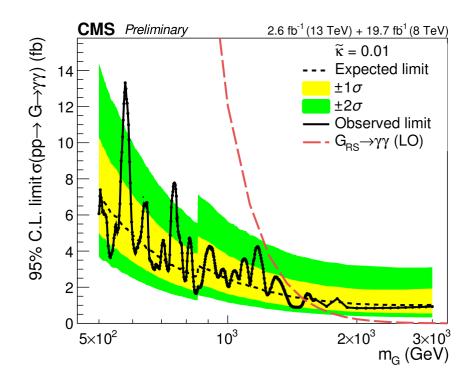
A new resonance at 750 GeV? Interpretation in the plain/phenomenological MSSM

Abdelhak DJOUADI CNRS-Orsay & Univ. Paris-Sud)

1. A new resonance at 750 GeV? 2. The heavier H/A states of the MSSM? 3. Charginos at the $\frac{1}{2}M_A$ threshold 4. The light stop scenario 5. Conclusion

GDR Nantes, 23/05/2016

The 750 GeV state in the MSSM – Abdelhak Djouadi – p.1/15


1. A new resonance at 750 GeV?

ATLAS di-photon results: 3.9 σ local excess at 13 TeV (and now about 2 σ from 8 TeV).

Events / 40 GeV AS Preliminar 10 ekground-only fit (s = 13 TeV, 3.2 fb1 Data - fitted background 15 10 1200 1400m, [GeV]

It has a smell of December 2011 the other Higgstorical day....

CMS di-photon results: 3.4 σ local excess at 8+13TeV (improvement since December).

Two possibilities: the biggest discovery since decades? the mother of statistical fluctuations?

GDR Nantes, 23/05/2016

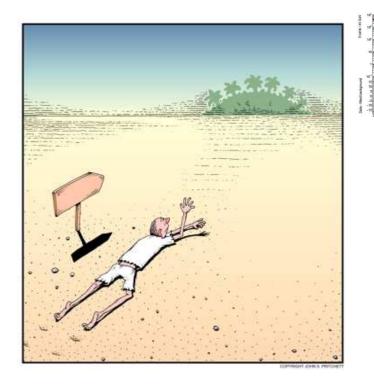
The 750 GeV state in the MSSM – Abdelhak Djouadi – p.2/15

1. A new resonance at 750 GeV?

And?

Experimentalists:

Too early to claim anything... it is only three poor sigmas!

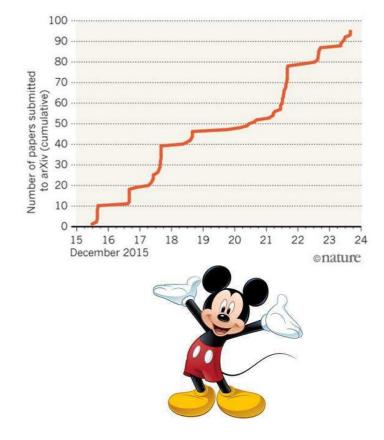

and if you insist a little bit:

So do your job and collect data (and leave the theorists enjoy!)

Poor theorists:

Waiting for new physics for 30 years, ¹ and recently started to get desperate... and something interesting appears.

GDR Nantes, 23/05/2016


1. A new resonance at 750 GeV?

Tsunami of theory papers trying to interpret the 750 GeV diphotons:

10 papers the very first day, 100 at the end of the year,

> 300 papers as of today..

Nature article/Dorigo/Jester blogs:

Florilège of explanations:

- cascading heavy quarks,
- collimated 2x2 photons,
- new gauge bosons Z'+X
- sgoldstinos and other SUSY,
- quirks, hidden valleys?
- statistical fluctuation...

But most papers are talking about a new heavy resonance:

- Dark matter mediators
- Technipions/Goldstones, ...
- Axions, radions/dilatons,...
- Gravitons or any spin 2...
- Higgs bosons...

and other possibilities...

