STEREO electronics overview

JL. Bouly, G. Bosson, O. Bourrion, J. Bouvier, C. Li, N. Ponchant, D. Tourres, C. Vescovi

CNRS-IN2P3-LPSC Grenoble

1er Juin 2016

- Overview
 - General requirements
 - Electronics overview
 - First level triggering and processing
- 2 Front-end description
 - Specifications
 - Hardware
 - Firmware
 - FE8 ↔ TRB communication
- 3 Trigger and readout description
 - Hardware
 - Firmware
- 4 LED board
 - Hardware
 - Firmware

General requirements

- Monitor 68 channels required in 3 classes (for triggering)
 - 24 PMT for Gamma catcher
 - 24 PMT for target (gadolinium-loaded liquid scintillator)
 - 20 PMT for muon veto (Cerenkov detector)
- Withstand a mean trigger rate of 1 kHz
- Have no dead-time (pile-up excepted)
- Manage various trigger schemes and conditions (coincidence and anti-coincidence)
- \bullet Process signals on board: compute $Q_{\rm tot}$ and $Q_{\rm tail}$ for Pulse Shape discrimination (PSD)

Electronics overview

- Trigger board (TRB) for: triggering, FE readout and LED control
- $\bullet \ \, \text{Communication FE} \leftrightarrow \text{Trig Board with custom protocol} \\$
 - Readout and slow control via IPBus (Secured UDP from CERN)

First level triggering (T1) and processing

- FE emits a trigger when at least one PMT signal > trig threshold
- Confirmed trigger (T1a) reception initiate PSD processing

- Beginning of signal is to be found with a Constant Fraction Discriminator (CFD) having its own threshold (above noise)
- Adjustable parameter defined prior to run
- \bullet $N_{\rm tot}$ represents typical pulse duration
- \bullet $N_{\rm sample}$ time window for analysis and samples to record in debug mode

- Overview
 - General requirements
 - Electronics overview
 - First level triggering and processing
- 2 Front-end description
 - Specifications
 - Hardware
 - Firmware
 - FE8 ↔ TRB communication
- 3 Trigger and readout description
 - Hardware
 - Firmware
- 4 LED board
 - Hardware
 - Firmware

Front-end 8 (FE8) specifications

- 8 channels board (13 bit ADC @250 MSPS, dynamic range 1.0 V)
- Preamplifier + amplifier with 2 selectable gains, e.g x1 and x20
- The ADC input feature anti-aliasing filter (80 MHz)
- Readout by custom serial protocol, slow control by IPBus
- First level trigger on amplitude **OR** charge, selectable by mask :
 - Individual channel
 - sum of first 4 channels
 - sum of last 4 channels
 - sum of 8 channels
- Trigger bit inserted in the data flow
- Each channel has a high pass IIR to suppress pedestal
- Scalers for individual PMT monitoring
- ullet CFD and PSD for each channel. Q_{tot} and Q_{tail} computed on board
- Transfer of $Q_{\rm tot} \times 8$, $Q_{\rm tail} \times 8$, zero crossing $\times 8$
- \bullet Optional debug mode to readout the $N_{\rm samples}$ used to compute CFD and PSD

FE8 hardware

- Main FPGA: XC7K70-2TFBG676,
- ullet ADC: Texas Instrument ADS42LB49 (AC coupled, $f_{\rm c} > 30\,{\rm kHz})$

8/21

FE8 firmware overview

Parameters are in red

Pipelined processing: 1st CFD, then PSD, then data concentrated and finally serialized

FE8 ↔ TRB communication

 Serial link operated at 125 Mbit/s, typical frame content: 4 words of 32 bit (mandatory) N_{samples} words of 16 bit (optionnal)

Q_{tot} ch0 Q_{tot} ch0 Time offset ch0 Param ch0 smp₀ ch0 smp₁ ch0 smp_{Noampion 1} ch0 Q_{tot} ch1 Q_{tot} ch1 Time offset ch1 Param ch1

Average trigger rate limitation due to serial link

- In normal mode, rate limited at 125MHz/(4x32x8)=122 kHz.
- In debug mode, rate limited at 13.5 kHz (worst case, 64 samples).
- CFD time offset word contains:
 - N_ZC: relative offset of the CFD threshold crossing
 - Y1, Y2: CFD values before and after threshold crossing
- Param word contains:
 - ADC or IIR overflow: 1 bit
 - Trigger source bit (channel, sum4, sum8): 3 bit mask
- Triggering path at 250 MHz (to be sample accurate)
- ⇒ Delay from candidate trigger to confirmed trigger, a **circular buffer** is required in the front-end (about 120 ns or 30 samples)

