_W^2} \frac{|g|_{\text{eff}}^2}{32\pi} \Gamma_W, \\ \Gamma(F \to Zf) &= M_F \frac{M_F^2}{m_W^2} \frac{|g|_{\text{eff}}^2}{32\pi} \Gamma_Z, \\ \Gamma(F \to hf) &= M_F \frac{|\lambda|_{\text{eff}}^2}{32\pi} \Gamma_L, \end{split}$$
 Kinematic functions

Search Strategy @ LHC run II

Summary

- Composite Higgs model (with H as PGB) provides a viable solution to the hierarchy problem and generically predict partner states to the fermions
- Top partner will be probed beyond the 1 TeV mass region at the Run 2 of LHC
- mass of top partners < mass of heavy vector resonances.
- vector resonances decay to top partners instead of pure Standard Model final states start can dominate
- For run II, single-top partner production channels and strongly boosted top searches become important.
- New search strategies can aid in hunting Top partners and also put more accurate bounds on heavy vector resonances

THANK YOU!