I try two possible interpretations in the plain/pheno MSSM with Rp

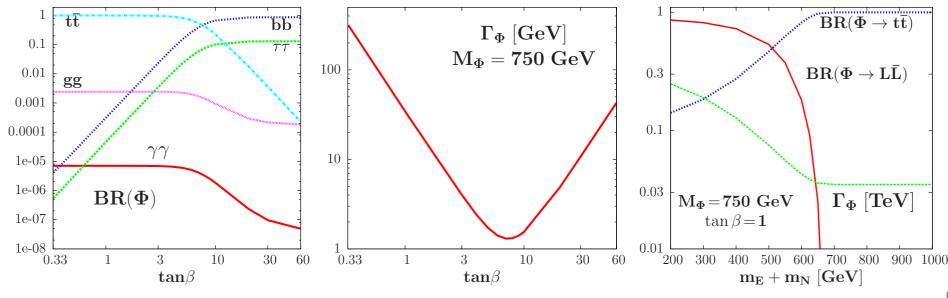
GDR Nantes, 23/05/2016

The 750 GeV state in the MSSM – Abdelhak Djouadi – p.4/15

In the MSSM we need two Higgs doublets: $H_1 = \begin{pmatrix} H_1^0 \\ H_1^- \end{pmatrix}$ and $H_2 = \begin{pmatrix} H_2^+ \\ H_2^0 \end{pmatrix}$. After EWSB: 3 dof for W_L^{\pm} , $Z_L \Rightarrow 5$ physical states left out: h, H, A, H^{\pm} General 2HDM: 6+1 free parameters: $tan\beta, \alpha, M_h, M_H, M_A, M_{H^{\pm}}, m_{12}$ MSSM: only two parameters at tree-level: $tan\beta, M_A$ but radcor important: $M_h \lesssim M_Z |cos2\beta| + RC \lesssim 130 \text{ GeV}$, $M_H \approx M_A \approx M_{H^{\pm}} \lesssim M_{EWSB}$

- Couplings of \mathbf{h}, \mathbf{H} to VV are suppressed; no AVV couplings (CP).
- For $an\!eta \gg 1$: couplings to b (t) quarks enhanced (suppressed).

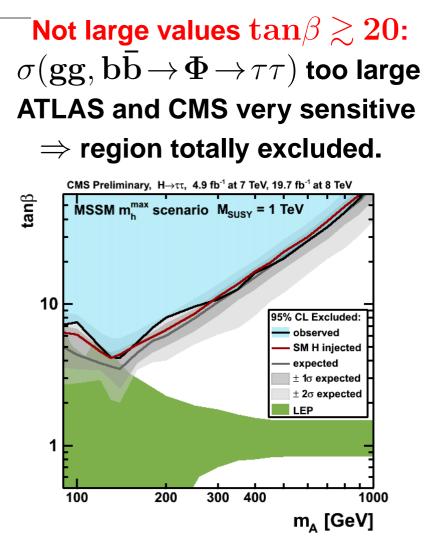
Decoupling limit of the MSSM: $M_A \approx M_H \approx M_{H^\pm} \gg M_Z$ and h light. Same as alignement limit of 2HDM: $\alpha = \beta - \frac{1}{2}\pi$ so as h couplings SM-like. 1 SM-like light h and 2 CP-odd like heavy Higgses with cplg to t,b, τ only $\Rightarrow h \equiv H_{SM}$, $\Phi = H, A$


GDR Nantes, 23/05/2016

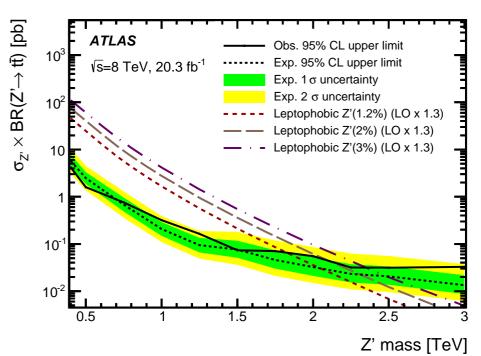
The 750 GeV state in the MSSM – Abdelhak Djouadi – p.5/15

Large width scenario (as in ATLAS): obtained from Φ -fermion couplings – couplings to massive gauge bosons all eaten by the SM–like 125 GeV h, – only couplings to fermions allowed: either tops, bottoms, or new ones...

