Hadronic Resonances in Heavy-Ion Collisions

Anders Knospe The University of Houston 6 June 2016

Starting at the Beginning

Knospe

Transition to hadronic matter:

Time ~ 10 μ s Temp. ~ 2×10¹² K

2

Quark-Gluon Plasma (QGP)

"soup" of deconfined quarks and gluons

inflation

fundamental forces separate

Big Bang

(De)confinement

- Asymptotic freedom \rightarrow confinement at large distances:
 - As interquark distance increases, it becomes energetically favorable to create a new $q\bar{q}$ pair.
- Asymptotic freedom \rightarrow deconfinement for large energy densities:
 - Compress or heat hadronic matter to a sufficient energy density (0.3–1 GeV/fm³)
 - QCD vacuum "melts" and turns from color dielectric to color conductor
 - Leads to deconfined (but not isolated) quarks and gluons
 - A "soup" of quarks and gluons: the Quark-Gluon Plasma (QGP)

Asymptotic Freedom

Knospe

- 2004 Nobel Prize in Physics:
 - D. Gross, H. D. Politzer, and F. Wilczek
 - "for the discovery of asymptotic freedom in the theory of the strong interaction"

 "Before [QCD] we could not go back further than 200,000 years after the Big Bang. Today...since QCD simplifies at high energy, we can extrapolate to very early times when nucleons melted...to form a quark-gluon plasma." – D. Gross, Nobel Lecture

Lattice QCD

- Predictions of phase transition from Lattice QCD
- Calculation of ε/T⁴ vs.
 Temperature
 - $\varepsilon/T^4 \sim #$ degrees of freedom
- For *T*~150 MeV, sharp increase in degrees of freedom: hadrons → quarks and gluons
- Typical estimates: T_C = 150

 180 MeV (10⁵× hotter than the core of the sun)

QCD Phase Diagram

- Baryon chemical potential: related to matter-antimatter asymmetry
- In very high-energy collisions, most particles are produced in the collision itself → matterantimatter symmetry
- Crossover or 1st-order phase transition between hadron gas and QGP
- Critical point?

How to Make QGP

- Introduce large amount of energy into a space the size of an atomic nucleus.
 - Collide heavy ions: Au, Pb, U to produce large volume of QGP
- Baselines for heavy-ion measurements:
 p+p collisions: no QGP
 - Asymmetric collisions: *d*+Au, *p*+Au, *p*+Pb
 - No QGP, but still large volumes of "cold" nuclear matter

Time Evolution

Knospe

$\pi,\,K,\,p,\,\dots$ time $\pi,\,K,\,p,\,\ldots$ T_{fo} Ţ_{ch} Mid Rapidity Freeze Out T_c Freeze Out Hadron Gas Beam Rapidity Chemical Freeze. Hadron Gas Mixed Phase? re-Hadronic Phase QGP Hydrodynamic Pre-Equilibrium **Evolution** Phase (< τ_0) Incoming Mixed Collision sQGP Hadron gas nuclei phase

Collision Centrality

- Centrality: amount of overlap between nuclei
- Impact parameter: distance between centers of nuclei
- Cannot measured impact parameter directly; measure
 - Charged particle multiplicity (mostly π^{\pm} , K^{\pm} , p, and \overline{p})
 - Number of spectator neutrons (pass through the collision unaffected)
 - Use models to map these measurements into impact parameter

ALICE Pb+Pb Collision

Heavy-Ion Physics

- Heavy-ion collisions are not simple superpostions of nucleon-nucleon collisions.
- Ultrarelativistic heavy-ion collisions produce a quark-gluon plasma: a strongly coupled "soup" of deconfined quarks and gluons.
- The QGP absorbs energy, leading to suppression of high-momentum hadrons and jets, but not of colorless probes (γ , W^{\pm} , Z).

– Nuclear Modification Factor (R_{AA}) ...

• The QGP appears to be a thermalized "perfect liquid" with a viscosity near 0. Its behavior, including elliptic flow, is well described by ideal hydrodynamics.

Outline

- Resonances in ALICE:
 - What resonances do we study?
 - Why do we study resonances?
 - How do we study them?
 - Important recent results
- Resonances in EPOS

Resonances

- What particles do we study?
 - Hadronic states with short lifetimes (~ lifetime of fireball)
 - For practical reasons, we prefer resonances with only charged particles at the end of the decay chain.

