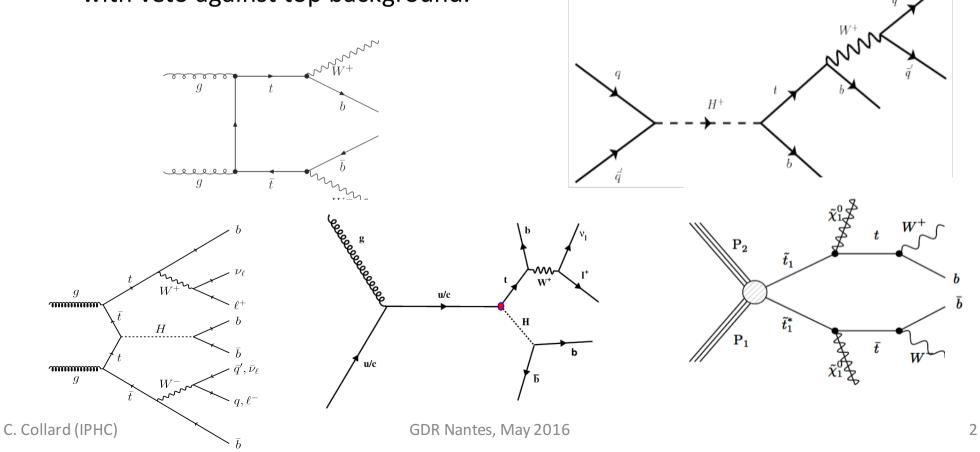
b tagging at CMS

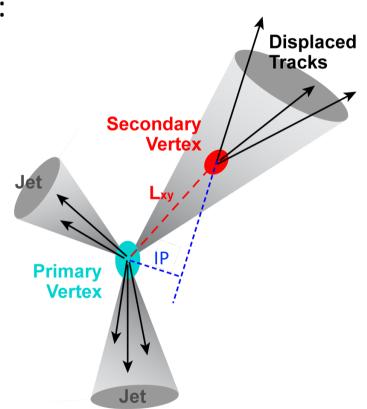
Caroline Collard (IPHC Strasbourg) GDR Terascale, Nantes May 23-25, 2016



Motivation

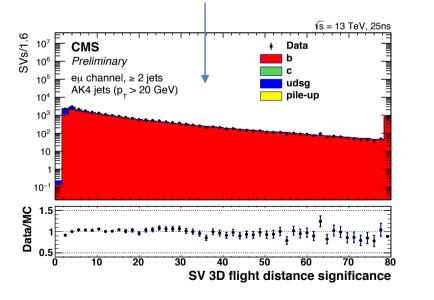
Identification of jets originating from b quarks (= b tagging) is important for many SM analyses & BSM searches:

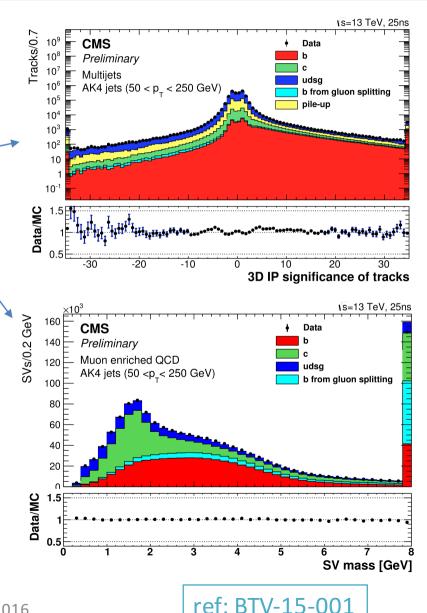
Used in Top, SM (bb, V+bb, V+cc) and Higgs (H->bb) studies, and in 3rd generation in SUSY and BSM searches (W', Z', T', b', T_{5/3}, ...) + in other analyses with veto against top background.