 $\mathbf{g}_{\Phi tt} = \frac{\mathbf{m}_t}{\mathbf{v}} \cot \beta, \ \mathbf{g}_{\Phi bb} = \frac{\mathbf{m}_b}{\mathbf{v}} \tan \beta, \ \mathbf{g}_{\Phi \tau \tau} = \frac{\mathbf{m}_{\tau}}{\mathbf{v}} \tan \beta$


with $\tan\beta = v_2/v_1$ small $\tan\beta \approx 1$ or large $\tan\beta \approx m_t/m_b \approx 60$ - $\tan\beta \approx 1 : BR(\Phi \to t\bar{t}) \approx 1, BR(\gamma\gamma) \approx 10^{-5}, \ \Gamma_{\Phi} \approx 30$ GeV. - $\tan\beta \approx 60 : BR(\Phi \to b\bar{b}) \approx 0.9, BR(\gamma\gamma) \approx 10^{-7}, \ \Gamma_{\Phi} \approx 30$ GeV.

– $an\!eta$ pprox3–10: allow for light lepton (DM?) decays to get $\Gamma_{\Phi}pprox 30$ GeV.


GDR Nantes, 23/05/2016

The 750 GeV state in the MSSM – Abdelhak Djouadi – p.6/15

Valid only if no SUSY decays so that BR(H/A $\!\!\!\rightarrow \! \tau \tau$) maximal _OK in the MSSM with large $M_{\rm S}.$

Also not low values $\tan\beta \lesssim 1$: $\sigma(gg \rightarrow \Phi \rightarrow t\overline{t})$ too large ATLAS+CMS searches sensitive \Rightarrow region being excluded.

analysis valid only for spin–1 no interference with gg \rightarrow tt bkg (full Φ analysis in progress...)

GDR Nantes, 23/05/2016

The 750 GeV state in the MSSM – Abdelhak Djouadi – p.7/15

In principle and unfortunately the MSSM without new particle does not make it! Rates for $gg \rightarrow \Phi \rightarrow \gamma\gamma$ at the LHC: $\sigma(gg \rightarrow H) = 0.85$ fb @13 TeV $BR(H \rightarrow \gamma\gamma) \approx 6 \times 10^{-6}$ $\sigma(gg \rightarrow A) = 1.70$ fb @13 TeV $BR(A \rightarrow \gamma\gamma) \approx 7 \times 10^{-6}$ $\sigma \times BR(H + A) \approx 10^{-2}$ fb

We are short by at least factor 200...

Solution proposed in many instances:

Include a bunch of VL quarks/leptons with large Yukawa/charge/multiplicity

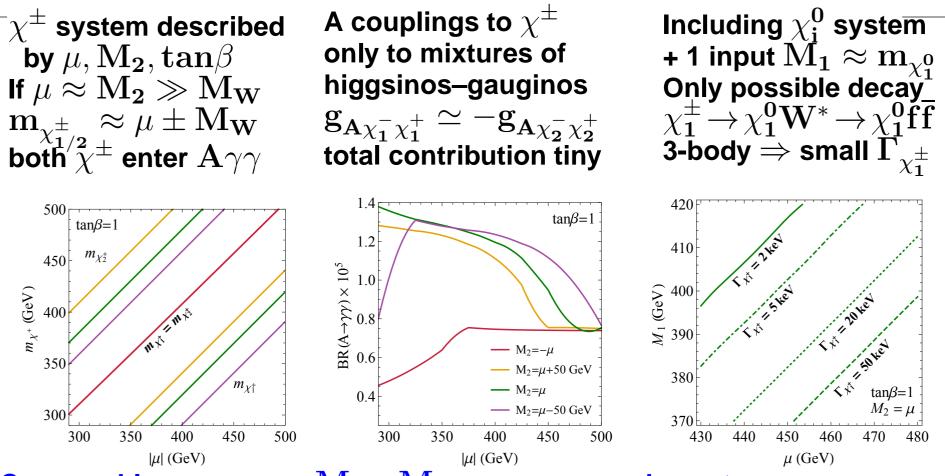
But watch out:

- perturbativity, EW data, LHC data
- and above all, for the light Higgs!