Resonances

- What particles do we study?
 - Hadronic states with short lifetimes (~ lifetime of fireball)
 - For practical reasons, we prefer resonances with only charged particles at the end of the decay chain.

ALICE Resonance Program Knospe

Comprehensive studies: pp, p–Pb, Pb–Pb

15

Results for pp, ongoing studies for p–Pb and Pb–Pb

Advanced studies (but few public results)

Other Studies:

Hadronic Phase

- Reconstructible resonance yields affected by hadronic processes after chemical freeze-out:
 - Regeneration: pseudo-elastic scattering of decay products
 - e.g., $\pi K \rightarrow K^* \rightarrow \pi K$
 - Re-scattering:
 - Resonance decay products undergo elastic scattering
 - Or pseudo-elastic scattering through a different resonance (e.g. ρ)
 - Resonance not reconstructed through invariant mass

Hadronic Phase

- Reconstructible resonance yields affected by hadronic processes after chemical freeze-out:
 - Regeneration: pseudo-elastic scattering of decay products
 - e.g., $\pi K \rightarrow K^* \rightarrow \pi K$
 - Re-scattering:
 - Resonance decay products undergo elastic scattering
 - Or pseudo-elastic scattering through a different resonance (e.g. ρ)
 - Resonance not reconstructed through invariant mass
- Final yields at kinetic freeze-out depend on
 - Chemical freeze-out temperature (T_{ch})
 - Time between chemical and kinetic freeze-out (Δt)
 - Resonance lifetime
 - Scattering cross sections
- Can use measured resonance yields to study these properties
- Re-scattering and regeneration expected to be most important for p_T < 2 GeV/c (UrQMD)

Knospe 23 **Chiral Symmetry Restoration**

Chiral Symmetry $m_a \rightarrow 0$

- Quark condensate <0|qq|0> fills QCD vacuum ۲
- Effective q masses related to value of condensate: $m_{q}^* \propto \langle 0|\bar{q}q|0 \rangle$ ٠
- Lattice calculations indicate decrease in condensate around chiral • phase transition temperature
 - Tends to be near deconfinement phase transition

M. Cheng et al., Phys. Rev. D 77 014511 (2008)

²⁴ Chiral Symmetry Restoration Knospe</sup>

Chiral Symmetry $\iff m_q \rightarrow 0$

- Quark condensate <0|qq|0> fills QCD vacuum
- Effective q masses related to value of condensate: $m_q^* \propto \langle 0|\overline{q}q|0 \rangle$
- Lattice calculations indicate decrease in condensate around chiral phase transition temperature
 - Tends to be near deconfinement phase transition
- Particles that decay when chiral symmetry was at least partially restored expected to have mass shifts and/or width broadening
 - Need particles that decay early (*i.e.*, resonances) AND have decay products that pass through the hadronic phase without scattering

Particle Production

- φ meson has long enough lifetime that we may be able to treat it as a stable particle
 - No major modifications to spectrum or yields due to re-scattering or regeneration
- Compare ϕ to models (VISH, HKM, Kraków, EPOS, ...)

Hydrodynamics: – Particle masses determine shapes of spectra Quark Recombination: – Number of quarks influences shapes of spectra – Differences between baryons and mesons with similar masses

- Strangeness content
 - Strangeness enhancement
 - Is φ (hidden strangeness) enhanced similarly to Ξ (S=2)?

Resonances in pp and p-Pb Knospe

• Resonances in pp:

26

- Baseline measurement to which heavy-ion measurements are compared:
 - Masses and widths
 - Yields and ratios to stable particles
 - Nuclear Modification Factor (R_{AA})
 - Comparison to peripheral Pb–Pb
 - Multiplicity-dependent measurements
- Constrain QCD-inspired models
 - Particle spectra/ratios used to tune PYTHIA
- Resonances in p–Pb
 - Baseline measurement to control for cold nuclear matter effects
 - Probe parton distribution functions at low x
 - Searches for collective behavior

ALICE Detector

Find decay products

Find π^{\pm} , K[±], p, \overline{p} : -Track cuts: **# TPC Clusters** track χ^2 **DCA to primary vertex** others... -Particle Identification TPC energy loss ($n\sigma$) Time of Flight $(n\sigma)$ **Find intermediate decay** products (e.g., Λ): -Cuts on decay topology -Invariant mass

