Introduction

NGC 4833 HST data

Simulations

Stripe 82

First conclusions

Outlook 0000000000

Search of the time-variation of the interstellar extinction with a machine learning method Application to the variability analysis for future LSST data

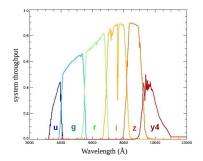
J. ITAM-PASQUET

Directors : G.Jasniewicz et D.Puy (LUPM) Supervisor : N. Mauron (LUPM) Collaborator : D.Pfenniger (Geneva Observatory)

johanna.pasquet@umontpellier.fr

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

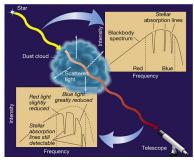
Introduction 00000		Simulations 00	Stripe 82 000000000000000	First conclusions 0	
Outline					


- 2 NGC 4833
- 3 HST data
- ④ Simulations
- 5 Stripe 82
- 6 First conclusions

• Apparent magnitude (m) : logarithmic measure of the intensity of light from an object (*I*₁), measured in a specific wavelength relative to the intensity of the light from a reference star *I*_{ref} :

$$m_1 - m_{ref} = -2.5 \log(\frac{l_1}{l_{ref}})$$
 (1)

• Filters : measure the light flux from a star only in restricted wavelength ranges.



The SLOAN and LSST filter bands, showing total system

throughput

- Dust Effects on Starlight
 - Extinction (dimming of the light from stars) : Scattering + absorption
 - \rightarrow ${\cal A}_{\lambda}$ is the total extinction at wavelength λ
 - **Reddening** : the shorter the wavelength, the higher the extinction : blue light is affected more strongly than red light.

 \rightarrow the most common measure of reddening is the color excess : E(B - V)

Introduction NGC 4833 HST data Simulations Stripe 82 First conclusions Outlook

Pfenniger, Combes & Martinet (A&A, 285, 1994) :

- They proposed that a part of the baryonic component of dark matter around spiral galaxies could be in the form of cloud gas, essentially in molecular form and rotationnaly supported
- A factor 10 or more of hydrogen mass underestimate is enough to remove the need of exotic matter in disc galaxies
- Observations of the interstellar medium show that the cold gas is fractal and essentially clumpy down to very small scales (few tens of AU¹)

 \rightarrow "clumps" with the characteristics at $T=3\,K$: $I=30\,AU,~M=10^{-3}M_{\odot}$

• main difficulty to detect the cold gas in emission because of its low temperature

1. $1 \, \text{AU} \sim 1.49 * 10^{11} \text{ m}$

Introduction NGC 4833 HST data Simulations Stripe 82 First conclusions Outlook

Context : The small structures

Evidence of small scale structures

• Interstellar line spectroscopy (Boissé et al., A&A, 559, 2013) show that the column density vary of 11% over 3 years, in some cases, in agreement with some quasars scintillation

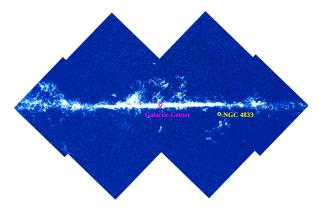
Drake and Cook (2003) :

- Search for stellar obscuration events due to dark clouds
- $\bullet\,$ MACHO project light curve of $48*10^6$ stars towards the Galactic bulge, Large Magellanic Cloud, and Small Magellanic Cloud
- Such events are expected to be very rare, with much less than 1% of stars in any given direction being obscured at any time
- Clouds occupy the disk and in the halo
- No evidence for a population of dark clouds in either the disk or halo of our Galaxy

			Stripe 82 0000000000000000	Outlook 0000000000
Aim of t	the thes	is		

- **Goal** : Search for time-variations of the interstellar extinction constrained by baryonic dark matter
- Methodology : Develop a search for tempoal variability method, applicable to others variable objects and big future databases

- $\bullet\,$ Globular clusters are very massive objects that contain $\sim 100\;000\;{\rm stars}$
- They formed $10 13 * 10^9$ years ago
- ullet \sim 180 globular clusters in our Galaxy