Angelescu+Moreau+AD:1512.04921 Ellis+ Godbole+Quevillon+AD:1601.03696

0.1 $d\sigma/dM_{\gamma\gamma}$ [fb/GeV] H + A0.08 $M_A = 750 \text{ GeV}$ $M_{H}\!=\!765~GeV$ 0.06 \mathbf{A} 0.040.02 0 600 650 700 750 800 850 $\mathbf{M}_{\gamma\gamma} \left[\mathbf{GeV} \right]$ 1000 and the second s 100 $\mathbf{K}_{\mathbf{gg} imes\gamma\gamma}^{\mathbf{H}+\mathbf{A}}$ 3x2 VLLs 3 dileptons 10 0.2 0.30.4 $0.5 \quad 0.6 \quad 0.7 \quad 0.80.9 \quad 1$ m_L [TeV]

GDR Nantes, 23/05/2016


The 750 GeV state in the MSSM – Abdelhak Djouadi – p.8/15

3. Charginos at the $\frac{1}{2}M_A$ threshold Maybe χ^{\pm} threshold enhancement of the $\mathbf{A} \to \gamma \gamma$ decay rate? Bharucha+Goudelis+AD: arXiv:1603.04464 H/S $\mathbf{A^{\Phi}_{1/2}}(\tau_{\mathbf{F}})$ 4.5A/PThreshold enhancement of $\gamma\gamma$ resonances 3.5 $\mathbf{A^{\Phi}_{1/2}}$ form factor for $\Phi \text{=H/A} \! \rightarrow \! \gamma \gamma$ 3 $\operatorname{Re}(A_{1/2}^{A/P})$ 2.5 $\operatorname{Im}(\mathbf{A}_{1/2}^{\mathbf{A}/\mathbf{P}})$ – larger for fermions than scalars 1.5- much larger for A than for H $\operatorname{Re}(A_{1/2}^{H/S})$ $Im(A_{1/2}^{H/S})$ 1 – maximal at the $2 m_{f}$ threshold 0.5 $Re = \pi^2/2, Im = 8\pi^2/m_f^2$ 0.3 3 0.1 0.55 10 $au_{\mathrm{F}}^{\mathrm{o.o}} = \mathrm{M}_{\Phi}^{2}/4\mathrm{m}_{\mathrm{F}}^{2}$ Threshold enhancement of $A_{1/2}^A$: 20 sit exactly (pprox MeV) at threshold $E_f = -5.73 \, \text{MeV}$ \Rightarrow Coulomb singularity at NLO 10 $E_f = -5.75 \,{\rm MeV}$ **Regulated by fermion total width** ĹL. 5 If fermion width Γ_{f} very small: very large enhancement factor $2 E_f = -5.8 \,\mathrm{MeV}$ $E_f = -5.9 \,\mathrm{MeV}$ $F = A_{NLO}^{1/2} / A_{LO}^{1/2} \gg 1$ 10^{-3} 10^{-6} 10^{-5} 10^{-4} Very contrived but plausible?? Γ_f (GeV)

GDR Nantes, 23/05/2016

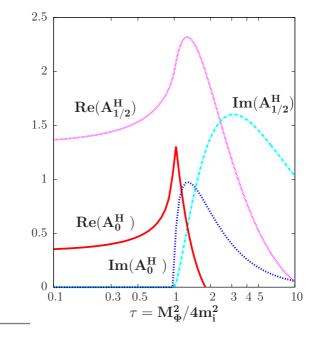
The 750 GeV state in the MSSM – Abdelhak Djouadi – p.9/15