Phys. Rev. C 91 024609 (2015) <u>×10</u>³ **Find decay products** Counts/(1 MeV/c²) ϕ in Pb-Pb $\sqrt{s_{\text{NN}}}$ = 2.76 TeV, cent. 0-10% 1200 1000 **Construct** invariant 800 mass distributions 600 - Unlike-Charge Pairs Like-Charge Pairs 400 **Mixed-Event Background** $0.8 < p_{T} < 1 \text{ GeV/}c$ 200 ALICE 0 1.02 1.04 1.06 1.08 KK Invariant Mass (GeV/ c^2) ALI-PUB-67761 Example: Pb+Pb $\rightarrow X_{\phi} \rightarrow K^-K^+$ **Compute invariant mass** of decay-product pairs

 $M = \sqrt{m_1^2 + m_2^2 + 2E_1E_2 - 2p_1p_2\cos\alpha}$

Knospe

-5000

 ϕ in Pb-Pb $\sqrt{s_{\text{NN}}}$ = 2.76 TeV

1.02

1.01

1.03

KK Invariant Mass (GeV/c²)

1.04

1.05

Resonance Reconstruction Knospe

 Resonances measured in pp (0.9, 2.76, 5, 7, 13 TeV), p–Pb (5.02 TeV), and Pb–Pb (2.76, 5.02 TeV) collisions

33

Mass and Width (Pb–Pb)

Knospe

Phys. Rev. C 91 024609 (2015)

34

Ratios of Yields

- K*0/K
 - In Pb–Pb: strongly suppressed in central collisions w.r.t. peripheral, pp, p–Pb, or thermal model
 - Consistent with the hypothesis that re-scattering is dominant over regeneration
- - No strong dependence on centrality or collision system
 - φ lifetime ~10× longer than K*⁰,
 re-scattering effects not significant
 - Ratio for central Pb–Pb consistent with thermal model
- Ratios in p–Pb lie along trend from pp to peripheral Pb–Pb
- p–Pb Results: New paper on arXiv: 1601.07868

Ratios of Yields

- K*0/K
 - Values appear to follow same trend for both RHIC and LHC
 - Similar suppression of signal between pp and central A–A
- - Similar shapes in RHIC Au–Au and LHC Pb–Pb. Au–Au values tend to be larger than Pb–Pb, but consistent within uncertainties.
 - Ratio in d–Au fits into trend
 between pp and Au–Au (*cf.* p–Pb at LHC)
 - No strong energy or collision-system dependence between RHIC and LHC

Knospe

Phys. Rev. C 91 024609 (2015)

36
Non-equilibrium Model

Knospe

- Chemical non-equilibrium statistical hadronization model
 Phys. Rev. C 88, 034907 (2013)
- Factors $\gamma_q \neq 1$ and $\gamma_s \neq 1$ that modify u/d and s pair yields w.r.t. equilibrium values
 - γ_q≠1 when "source of hadrons disintegrates faster than the time necessary to re-equilibrate the yield of light quarks present."
- Gives ~flat K*/K ratio, may be inconsistent with measured K*0/K⁻

³⁸ Properties of Hadronic Phase Knospe</sup>

- Simple model:
 - Assume that any K^{*0} that decays before kinetic freeze-out will be lost due to rescattering, neglect regeneration, neglect lifetime increase due to time dilation
 - Simple exponential decrease in yield (τ = 4.16 fm/c) :

(Final) = (Initial) × $\exp(-\Delta t/\tau)$

- Take K^{*0}/K in pp as initial value, central Pb–Pb as final value: lifetime of hadronic phase would be $\Delta t = 2.25 \pm 0.75$ fm/c
 - But since we neglect regeneration and time dilation, treat this as a lower limit: <u>Δt > 1.5 fm/c</u>

³⁹ Properties of Hadronic Phase Knospe</sup>

- Model of Torrieri, Rafelski, *et al.* predicts particle ratios as functions of chemical freeze-out temperature and lifetime of hadronic phase
- Model Predictions:

⁴⁰ Properties of Hadronic Phase Knospe

- Model of Torrieri, Rafelski, *et al.* predicts particle ratios as functions of chemical freeze-out temperature and lifetime of hadronic phase
- Model Predictions:

[1] J. Phys. G 28, 1911 (2002)
[2] Phys. Rev. C 65, 069902(E) (2002)
[3] arXiv:hep-ph/0206260v2 (2002)

