WG4 summary talk ~Performance frontier~

2016/7/8

TTC meeting @ Saclay WG4 S. Aull, A. Grassellino, K.Umemori WG3 S. Belomestnykh, J. Hao, E. Jensen (Joint session for High gradient and High-Q)

Thin film and new materials

Nb3Sn

Daniel Hall 「Next generation Nb3Sn Cavities」 Charles Reece 「Nb3Sn development at JLab」

• Nb thin film etc

Guillaume Rosaz [Production and R&D thin films activities at CERN for SRF applications]

Anne-Marie Valente-feliciano Towards high performance Nb thin films via energetic condensation

Sebastian Aderhold / Genfa Wu Future thin film deposition efforts at FNAL

Yoshihisa Iwashita Activities on SRF thin film study at KEK & Kyoto U.

<u>High gradient / high-Q</u>

7 talks

1. Summarize: what are the achievable gradients and Q at high gradients with state of the art ILC surface processing; where do we stand in terms of field emission

- Nick Walker [XFEL ILC-recipe VT results (RI)]
- Rongli Geng [Is current state of the art in FE an obstacle to 40MV/m (and beyond) operation?]
- 2. New results promising of very high gradients and high Q at very high gradients
- 3. New samples studies indicating potential pathway to higher gradients
- Robart Laxdal New insights for reaching higher gradients from muSR sample studies
- 4. Experimental max achievable gradients from Klystron measurements
- James Maniscalco [Estimated gradient limitation insights for different surface processing from klystron measurements]
- 5. Theoretical predictions/explanations for maximum achievable gradients in SRF cavities
- Takayuki Kubo Reaching higher gradients in bulk Nb with nano-layer coating
- Mattia Checchin [Ultimate gradient limitation in Nb SRF cavities]

Thin film and new material

Film Development

Deposition parameters allow tuning the film properties but have to be well controlled and fully understood

A.-M. Valente (JLab)

Nb3Sn by reactive diffusion

- JLab joined the activities and prepares for coating 5-cell cavities.
- Cornell further improved recipe, increasing the quench field.

Next Generation Nb₃Sn cavities: Current performance, limitations, and considerations for practical use,

D. Hall/M. Liepe (Cornell)

Nb3Sn Developments at JLab,

New water-cooled zero-length

C. Reece/G. Eremeev (JLab) & U. Pudasaini/ M. Kelley (W&M)

Existing multiport

Nb3Sn: Trapped Flux Sensitivity

- Surface resistance increase with trapped magnetic field similar to 120C baked bulk Nb
- Strong surface resistance increase with temperature gradient — similar to Nb/Cu —> thermal electric currents at the metal-metal interface?

Energetic Condensation: the Pathway to Denser Films

- Energetic condensation techniques (ECR, HIPIMS,...) show improved Nb film microstructure.
- First RF measurements on samples show significantly mitigated Q-slope

G. Rosas (CERN)

Nb/Cu: Cavity Deposition

Towards high performance Nb thin films via energetic condensation

A.-M. Valente (JLab)

Production and R&D thin films activities at CERN for SRF applications, G. Rosas (CERN)

Future thin film deposition efforts at FNAL, G. Wu/M. Checchin (FNAL)

Conclusion

- the new material/thin film community is growing, understanding of recipes are advancing, performance is improving
- Synergies between Nb3Sn and Nb/Cu could speed up understanding the relation between material properties and SRF performance

Jefferson Lab	
LINKS	and the second
Circular	Thin Films 2016
Registration	
Abstract Submission	7th International Workshop on Thin Films and New Ideas for Pushing the Limits of RF Superconductivity July 27-29, 2016
Program	Thomas Jefferson National Accelerator Facility Newport News, VA
Lodging	Circular
Trevel	The seventh workshop in this series will continue the goal of providing a forum for new initiatives in innovative thin films and related technology to
Visa	advance future generations of superconducting RF accelerators. Present superconducting RF accelerator technology is based on predominately bulk nicibium, for which the state of the art in performance is reaching the theoretical limit. Thin film technology offers the prospect of considerable
Participants List	savings in fabrication costs and opens the way with innovative technologies to the use of alternative superconducting materials with enhanced
Child Care Program	intrinsic properties such as critical temperature and critical field. Intensive and coordinated R&D effort is of decisive importance for the scientific Community.
	The primary aim of the workshop is to support this initiative by providing an opportunity to bring together individuals and institutions working in this effort and infusing expertise of specialists from related disciplines (superconductivity, plasma physics, material science, nanotechnology, RF engineering and industry. Reports on work from each participating group and extensive discussions on existing problems, new ideas and programs for the future will constitute the primary focus of the program.

High gradient / High-Q

L-band SRF Linear Accelerator Technology and Impact to Nuclear, Elementary Particle, and Photon Sciences

Eacc [MV/m]

Rongli Geng | Is current state of the art in FE an obstacle to 40MV/m (and beyond) operation?