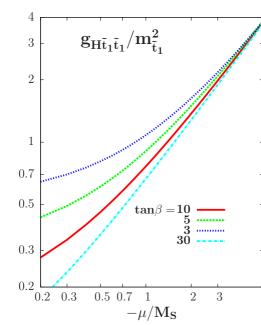
3. Charginos at the $\frac{1}{2}M_A$ threshold

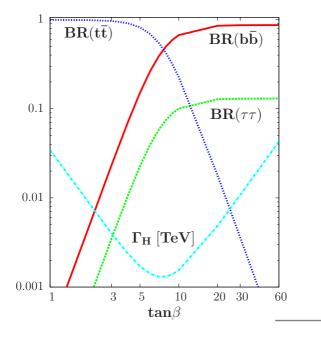
Comparable param. $\mu \approx M_2 \approx M_1 \Rightarrow$ compressed spectrum $m_{\chi_i^{\pm}} \approx m_{\chi_i^0}$

- Dilepton and trilepton searches: $pp o \chi_{i} \chi_{j} o n\ell + E_{t}^{mis}$
- Additional channels from ${\bf \tilde{g}} \to \chi {\bf jj}$ and ${\bf \tilde{q}} \to {\bf q}\chi$ if not heavy...
- E_t^{mis} searches (soft ℓ) including from H/A decays: DM-like searches

GDR Nantes, 23/05/2016 The 750 GeV state

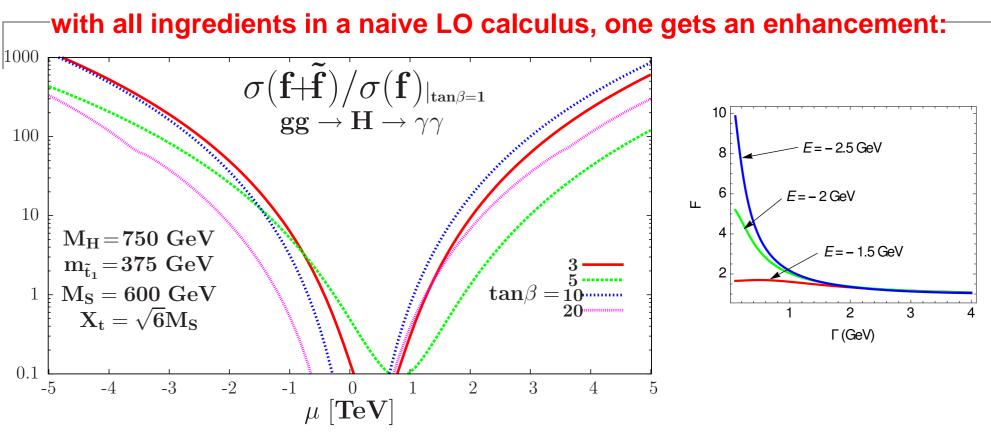

4. The light stop scenario


In fact one can also explain the diphoton excess (after some delay..) in terms of light stop loops that contribute to both $gg \rightarrow H$ and $H \rightarrow \gamma \gamma!$ AD+Pilaftsis: arXiv:1605.01040, The 750 GeV Diphoton Resonance in the MSSM Ingredients: stop at $rac{1}{2}M_{H}$ threshold, large couplings and small H width


 $H\gamma\gamma, Hgg$ factor A_{0}^{H} : H couplings to stops: – small for $m_0\!\gg\!M_{\rm H}$ $-A_0^H = \frac{4}{3}$ @threshold - QED/QCD enhanced!