⁴¹ Properties of Hadronic Phase Knospe</sup>

- Model of Torrieri, Rafelski, *et al.* predicts particle ratios as functions of chemical freeze-out temperature and lifetime of hadronic phase
- Model Predictions:

[1] J. Phys. G 28, 1911 (2002)
[2] Phys. Rev. C 65, 069902(E) (2002)
[3] arXiv:hep-ph/0206260v2 (2002)

Mean p_{T} in Pb–Pb

- Mass ordering of $< p_T >$ observed
- <p_T> of K^{*0}, p, and φ is similar for central Pb–Pb
 Consistent with hydrodynamics
- $< p_T >$ splitting between p and ϕ for peripheral Pb–Pb
- Increase in $< p_T >$ from peripheral to central:

Mean p_{T} in p–Pb

- Approximate mass ordering in $< p_T >$
 - But $< p_T >$ of K^{*0} and ϕ greater than p and Λ
 - Is there a baryon/meson difference, or do resonances not obey mass ordering?
 - Same trend observed in pp

Mean p_{T} in p–Pb

- Approximate mass ordering in $< p_T >$
 - But $< p_T >$ of K^{*0} and ϕ greater than p and Λ
 - Is there a baryon/meson difference, or do resonances not obey mass ordering?
 - Same trend observed in pp

Mean p_{T} in p–Pb

- Approximate mass ordering in $< p_T >$
 - But $< p_T >$ of K^{*0} and ϕ greater than p and Λ
 - Is there a baryon/meson difference, or do resonances not obey mass ordering?
 - Same trend observed in pp

Knospe

- <p_T> in p–Pb increases more rapidly than Pb–Pb as a function of multiplicity
- Differences in <p_T> due to difference in particle production mechanisms? Harder scattering in p–Pb?

Knospe

Particle Production

- p/π and Λ/K_{S}^{0} vs. p_{T} from :
- What causes the shape of these ratios?
 - Particle masses (hydro)?
 - Quark content/baryon vs. meson (recombination)?
- To test: need a meson with a mass similar to the proton:
 - Nature has given us such a meson: φ

p/φ vs. p_T in Pb–Pb

- p/ϕ flat for central collisions for $p_T < 3-4$ GeV/c
 - Baryon/meson difference goes away if the two particles have the same mass. Consistent with hydrodynamics*
- Increasing slope for peripheral collisions
- Peripheral Pb–Pb similar to pp (7 TeV)
- Same trend seen in $\langle p_T \rangle$ (p and ϕ different for peripheral Pb–Pb)
- Different production mechanism for p, ϕ in central vs. peripheral, pp?

p/φ vs. p_T in Pb–Pb

- p/ϕ flat for central collisions for $p_T < 3-4$ GeV/*c*
 - Baryon/meson difference goes away if the two particles have the same mass. Consistent with hydrodynamics*
- Increasing slope for peripheral collisions
- Peripheral Pb–Pb similar to pp (7 TeV)
- Same trend seen in $\langle p_T \rangle$ (p and ϕ different for peripheral Pb–Pb)
- Different production mechanism for p, ϕ in central vs. peripheral, pp?

p/φ vs. p_T in p–Pb

- p/ϕ in low-multiplicity p-Pb similar to peripheral Pb-Pb and pp
- For $p_T > 1$ GeV/*c*: no multiplicity dependence in p–Pb
- For $p_T < 1$ GeV/*c*: decrease of p/ ϕ for high-multiplicity
 - Possible flattening of ratio: hint of onset of collective behavior in high-multiplicity p–Pb?

⁵¹ Nuclear Modification Factors Knospe</sup>

- In Pb–Pb:
 - Differences between p and φ due to differences in reference (pp) spectra
 - Strong suppression of all hadrons at high p_T
- In p–Pb:
 - No suppression of ϕ w.r.t. pp for $p_T > 1.5$ GeV/c
 - Intermediate *p*_T: Cronin peak for
 p, smaller peak for φ
 - Possible mass dependence or baryon/meson differences in R_{pPb}

$$R_{AA}(p_{T}) = \frac{\text{Yield}(A-A)}{\text{Yield}(pp) \times \langle N_{coll} \rangle}$$