NGC 4833 by Hubble Space Telescope (field of view : 3.5')

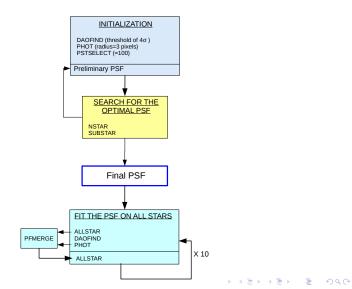
Introduction NGC 4833 HST data Simulations Stripe 82 First conclusions Outlook

Advantages of studying a globular cluster

- includes a large number of stars
- A common kinematic system for all stars
- \bullet lies behind dusty regions at a latitude of -8°

Planck CO-map

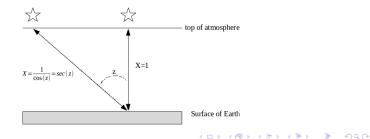
(日)、


Introduction	NGC 4833 00●000000	Simulations	Stripe 82 000000000000000000000000000000000000	First conclusions 0	Outlook 0000000000
Observa	ations				

- Carried out at the NTT in Chile (PUY D., PFENNIGER D., DESSAUGES-ZAVADSKY M., 2006, ESO)
- Optical observations in (B,V,I) filters
- 2 observation sets separated by a 6 months period : the January 2006 and the July 2006

Use of DAOPHOT II within IRAF data reduction and analysis environment

Introduction NGC 4833 HST data Simulations Stripe 82 First conclusions Outlook

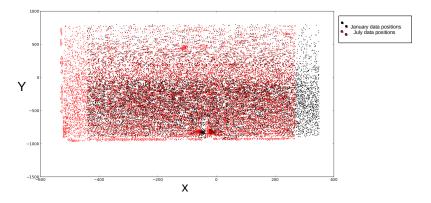

Photometric calibration with Standard Stars

For the January, 2006 data :

• Light of stars is affected by atmospheric extinction :

$$M(\lambda) = m(\lambda) - K_{\lambda} sec \ z \tag{2}$$

- *m* : instrumental magnitude
- M : calibrated magnitude
- sec z : air mass, noted X (=1 at zenith)
- K : extinction factor
- Selection of standard stars at different air masses


For the July, 2006 data :

- Use of selected stars from the January photometry as secondary standards
- A weak, linear residual in color and a residual that varied quadratically in X and Y were present :
- $m-M = c_0 + c_1(B-V) + c_2X + c_3Y + c_4X^2 + c_5XY + c_6Y^2$ (3)

coefficients c_i are determined by the method of least squares

Final photometric accuracy : $0.003 mag \le mag uncertainty \le 0.05 mag$

Introduction NGC 4833 HST data Simulations Stripe 82 First conclusions Outlook Difficulties in the superimposition of images

ヘロト ヘアト ヘヨト ヘ

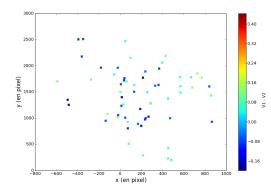
3.1

Final superposition accuracy : 0.2 pixels

Results on the study of NGC 4833 (I)

HST data

ITAM-PASQUET J. et al., The GREAT-ITN final conference, 2014, Barcelona, Spain ITAM-PASQUET J. et al, Journées de la SF2A 2015, Toulouse, France


Stripe 82

Simulations

- 62 stars vary in a six-month period (beyond a statistical significance of 3σ) and are not known as variables
- Field of view : 0.13 square degree

NGC 4833

- Stars number : 5800
- Likelihood of occurring $(P): \sim 1\%$
- Number of events per square degree (N) : 476

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

First conclusions

Outlook

э

Introduction

Introduction NGC 4833 HST data Simulations Stripe 82 Octoor Octoo

Granted 10.4 h of radio observation time with 22m-Mopra telescope (Australia), carried out using VNC remote desktop sofware from Montpellier with the collaboration of Nigel Maxted (Sydney Observatory, Australia)