Outline of the talk

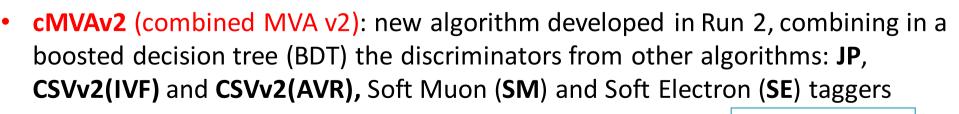
- Strategy for b tagging \rightarrow Definition of b taggers
- Performances of these b taggers
- Performance measurements in data
- Special case for the boosted topologies
- What is next?
- Conclusions

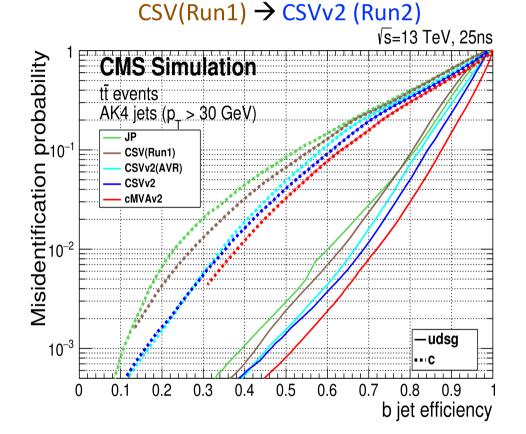
This talk is highly inspired by recent presentations given by members of the CMS b tagging team.


Basics on b tagging


- b tagging = tagging of b jets, which are jets arising from the process of hadronization of b quarks
- Use B-hadron properties to identify b jets:
 - Relatively large mass [5-6 GeV]
 - Long lifetime [cτ ≈ 450 µm]
 E = 70 GeV gives βγcτ ≈ 5 mm
 - Daughter particle multiplicity
 ≈ five charged tracks per decay
 - Possible presence of semileptonic decays b \rightarrow µvX [Br ≈ 11%], b \rightarrow c \rightarrow µvX [Br ≈ 10%]
 - Tertiary vertex (B-meson decay to a charmed hadron), ct ≈ 120-310 µm

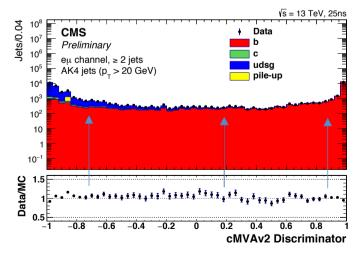
Some properties of b jets

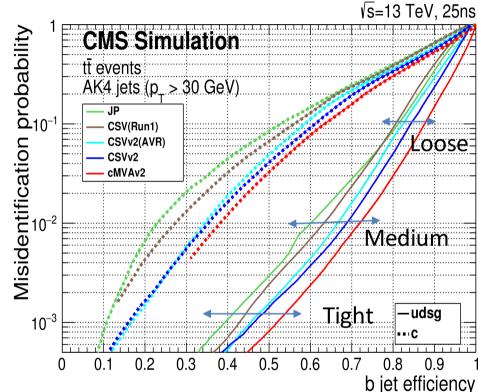

- Information on the displaced tracks and secondary vertices,
- Check Data vs MC in different topologies :
 - Multijets (QCD),
 - jets with a soft muon (μ-enriched QCD),
 - eµ + at least 2 jets (dilepton ttbar)



Taggers for b tagging

- CSV (Combined Secondary Vertex) flagship tagger for Run 1, exploiting displaced tracks and AVR secondary vertices
- CSVv2 improved version of CSV for Run2: neural network instead of a Likelihood Ratio, additional variables, improved track selection, use of IVF secondary vertices
- JP (Jet Probability): Likelihood to estimate the probability of jet tracks to come from the primary vertex, mostly used for performance measurements, calibrated separately in data and MC




b tagging efficiencies in MC

Definition of **3 working points**:

Loose, Medium & Tight, in order to have a mistag rate of 10%, 1% and 0.1% respectively.