Resonances in EPOS

- EPOS: a universal approach: same framework for pp, p–A, and A–A collisions
- Initial conditions: flux tubes generated in Gribov-Regge multiplescattering framework
 - Elementary object = Pomeron = parton ladder
 - Nonlinear effects: saturation scales $Q_s \propto N_{part} s^{\lambda}$
- Core/Corona:
 - String segments with high p_{T} escape \rightarrow corona (jets)
 - Others form "core" of bulk matter \rightarrow hydro initial condition
 - Depends on local string density
- 3+1D viscous hydro expansion, $\eta/s=0.08$
- Hadronization at 166 MeV (Cooper-Frye)
- Hadronic cascade: UrQMD

Resonances in EPOS

- New program unit
- Detect selected resonances (ρ , K*, ϕ , Δ , Σ *, Λ (1520), Ξ *)
- Identify their common hadronic decays
- Track the decay daughters, flag whether or not either decay product interacts
 - If neither decay product interacts, resonance flagged as reconstructible
- New Paper:
 - A. G. Knospe et al., Phys. Rev. C 93 014911 (2016)

Knospe

EPOS: K^{*0} and ϕ

 EPOS (with UrQMD ON) provides good descriptions of K^{*0} and φ p_T spectra in Pb–Pb collisions

55

- Agreement better for peripheral collisions
- Turning UrQMD OFF → worse description for central K^{*0}, no major changes for peripheral and φ

Knospe

EPOS: K^{*0} and ϕ

- EPOS (with UrQMD ON) provides good descriptions of K*⁰ and \u03c6 p_T spectra in Pb–Pb collisions
 - Agreement better for peripheral collisions
 - Turning UrQMD OFF → worse description for central K^{*0}, no major changes for peripheral and φ

Effect of UrQMD

Knospe

 Turning UrQMD (hadronic phase) on → low-p_T, centrality-dependent suppression of K*⁰ (re-scattering), less modification of φ

Particle Ratios in EPOS

Knospe

- Qualitatively describes centrality dependence of K*⁰/K suppression (re-scattering)
 - Overestimates values
- Good description of φ/K

Particle Ratios in EPOS

Knospe

• Strong centrality dependence for ρ/π and $\Lambda(1520)/\Lambda$

59

- Little modification of Ξ^{*0}/Ξ → long resonance lifetime and/or large regeneration cross section
- Little modification of Δ⁺⁺/p and Σ^{*±}/Λ → large regeneration cross section
 - Cf. Σ^{\pm}/Λ ratio from RHIC: not suppressed in central Au–Au

Particle Ratios in EPOS

Knospe

- Strong centrality dependence for ρ/π and $\Lambda(1520)/\Lambda$
- Little modification of Ξ^{*0}/Ξ → long resonance lifetime and/or large regeneration cross section
- Little modification of Δ⁺⁺/p and Σ^{*±}/Λ → large regeneration cross section
 - Cf. Σ^{\pm}/Λ ratio from RHIC: not suppressed in central Au–Au

Conclusions

- Central Pb–Pb: K*⁰ suppressed (re-scattering) φ not suppressed (longer lifetime)
- K^{*0}/K and ϕ/K ratios in p–Pb follow trend from pp to peripheral Pb–Pb
- For central Pb–Pb: $\langle p_T(K^{*0}) \rangle \approx \langle p_T(p) \rangle \approx \langle p_T(\phi) \rangle$ (consistent with hydrodynamics)
- Mass ordering violated for pp, p–Pb, peripheral Pb–Pb: <p_T(K*⁰, φ)> > <p_T(p,Λ)>
 - Baryon/meson difference?
- p/ϕ ratio flat vs. p_T for central Pb-Pb collisions ($p_T < 3-4$ GeV/c)
 - consistent with hydrodynamics
 - Possible onset of collective effects in p–Pb?
- Nuclear Modification Factors:
 - High- p_T suppression observed in central Pb–Pb (R_{AA}) but not in p–Pb
 - High- p_T behavior of ϕ similar to stable hadrons
 - Moderate ϕ Cronin peak (between π and p)
- New Results coming soon
 - Suppression of ρ^0 in Pb–Pb, baryonic resonances
 - Multiplicity dependent pp measurements
 - Run 2 data: pp 13 TeV and Pb–Pb 5.02 TeV
- Resonances in EPOS: new module flags reconstructible resonances
 - Re-scattering affects K^{*0} yields at low p_{T} , little effect for ϕ
 - Predictions of strong ρ/π and $\Lambda(1520)/\Lambda$ suppression, flat Σ^{\pm}/Λ to be tested...