Goal : Detect *CO* traces to constrain molecules traces in the line of sight of NGC 4833

- 7'x7' map
- a main-beam sensitivity of $\sim 1K$ per channel (~ 2.5 times higher than existing *CO* data towards this globular cluster)
- a beam FWHM : 35" (\sim 4 times larger than existing CO data)

No CO detection :

- CO is more affected by photodissociation than H_2
- CO may condense into dust grains under 20 K and so be depleted in gas-phase observation

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Introduction NGC 4833 HST data Simulations Stripe 82 First conclusions Outlook 000000000 HST globular clusters : problematic and goals

- Expand the field of view \rightarrow more statistics
- Get more time periods
- wavelengths near UV

 \rightarrow Study of 20 globular clusters (+27) in Hubble Space Telescope archive

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Introduction NGC 4833 HST data Simulations Stripe 82 First conclusions Outlook

- 3 interesting globular clusters :
 - NGC 104 (E(B V) = 0.04)
 - Field of view : 0.29 square degree
 - Likelihood of occurring (P_1) : 6%
 - Number of candidates per square degree (N_1) : 48 \rightarrow Interest factor₁ = $P_1 * N_1 = 2.9$
 - NGC 4833 (E(B V) = 0.32)
 - Field of view : 0.007 square degree
 - Likelihood of occurring (P₂) : 11%
 - Number of candidates per square degree (N_2) : 1571 \rightarrow Interest factor₂= $P_2 * N_2 = 172$
 - NGC 7078 (E(B V) = 0.1)
 - Field of view : 0.01 degré carré
 - Likelihood of occurring (P₃) : 4.6%
 - noNumber of candidates per square degree (N₃) : 900

 \rightarrow Interest factor₃ = $P_3 * N_3 = 41$

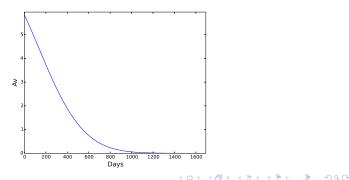
C + + implementation

- The centers of the clouds and subclouds are randomly distributed according to a 3D density law
- N = 6, $level = 8 \rightarrow 1$ 670 616 clumps

$$\rho(r, r_L) = \begin{cases} \left(\frac{r}{r_L}\right)^{-2} & r < r_L \\ 0 & r \ge r_L \end{cases} \qquad \rho(r, r_L) = \frac{1}{\left(\left(\frac{r}{r_L}\right)^2 + 1\right)^{\frac{5}{2}}} \quad ; \qquad \rho(r, r_L) = e^{-\left(\frac{r}{r_L}\right)^2} \end{cases}$$

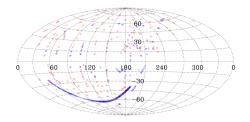
Quasi-isothermal profil

Plummer profil


Gaussian profil

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Introduction NGC 4833 HST data Simulations Stripe 82 First conclusions Outlook 00


Motions of objects along time

- Galactic velocities of the globular cluster : $U = -100 \ km.s^{-1}$; $V = -301 \ km.s^{-1}$; $W = -49 \ km.s^{-1}$
- Galactic velocities of the Sun and the cloud : $U_{\odot} = -8 \ km.s^{-1}$; $V_{\odot} = 13 \ km.s^{-1}$; $W_{\odot} = 6 \ km.s^{-1}$
- Motion of the clumps inside the cloud : damped gaussian distribution truncated to escape velocity

- Stripe 82 is a survey of 300 deg² equatorial field in the Southern Galactic cap
- Coordinates : -50° $\leq \alpha \leq$ +60° et -1.26° $\leq \delta \leq$ 1.26°
- It was imaged by the Sloan Digital Sky Survey (SDSS) multiple times between 2000 and 2008 with good image quality and low sky background

Stripe 82 is represented by the blue line, red and blue dots are spectroscopic data

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - の Q @

Description

- 67 000 light curves of objects with significant temporal variability in (*u*, *g*, *r*, *i* et *z*) magnitudes
- Known objects in the database : \sim 8000 quasars, \sim 500 RR Lyrae and δ scuti, few galaxies, supernovae...