Nick Walker [XFEL ILC-recipe VT results (RI)]

Retreatment (additional HPR) is effective to recover performance. From some model analysis, including retreatment of cavity, ~50% of cavity can be operated at 35 MV/m <u>Summary of Achieved</u> <u>High Gradient</u>

- 36 MV/m one 9-cell without beam (HTC @ FNAL)
 - 57hours

Figure 2: (a) Q_0 vs. E_{acc} from the last horizontal test of the RFCA002 cavities. (b) X-rays vs. E_{acc} from the last horizontal test of the RFCA002 cavities. Note the y-axis range differs from Figure 1b.

- 31.5 MV/m, 7 9-cell without beam (ASTA @ FNAL)
 - unknown hours
- > 30 MV/m, several 9-cells with beam(FLASH)
 - 15 hours at 3 mA
 - Several hours close to 9 mA
- There is some operation experiment at 30 -35 MV/m, but not for > 40MV/m.
- Propose test operation of cavity > 40 MV/m

Rongli Geng [Is current state of the art in FE an obstacle to 40MV/m (and beyond) operation?]

Robart Laxdal [New insights for reaching higher gradients from muSR sample studies] Muon Spin Rotation – muSR

• The time evolution of the asymmetry in the two signals gives a measure of the local field in the sample

- An uncoated Nb sample in parallel geometry has flux breaking in at 180mT (at T=0) – consistent with H_{c1}
- A Nb coin coated with Nb3Sn has flux breaking in at 230mT (at T=0) consistent with H_{sh} of Nb

A layer of higher T_c material on niobium can push the field of first flux entry from a field consistent with H_{c1} to a field consistent with H_{sh}

James Maniscalco [Estimated gradient limitation insights for different surface processing from klystron measurements

Motivation: Klystron test can escape from global thermal effects

- High T: limited by flux entry at Bsh ۲
- As T decreases, Bpk diverges, • indicating thermal effects

Two slope can clearly be seen from klystron analysis

LTE1-6 Low-T region

LTE1-6 High-T region

18²

 16^{2}

 20^{2}

LTE1-6 High-T fit

LTE1-6 Low-T fit

CW quench field data

N-doped cavities so far quench **below** B_{c1}

 \rightarrow statistically, N-doped cavities are quenching close or below the lower critical field

120 C baked cavities quench always **above** B_{c1}

 \rightarrow 120 C baked cavities can reach the metastable Meissner state above the lower critical field

 $H_c(0) = 180 \ mT^{-1}$ $\lambda_0 = 39 \ nm^{-2}$ $\xi_0 = 38 \ nm^{-2}$

¹ S. Casalbuoni *et al.*, Nucl. Instr. Meth. Phys. Res. A 583, 45 (2005)
² B. W. Maxfield and W. L. McLean, Phys. Rev. 139, A1515 (1965)

Sebastian Aderhold / Anna Grassellino New low T nitrogen treatments cavity results with record gradients and Q Surface of 120C bake vs N doping vs EP, via LE-muSR

N-doped, EP and BCP <u>do not show</u> discontinuous field penetration profile \rightarrow constant concentration profile

Standard 120 C baked <u>does present</u> discontinuous field penetration profile \rightarrow dirty layer!

120 C baked cavities quench above B_{c1} likely because of the dirty layer. Nitrogen-infused cavities may exploit the same phenomenon, but bringing also benefit for the Q!

New low T nitrogen treatments cavity results with record gradients and Q Nitrogen Infusion systematic improvement in Q and quench fields

Sebastian Aderhold / Anna Grassellino

- Clear evolution trend confirming improvement in Q and quench field
- <u>NO EP between furnace treatments</u>: comparing same morphological surface, just different impurity content

Sebastian Aderhold / Anna Grassellino

 \lceil New low T nitrogen treatments cavity results with record gradients and Q \rfloor

<u>Example of nitrogen infusion treatment -</u> engineering a thin dirty layer with N2, on a clean bulk

- Bulk electro-polishing
- High T furnace with caps to avoid contamination:
 - 800C 3 hours HV
 - 120C 48 hours <u>with N₂</u> (25 mTorr)
- NO chemistry post furnace
- HPR, VT assembly

Takayuki Kubo Reaching higher gradients in bulk Nb with nano-layer coating Effect of the dirty layer on clean bulk superconductor

- The quench field is increased up to a maximum value defined by the dirtiness and thickness of the layer
- The surface resistance is a "weighted" average of the surface resistance of the layer and of the bulk
- Quench field and surface resistance can be tuned as needed by engineering the dirty layer at the surface

Mattia Checchin [Ultimate gradient limitation in Nb SRF cavities] Why the dirty layer increases the quench field?

Sebastian Aderhold / Anna Grassellino New low T nitrogen treatments cavity results with record gradients and Q

Moving to even higher Q – and maybe gradients too – R&D continues to better engineer ideal nanometeric N layer

Conclusion

[High gradient and High-Q]

- At present operation of cryomodule with 35MV/m could be possible. No experience on 40 MV/m operation.
- Field emission is on-going target to improve cavity performance.
- Understanding of materials and thin/multi layers are proceeded by both experimental and theoretical approach.
- Low T nitrogen treatment was proposed and opened the way to control both of cavity gradient and Q.