Backup Material

p_{T} Dependence

Knospe

- Does K^{*0} suppression depend on p_T ? UrQMD: re-scattering strongest for p_T <2 GeV/*c*. •
- Expected p_{T} distribution from blast-wave model: .
 - Shape: parameters (T_{kin} , n, β) from combined fits of $\pi/K/p$ in Pb–Pb
 - Normalization: K yield × K^{*0}/K ratio from thermal model (T_{ch} =156 MeV)
- Central: K^{*0} suppressed for p_T <3 GeV/c, but no strong p_T dependence •
- Peripheral: K^{*0} not suppressed .

ALI-PUB-67849

No suppression of ϕ Phys. Rev. C 91 024609 (2015) Centrality 0-20% Centrality 60-80% (a) (b) d ²N/(dp_Tdy) (GeV/*c*) d ²N/(dp_Tdy) (GeV/*c*) 1 -ALICE 10 Ō 10 K*⁰ **o (** Pb-Pb $\sqrt{s_{\text{NN}}}$ = 2.76 TeV -blast-wave predictions 2 2 Data/Prediction Data/Prediction .5 1.5 Φ 0 0.5 0.5 00 0 2.5 0.5 0.5 1.5 2 3 1.5 2 2.5 3 $p_{\rm T} ({\rm GeV}/c)$ p_{τ} (GeV/c)

63

Mean p_T in A–A

- <p_T> appears to increase for more central Pb–Pb collisions w.r.t. peripheral and pp
- $< p_T >$ greater at LHC than RHIC
 - For K^{*0}: 20% larger For ϕ : 30% larger
- ALICE π,K,p spectra: global blast-wave fit shows ~10% increase in radial flow w.r.t. RHIC
 Phys. Rev. C 91 024609 (2015)

Λ(1520)

- Reconstruction in pp 2.76 TeV, pp 7 TeV, p–Pb 5.02 TeV, and Pb–Pb 2.76 TeV
- Decay channel: Λ(1520)→pK⁻
 - Decay products identified using TPC and TOF
- Mass from invariant-mass fits in pp and p-Pb: good agreement with vacuum value
- More information can be found in poster of R. C. Baral at Quark Matter 2014: https://indico.cern.ch/event/219436/session/2/contribution/197/material/poster/0.pdf

- Reconstruction in pp 7 TeV
- Decay channel: $\Sigma^0 \rightarrow \Lambda \gamma$
 - Photon identified through measurement of its conversion, and in PHOS (calorimeter)
- More information can be found in poster of A. Borissov at Quark Matter 2014: https://indico.cern.ch/event/219436/session/2/contribution/196/material/slides/0.pdf

Resonances in p+p Collisions

K*(892)⁰ and φ(1020)

- Similar to Pb+Pb analyses:
- p+p 900 GeV: 250 k minimumbias events
- p+p 7 TeV: 80 M (60 M) minimum-bias events for K^{*0} (φ)
- Use TPC for PID, plus TOF (if there is a signal)
- Mixed-event combinatorial BG
- Peak fits:
 - K*0: Breit-Wigner
 - φ: Voigtian
- Published

K*(892)⁰ and φ(1020)

- Similar to Pb+Pb analyses:
- p+p 900 GeV: 250 k minimumbias events
- p+p 7 TeV: 80 M (60 M) minimum-bias events for K^{*0} (φ)
- Use TPC for PID, plus TOF (if there is a signal)
- Mixed-event combinatorial BG
- Peak fits:
 - K^{*0}: Breit-Wigner
 - φ: Voigtian
- Published

$\Sigma^{*}(1385)^{\pm}$ and $\Xi^{*}(1530)^{0}$

- 250 M p+p events (MB)
- TPC PID for Σ^{*±} daughters
- Numerous topological cuts:
 - DCA
 - cos(pointing angle)
 - Fiducial volume
 - Invariant mass of Λ or Ξ^-

$\Sigma^{*}(1385)^{\pm}$ and $\Xi^{*}(1530)^{0}$

- 250 M p+p events (MB)
- TPC PID for $\Sigma^{\star\pm}$ daughters
- Numerous topological cuts:
 - DCA
 - cos(pointing angle)
 - Fiducial volume
 - Invariant mass of Λ or Ξ^-
- Mixed-event combinatorial BG
- $\Sigma^{\star\pm}$: complicated res. BG
 - Various sources of correlated Λπ pairs (e.g., Ξ⁻ and Λ* decays)
 - Shape of each contribution fit in MC, normalized using data
- For Ξ^{*0}: polynomial res. BG
- Paper in preparation