Interests

- \bullet \sim 40 000 light curves whose variations are not explained
- $\, \bullet \, \sim 30$ observations at different time for each object on average

Introduction NGC 4833 OC 4833

Description

- 67 000 light curves of objects with significant temporal variability in (*u*, *g*, *r*, *i* et *z*) magnitudes
- Known objects in the database : \sim 8000 quasars, \sim 500 RR Lyrae and δ scuti, few galaxies, supernovae...

Interests

- \bullet ~ 40 000 light curves whose variations are not explained
- $\bullet~\sim$ 30 observations at different time for each object on average

Introduction 00000	NGC 4833 000000000		Stripe 82 00●00000000000	Outlook 0000000000
The Cha	allenge			

Goals

Short-term : Identify light curves compatible with an obscuration event, ie the passage of a clump in the line of sight **Long-term** : Be able to identify them in other databases

Problems

• Big data

С

• Big uncertainties on characteristics of the variability of the star obscuration by clumps

Solutions

• Synthetize the obscuration event (amplitude $\sim 1~mag$ and time scale $\sim 1~year$)

ヘロン 人間と 人間と 人間と

э

• Classification methods to detect obscuration events

Introduction 00000	NGC 4833 000000000		Stripe 82 00●00000000000	Outlook 0000000000
The Cha	allenge			

Goals

Short-term : Identify light curves compatible with an obscuration event, ie the passage of a clump in the line of sight **Long-term** : Be able to identify them in other databases

Problems

Big data

С

• Big uncertainties on characteristics of the variability of the star obscuration by clumps

Solutions

• Synthetize the obscuration event (amplitude \sim 1 mag and time scale \sim 1 year)

・ロット (雪) (山) (山)

э

• Classification methods to detect obscuration events

Introduction 00000	NGC 4833 000000000		Stripe 82 00●00000000000	Outlook 0000000000
The Cha	allenge			

Goals

Short-term : Identify light curves compatible with an obscuration event, ie the passage of a clump in the line of sight **Long-term** : Be able to identify them in other databases

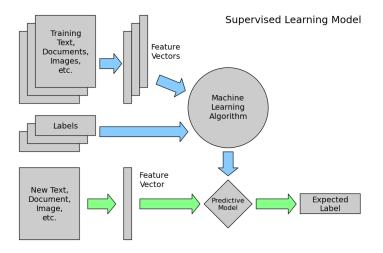
Problems

Big data

С

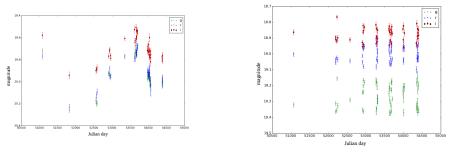
• Big uncertainties on characteristics of the variability of the star obscuration by clumps

Solutions


• Synthetize the obscuration event (amplitude $\sim 1~mag$ and time scale $\sim 1~year$)

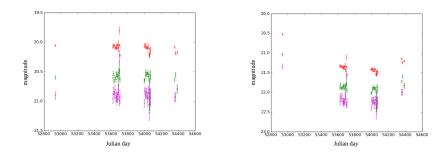
ヘロト 人間ト ヘヨト ヘヨト

• Classification methods to detect obscuration events



Python implementation (sklearn)

- 80% of known quasar list¹ (\sim 6500)
- 80% of known RR Lyrae et δ scuti list² (\sim 400)


- 10 000 synthetized light curves
- 10 000 light curves whose variations are not identified

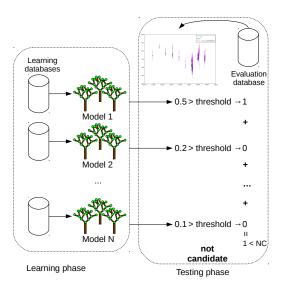
¹Meusinger et al., 2011, Flesch et al., 2015 ²Surveges et al., 2012 and Ivezic et al. 2007