Tagger	operating point	discriminator value	ϵ_b (%)
	JPL	0.245	≈ 82
JetProbability (JP)	JPM	0.515	≈ 62
	JPT	0.760	≈ 42
	CSVv2L	0.460	≈ 83
Combined Secondary Vertex (CSVv2)	CSVv2M	0.800	≈ 69
	CSVv2T	0.935	≈ 49
	cMVAv2L	-0.715	≈ 88
Combined MVA (cMVAv2)	cMVAv2M	0.185	≈ 72
	cMVAv2T	0.875	≈ 53

 $CSV(Run1) \rightarrow CSVv2 (Run2)$

b tagging efficiencies in MC

b jet efficiency 8.0 8.0

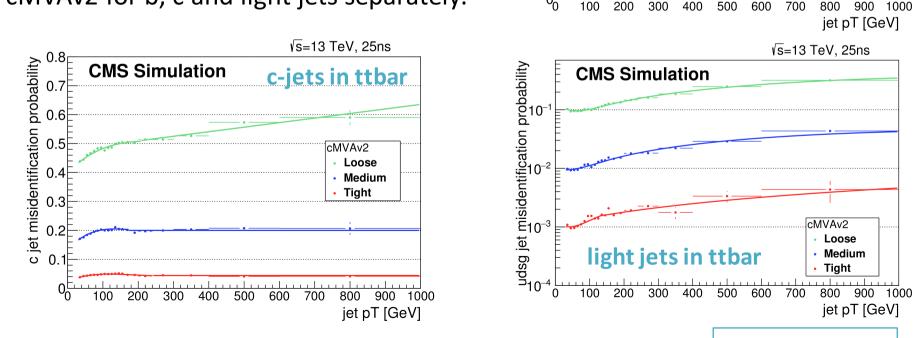
0.6

0.4

0.2

cMVAv2

Medium


Tight

CMS Simulation

Definition of **3 working points**:

Loose, Medium & Tight, in order to have a mistag rate of 10%, 1% and 0.1% respectively.

Efficiencies as a function of pT for cMVAv2 for b, c and light jets separately.

√s=13 TeV, 25ns

b-jets in ttbar

ref: BTV-15-001

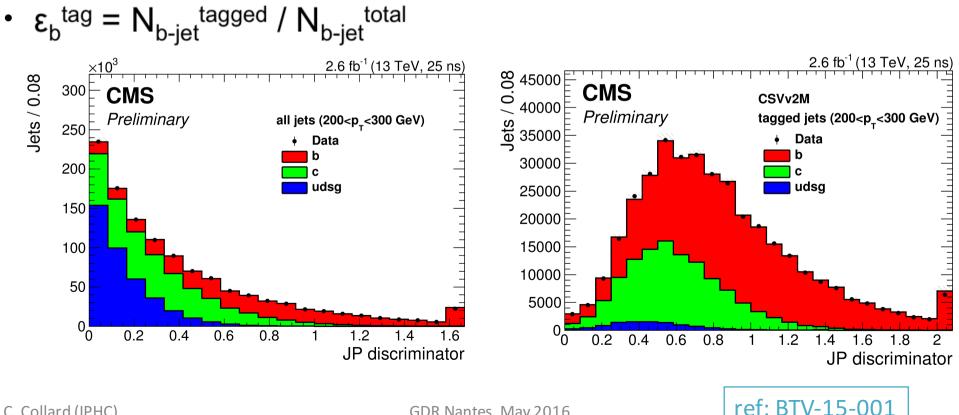
Performance Measurements

Need to correct the MC efficiencies to account for possible data/MC discrepancies in the b tagging performances:

- 1) Scale factors ($\epsilon^{Data}/\epsilon^{MC}$) to correct for a given WP
 - Measurement of the b tagging efficiency, based on samples enriched in b jets:
 - > jets with a soft muon coming from a semileptonic decay of a B hadron:

combined

- PtRel method,
- Lifetime Tagger method,
- System8 method


<u>ttbar dilepton</u> sample: Tag Counting method

- Measurement of the misidentification probability for light jets: performed on inclusive QCD sample with the negative tag method
- Measurement of the misidentification probability for c jets: work ongoing
- Correction factors for reshaping the whole discriminator distribution, for analysis exploiting the shape (e.g. in MVA): Reweighting method which provides SF for both b jets (based on <u>ttbar dilepton</u> events) and light jets (based <u>DY</u> <u>dilepton</u> events).