 $\propto \frac{1}{2} \mathbf{m_t} (\mathbf{A_t} \mathbf{cot} \beta - \mu)$ large for μ a few $imes \mathbf{M}_{\mathbf{S}}$ $(\mathbf{A_t} - \frac{\mu}{\tan\beta} = \sqrt{6}\mathbf{M_S})$

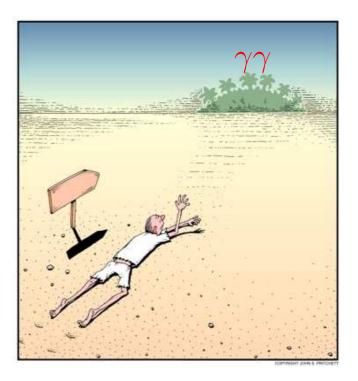
 $\Gamma_{
m H} \approx 2$ GeV@taneta=3-15 $\Gamma_{
m H}\!pprox\!30$ GeV@taneta=1 increase of BR(H $\rightarrow\gamma\gamma$) evade tt/ $\tau\tau$ constraints



GDR Nantes, 23/05/2016

The 750 GeV state in the MSSM – Abdelhak Djouadi – p.11/15

4. The light stop scenario


• easy factor of 100 enhancement for not so large $\mu\gtrsim\,$ 3TeV at tan $eta\,{pprox}$ 10.

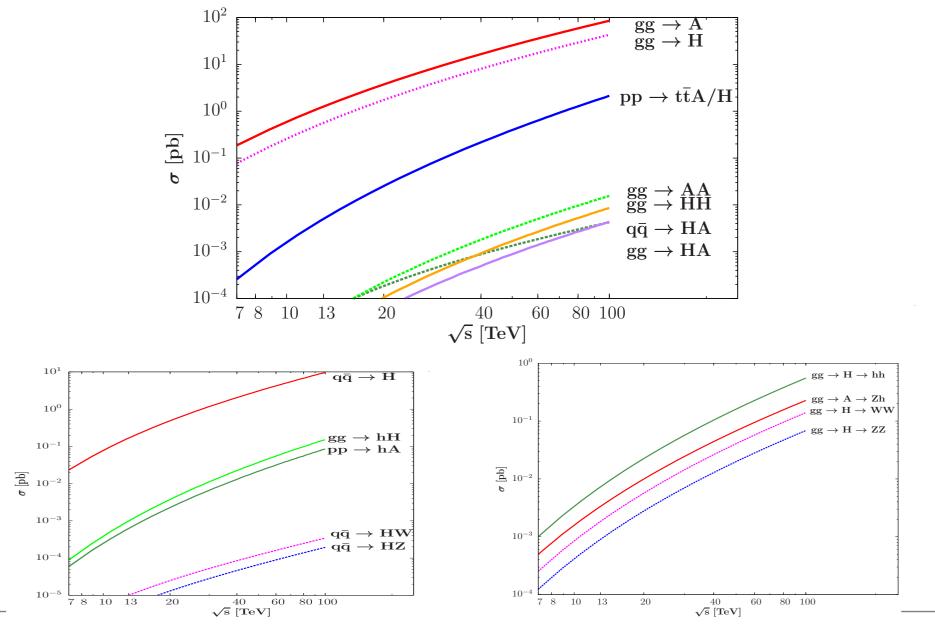
- another factor of 2–10 enhancement at amplitude level from Coulomb!
- another enhancement by a factor 1.5–2 from mixing with stoponium...
- Natural SUSY scenario not excluded by data if ${
 m m_{\chi_1^0}}\gtrsim~$ 300 GeV (DM!!)
- Satisfies all constraints including that on light h mass and properties
- Interesting phenomenology to be soon probed at the LHC (eg: Z+ E_T^{mis}).

5. Conclusion

And? Too early to conclude... but life suddenly became bright...

It is really a new resonance? or simply another (big) mirage?

If true then the future is bright! a new continent is ahead and needs decades of exploration... But again we should hear the experimentalists and their credo:



OK, OK, we wait for more data; in summer we will know more... (in the meantime, let us "speculate" and get prepared for H750GeV-GDR)

GDR Nantes, 23/05/2016

5. Conclusion


Many things to check! Just for the Higgs sector at LHC and beyond:

GDR Nantes, 23/05/2016

The 750 GeV state in the MSSM – Abdelhak Djouadi – p.14/15

5. Conclusion

GDR Nantes, 23/05/2016

The 750 GeV state in the MSSM – Abdelhak Djouadi – p.15/15