Obscuration event synthesis

- Sandom selection of a star with an amplitude < 0.25</p>
- 2 Addition of a gaussian with $\sigma \in [400, 800]$, $\mu \in [51000, 55000]$, *Amplitude* $\in [0.25, 1.25]$
- 3 Addition of a gaussian noise $\mathcal{N}(0, 0.05)$
- Repeat the steps to get 10 000 synthetic light curves compatible with an obscuration event

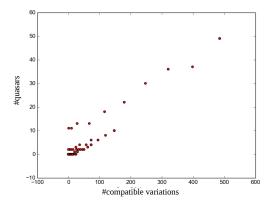
	NGC 4833 000000000		Stripe 82 000000●000000	First conclusions 0	Outlook 0000000000
The test	ting dat	abase			

- $\bullet~20\%$ of known quasar database ($\sim 1500)$ that had not been used in training database
- 20% of known RR Lyrae et δ scuti database (\sim 80) that had not been used in training database
- All light curves whose variations are not identified


Introduction 00000			Stripe 82 00000000000000	Outlook 0000000000
Classific	ation m	ethod		

(ロ)、(型)、(E)、(E)、 E) のQで

A simplified extraction of features :


Classifier : a set of Random Forests

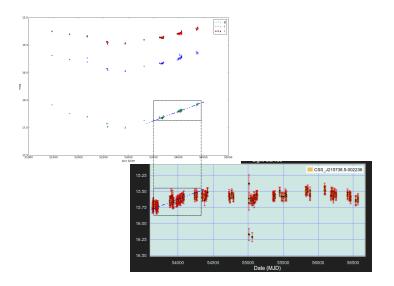
э

			Stripe 82 000000000000000000000000000000000000	
Fusion of	of results	s (II)		

				Stripe 82 000000000000000000000000000000000000	
Results	and per	formand	ces (I)		

	$\operatorname{Recall}_{Quasar}$	Precision _{Quasar}	Recall _{Lyr+}	Precision _{Lyr+}
My work	95.3%	95%	52.4%	88.4%

ITAM-PASQUET J., et al., in preparation for A&A



- The algorithm found **43** light curves compatible with an obscuration event
- It did not make a mistake by considering that a quasar light curve is an obscuration event
- It did not make a mistake by considering that a pulsating star light curve is an obscuration event
- It did a mistake by considering that a galaxy light curve is an obscuration event...but it did not learn what looks like a light curve of galaxy

ITAM-PASQUET J., et al., in preparation for A&A

Introduction NGC 4833 HST data Simulations Stripe 82 ocoococococo First conclusions Outlook

Example of discoveries

Conclusions of my work up to now

My results :

- Variable object detection has till now identified and compatible with the passage through a clump in the line of sight in different directions in the Galaxy
- Great performances of my classification method
- Modelling of the problem and estimation of the likelihood of occuring of the phenomenon consistent with observations

What I learned :

- Increased my knowledge of the small structures of the Interstellar medium
- Gained photometric expertise
- $\bullet\,$ developped skills in the classification of variable objects $\rightarrow\,$ big data

æ

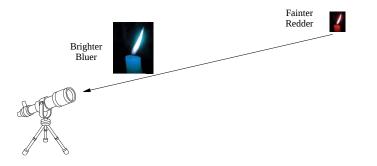
Conclusions of my work up to now

My results :

- Variable object detection has till now identified and compatible with the passage through a clump in the line of sight in different directions in the Galaxy
- Great performances of my classification method
- Modelling of the problem and estimation of the likelihood of occuring of the phenomenon consistent with observations

What I learned :

- Increased my knowledge of the small structures of the Interstellar medium
- Gained photometric expertise
- $\bullet\,$ developped skills in the classification of variable objects $\rightarrow\,$ big data

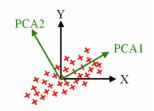


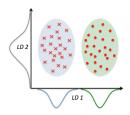
- LSST can map the entire visible sky in just a few nights; each panoramic snapshot with the 3200-megapixel camera covers an area 40 times the size of the full moon.
- 10 years survey of the sky
- 37 billion stars and galaxies
- Three central considerations dictated the design of LSST :