- Overview
 - General requirements
 - Electronics overview
 - First level triggering and processing
- 2 Front-end description
 - Specifications
 - Hardware
 - Firmware
 - FE8 ↔ TRB communication
- 3 Trigger and readout description
 - Hardware
 - Firmware
- 4 LED board
 - Hardware
 - Firmware

Trigger and Readout Board (TRB)

NAT-MCH and extensions (2 boards)

- Tongue 1: NAT-MCH featuring an Ethernet switch.
- Tongue 2: Clock trees (FCLKA, TCLKA), clock reception (TCLKB)
- Tongue 3: Main board with FPGA (XC6SLX45T-FGG484), power, Ethernet (GTP and spare phy)
- Tongue 4: Fast SMA inputs, RJ45 (spare Ethernet, LED box control)

TRB firmware

- MEB is implemented: up to 84 (normal)/6 (debug) consecutive triggers can be accepted (if separated by N_s amples \times 4 ns)
- T1 trig function.
- T2: event selection in hardware (FSM_select)
- 🤌 In calibration mode (LED) several pattern sequences are possible.

13 / 21

C. Vescovi STEREO electronics

Triggering

T1 trigger

- For now OR of the trigger issued by the FE8.
- FE8 triggers can be individually masked.
- Accepted and rejected T1 are monitored (32 bit counters).

T2 trigger

- Performed after T1 upon data reception in TRB.
- Event suppressed are not stored in DAQ_FIFO.
- For now T2 on coincidence is implemented: event is kept if the number of CFD thresholds crossed is above a programmed value for the whole system.
- Not monitored.

Typical readout frame

Common header:

- Word[0]: DATE LSB
- Word[1]: DATE MSB
- Word[2]: LED pattern
- Word[3]: T_VETO

Details:

- DATE is produced by a 32-bit counter incremented every 4 ns, recorded at T1a.
- T_VETO: time since previous veto trigger, resolution of 128 ns, 16-bit counter (max time 8.38 ms)

One channel data:

- Word[off+0]: Q_tot LSB
- Word[off+1]: Q_tot MSB
- Word[off+2]: Q_tail LSB
- Word[off+3]: Q_tail MSB
- Word[off+4]: CFD_time LSB
- Word[off+5]: CFD_time MSB
- Word[off+6]: Param word
- Word[off+7]: sample[0]
- Word[off+8]: sample[1]
- Word[off+...]: sample[i]

Trigger rate in normal mode above 1 kHz (related to the readout rate of the acquisition computer).

15 / 21

- Overview
 - General requirements
 - Electronics overview
 - First level triggering and processing
- 2 Front-end description
 - Specifications
 - Hardware
 - Firmware
 - FE8 ↔ TRB communication
- Trigger and readout description
 - Hardware
 - Firmware
- 4 LED board
 - Hardware
 - Firmware

LED board hardware

- Slow control by IPBus (for LED voltage level and BPI programming)
- LED pattern and timing are selected and driven by the trigger board.

LED box driver and led box

$\frac{1}{5}$ LED_box_driver from LED_board

$\frac{1}{6}$ LED_driver from LED_box

Courtesy from G. Bosson

- Each LED box contains 6 LED and a discrete LED driver.
- LED light driver supplied and driven via a single coax cable:
 - LED light level set by mean voltage (DAC setting via IPBus)
 - 2 Square pulse > 2 V fires the LED (generated by FPGA)

LED board firmware

- Use IPBus to configure DAC and select the LED boxes to drive.
- Serial data frame is used to set the required pattern (for instance incremental pattern).
- After each serial frame, a led pulse trigger is sent by the trigger board to activate the LED pattern.

- Overview
 - General requirements
 - Electronics overview
 - First level triggering and processing
- 2 Front-end description
 - Specifications
 - Hardware
 - Firmware
 - FE8 ↔ TRB communication
- 3 Trigger and readout description
 - Hardware
 - Firmware
- 4 LED board
 - Hardware
 - Firmware
- 5 Summary

Summary

- FE8, LED_board and TRB validated on prototype experiment.
- Spare boards available: 2 FE8, 1 LED_board, 1 TRB
- Firmwares can be remotely updated, evolutions are possible, just ask.

More details can be found in arXiv:1510.08238