PYTHIA Comparisons

- PHOJET and PYTHIA ATLAS-CSC too soft
- PYTHIA D6T: reasonably good description
- PYTHIA Perugia 0: underestimates yield, but shape well reproduced
PYTHIA Comparisons

- PYTHIA Perugia 2011: reproduces K^{*0} and high- $p_T \phi$ well
- PHOJET and PYTHIA ATLAS-CSC overestimate spectra for $p_T < 1$ GeV/*c*, describe high p_T well
- PYTHIA D6T: deviates at high p_{T}
- PYTHIA Perugia 0: underestimates spectra

PYTHIA Comparisons

- **PYTHIA ATLAS-CSC** : good agreement for $p_T > 2 \text{ GeV}/c$ (too hard?)
- PHOJET and PYTHIA D6T under-predict spectra
- PYTHIA Perugia 2011: under-predicts yields, describes shapes

Pentaquarks

- $\Phi(1860)^{--}$ (ddssuī) and $\Phi(1860)^{0}$ (udssdī) would have $\Xi^{-}\pi^{\pm}$ decay channels, similar to Ξ^{*0}
- Observed by NA49
- ALICE sees no significant signal

Pentaquarks

- $\Phi(1860)^{--}$ (ddss \overline{u}) and $\Phi(1860)^{0}$ (udss \overline{d}) would have $\Xi^{-}\pi^{\pm}$ decay channels, similar to Ξ^{*0}
- Observed by NA49
- ALICE sees no significant signal

Hadron-Resonance Correlations

⁷⁸ Hadron-Resonance Correlations

- To probe QGP: compare resonances that passed through medium with those that did not
 - Hadron-resonance correlations

Angular Correlations

- Angular Correlation of trigger hadron with a φ meson
 - $p_{T}(h)>3 \text{ GeV/}c$
 - $p_T(\phi)$ >1.5 GeV/c

Knospe

ALI-PREL-10867

79

80

Mass and Width vs. $\Delta \varphi$

Knospe

mass/average value

- ϕ mass and width as a function of angle ($\Delta \phi$) w.r.t. leading hadron
- *p*_⊤(h)>3 GeV/*c*
- *p*_T(φ)>1.5 GeV/*c*
- Measured values divided by average value
- No clear difference in behavior between p+p and Pb+Pb

width/average value

- In Pb+Pb: no mass shift or width broadening observed in away side
 - However: ϕ signal may be dominated by non-jet ϕ for this p_T range

$\phi \rightarrow \mu^{-}\mu^{+}$

- - Absorber, tracking and trigger stations, dipole magnet at forward rapidity (-4< η <-2.5)

 Signal extracted by fitting dimuon invariant-mass distribution with hadronic cocktail:

 Measured in pp collisions at 2.76 TeV and 7 TeV, Pb–Pb collisions

PHOJET and PYTHIA D6T

Best agreement with PHOJET, PYTHIA D6T and ATLAS-CSC

⁸⁵ Nuclear Modification Factor Knospe</sup>

- *R*_{AA} for μμ channel at forward rapidity seems to follow different trend (greater slope) than KK channel at mid-rapidity
 - Different hydrodynamic push in the two rapidity ranges?

⁸⁶ In p–Pb: Forward vs. Backward

- Rapidity asymmetry in particle production
- HIJING and DPMJET describe charged-particle production well, but tend to underestimate φ.

⁸⁷ In p–Pb: Forward vs. Backward

- Forward/Backward ratio (in common y window)
 Flat (≈0.5) with p_T
- HIJING qualitatively describes rapidity asymmetry and describes R_{FB}

 Backward (Pb-going): Cronin peak? (bigger than at midrapidity) or final-state effect (radial flow)?

- Forward (p-going): increases with $p_{\rm T}$, then saturates around 1 for $p_{\rm T}$ >3 GeV/*c*
- Backward (Pb-going): Cronin peak? (bigger than at midrapidity) or final-state effect (radial flow)?
- Similar behavior observed in d–Au collisions (PHENIX)