			Stripe 82 00000000000000	
Superno	ovae la			

- Type Ia supernovae can be used as well-calibrated standard candles
- measurements of the relation between cosmological distance and redshift \rightarrow the strongest contemporary evidence for an accelerating cosmological expansion

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで


Introduction 00000			Stripe 82 00000000000000	Outlook oo●ooooooo
Transier	nt			


Automatic detection of transients I

Du Buisson et al. (2015) :

- machine learning detection of SDSS (Sloan) Transient Survey Images to detect supernovae
- Concate to a single vector with 51×51×3 dimension (size of the images*three filters)
- Feature extraction : Principal Component Analysis

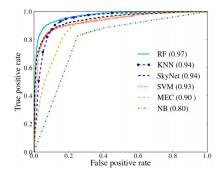
• Feature extraction : Linear Discriminant Analysis

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

Automatic detection of transients II

Simulations

Stripe 82


HST data

They used different classifiers :

- Random Forest (RF)
- Minimum Error Classification (MEC)
- Naive Bayes (NB)

NGC 4833

- K-Nearest Neighbours (KNN)
- Support Vector Machine (SVM)
- Artificial Neural Network (ANN)

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

э

First conclusions

Outlook

Introduction

Problems with the features

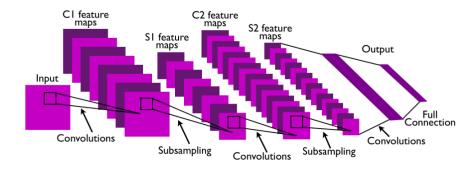
- Features are not specific for image processing (Du Buisson et al. (2015))
- Extraction could be incomplete with high level features (Goldstein et al., 2015)

Problems with the classifier

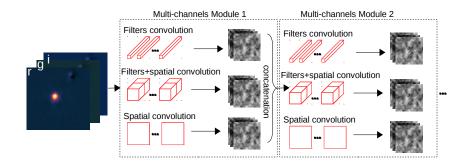
- Features normalization
- Feature extraction step and classification step are separated

What could be the solution?

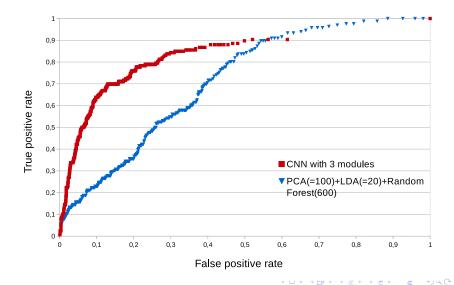
Problems with the features

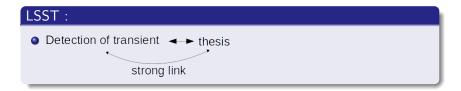

- Features are not specific for image processing (Du Buisson et al. (2015))
- Extraction could be incomplete with high level features (Goldstein et al., 2015)

Problems with the classifier

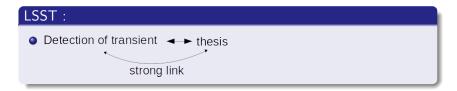

- Features normalization
- Feature extraction step and classification step are separated

What could be the solution?





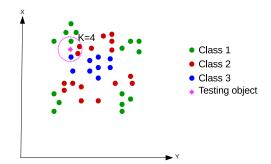
Preliminary results


	NGC 4833 000000000		Stripe 82 0000000000000000	Outlook 000000000●
Conclus	ions			

My expertises

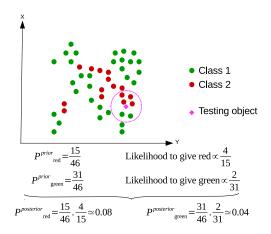
- Expertise photometry
- Automatic Classification methods
- Future : Deep learning

			Stripe 82 0000000000000	
Conclus	ions			



My expertises :

- Expertise photometry
- Automatic Classification methods
- Future : Deep learning



			Stripe 82 000000000000000	
KNN C	lassifier			

In this example, the KNN algorithm predicts that the testing object belongs to a class 2.