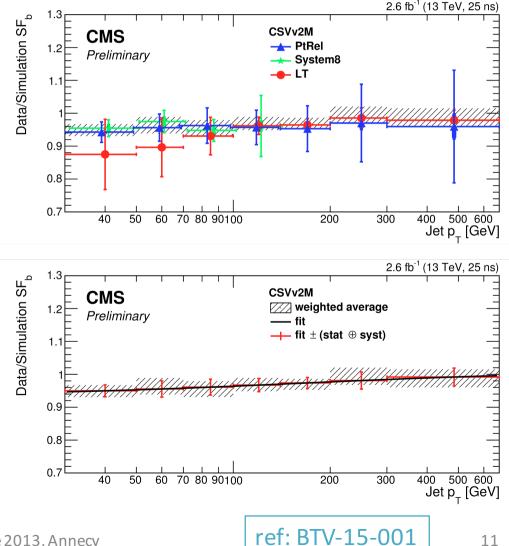
1st example: the Lifetime Tagger method

Template fit method based on the Jet Probability (JP) discriminant:

- Use jets containing a soft muon, to enrich the b contribution
- Templates from MC
- Fits are done before and after b tagging requirement to measure the efficiency

Combination of the QCD-based SF

Combination of all the methods with the **BLUE** method

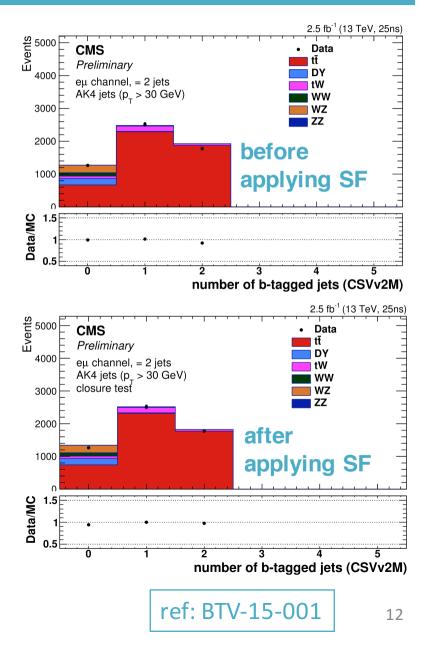

Treatment of systematics:

- Common (PU, gluon splitting, P_{T}^{μ}) or for 2 of them (away-jet tagger) \rightarrow 100% correlated or anti-corr
- Other specific to 1 method: uncorr

The event overlap has been taken into account in the combination.

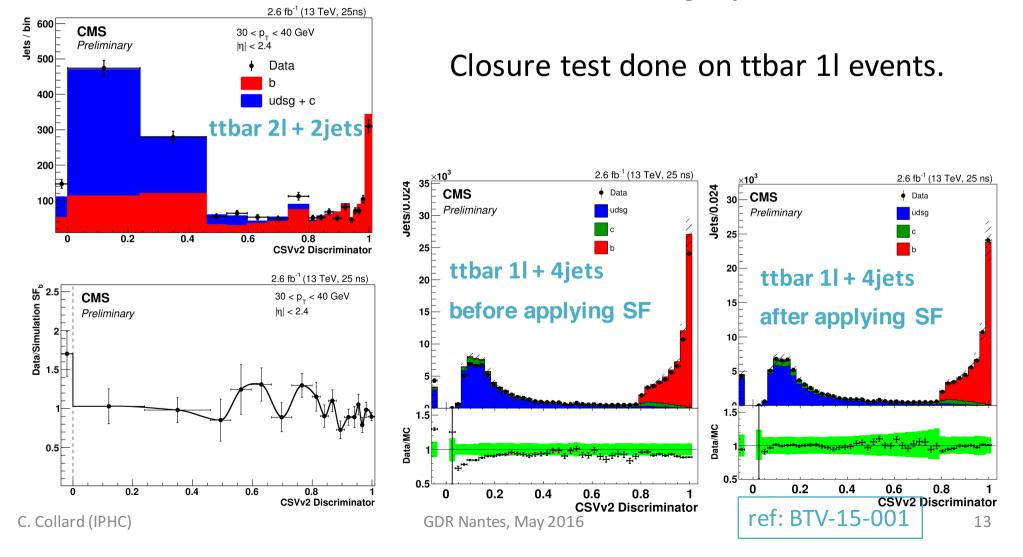
Precision: $\sigma(\text{stat}) \sim 15-30\% \sigma(\text{tot})$ To quantify the relative $\sigma[SF_h]$: For 70 < p_T < 100 GeV : 1.7% (L) \rightarrow 3% (T) For $300 < p_T < 670$ GeV: 4% (L) \rightarrow 5% (T)