In this example, the NaiveBayes algorithm predicts that the testing object belongs to a class red.

Introduction NGC 4833 HST data

i

Simulation

Stripe 82

=

First conclusions

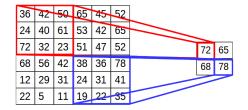
Outlook 0000000000

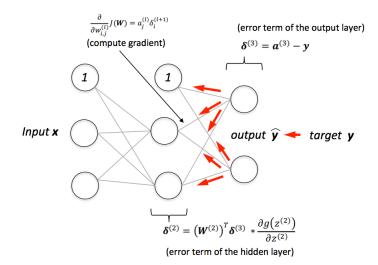
Convolution

			J		
3	5	40	41	45	50
4	0	40	42	46	32
5	1	39	29	32	35
2	5	43	44	30	39
5	5	35	30	28	41

*

0	0	0
0	0	1
0	1	0


	0	0	0	0	0
	0	81	75	64	0
	0	72	76	65	0
I	0	79	60	67	0
	0	0	0	0	0



*

		Stripe 82 00000000000000	
Pooling			

HST data Physical characteristics of clumps

• Equilibrium of self-gravitating (virial equilibrium) :

Simulations

$$\Omega + 2T = 0 \tag{4}$$

First conclusions

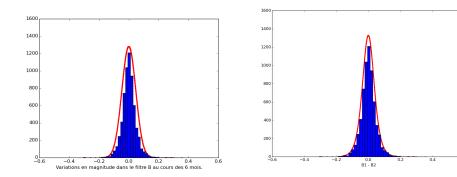
Outlook

$$R_{vir} = 7au \left(\frac{M}{10^{-3}M_{\odot}}\right) \left(\frac{T}{10K}\right)^{-1}$$
(5)
(Lawrence, 2001)

Stripe 82

• Once a fragment becomes opaque to its own radiation, it will radiate almost as a blackbody. The mass of the smallest fragment is obtained by considering that the rate of radiation loss \sim the rate of gain in gravitationnal energy.

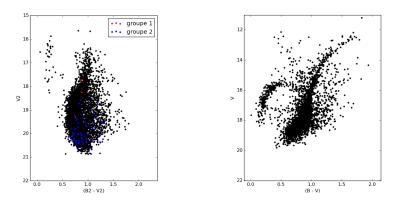
$$M \sim 0.007 \frac{T^{\frac{1}{4}}}{\mu^{\frac{9}{4}}} M_{\odot} \tag{6}$$


• If $T \in [3K, 10K]$ and $\mu = 2.4, M \in [10^{-3}M_{\odot}, 2.10^{-3}M_{\odot}]$

51

Introduction

NGC 4833



Group 1 : magnitudes with photometric uncertainties < 0.02 mag and beyond 3 σ

statistical significance

Group 2 : magnitudes with photometric uncertainties \geq 0.02 mag and beyond a 3 σ statistical significance

Structure fractale du nuage : idées générales

• La distribution de taille des sous-structures dans un fractal suit l'équation (Mandelbrot, 1983) :

$$N(\lambda > L) \propto L^{-D} \tag{7}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

où N est le nombre de structures auto-similaires sur une échelle λ plus grande que *L*, et *D* est la dimension fractale.

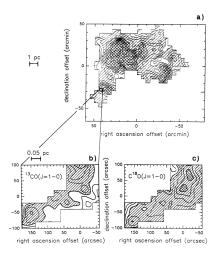
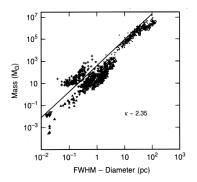
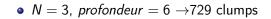


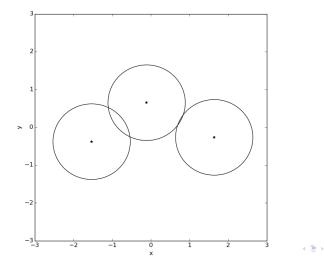
Figure : Carte d'intensité intégrée sur le champ de Persée (Falgarone, 1991)

・ロト ・聞ト ・ヨト ・ヨト

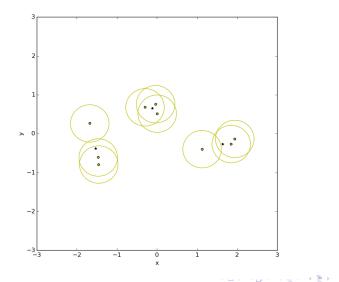
э

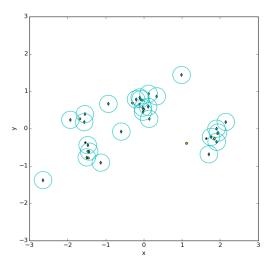
• Les nuages interstellaires moléculaires ont une distribution de masse en loi de puissance : $M \propto L^{\kappa}$

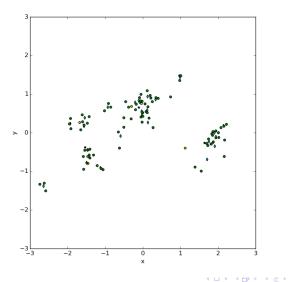

Figure : Masse des nuages versus taille de la FWHM en CO dans l'Ophiuchus, la nébuleuse de la Rosette, le nuage de Maddalena-Thaddeux et des nuages galactiques (Falgarone, 1996)

Génération d'un nuage hiérarchique fractal en 3D par fragmentation récursive :


- Distribution aléatoire de N centres de "sous-nuages" dans une sphère de rayon R_{max} selon une loi de densité 3D, $\rho(r, r_L)$ avec r_L l'échelle de longueur
- Réduction de l'échelle de longueur par un facteur spatial de réduction $\alpha = \frac{r_{L-1}}{r_L} = N^{-\frac{1}{D}}$ et redistribution aléatoire de N centres de "sous-sous nuages"
- Au dernier niveau de récursivité : distribution aléatoire de N^L clumps

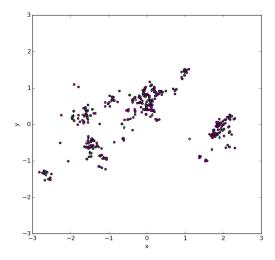


Méthodologie du code fractal


æ

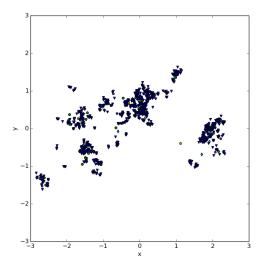
Méthodologie du code fractal

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで


Méthodologie du code fractal

≣ । ≣

61


Méthodologie du code fractal

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

62

Influence des paramètres de structure

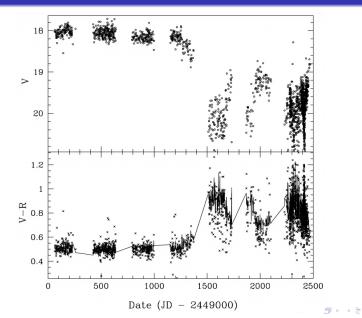
• Simulations : 6 * 100 k étoiles

D=1.5	Plummer	gaussien	pseudo-isotherme
# interactions	13	190	256
$A_{v,max}$ moyen	7.95	5.37	5.63
D=1.8			
# interactions	18	146	46
$A_{v,max}$ moyen	4.15	4.93	3.76
D=2.0			
# interactions	8	21	46
$A_{v,max}$ moyen	4.64	7.68	5.48

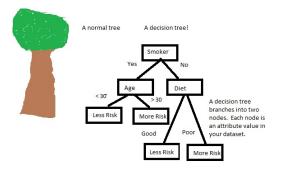
 Introduction
 NGC 4833
 H

 00000
 000000000
 0

33 HST data


Simulat

Stripe 82 00000000000 First conclusion


Outlook 0000000000

э

Drake et Cook

			Stripe 82 0000000000000	
Arbre de	e décisio	n		