QCD-based SF combination



2nd example: the TagCounting method

Count fraction of events with N_{btag} = 2 in a sample with two jets:


- Use dilepton ttbar $e\mu$ events \rightarrow high b jet purity
- Based on fractions → event yield systematics cancel out, but sensitive to modeling uncertainties (fragmentation and normalization scales)
- No fit performed, calculate b tagging efficiency as:

$$\varepsilon_b = \sqrt{\frac{F_{2tag} - F_{non2b}^{truth}}{f_{2b}}}$$

3rd example : the Reweighting method

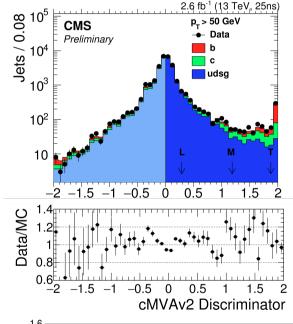
Tag&Probe method to extract shape SF in ttbar 2l for b-jets and in DY 2l for light jets.

Comparison of the QCD-based and ttbar-based SF

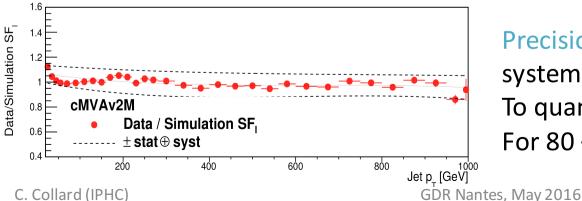
Consistent results from different techniques and different samples

Here compared:

- combined results from muon-enriched
 QCD, averaged over the pT spectrum of bjets from ttbar
- TagCount method results (ttbar)
- average scale factors obtained applying the reweighting method on ttbar events


Note: No cMVAv2 results for the mu+jets combination because of a possible bias as cMVAv2 uses the the soft lepton info as input.

	CMS Preliminary	 mu+jets A TagCount Reweight
	CSVv2T	
	CSVv2M	
	CSVv2L	
	cMVAv2T	
	cMVAv2M	
	cMVAv2L	
D		85 0.9 0.95 1 1.05 1.1 Data/Simulation SF _b
		ref· BTV-15-001


 $2.6 \text{ fb}^{-1} (13 \text{ To})/(25 \text{ nc})$

4th example: the negative tag method

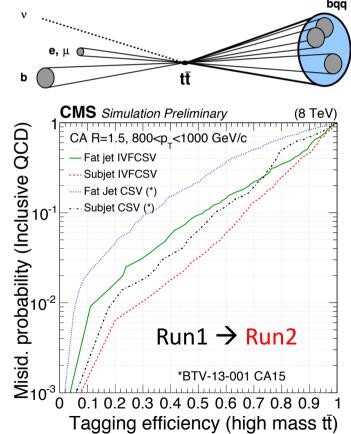
Method to measure the mistag rate (= the efficiency to tag a light jet as a b jet) on multijets events, based on negative and positive taggers.

- Negative (or positive) tagger = similar to the default algo but using only tracks with IP<0 (or >0) or SV decay lengths <0 (or >0).
- For light jets, negative & positive taggers are expected to be symmetric (as the sign of the IP or decay length is mostly due to resolution effects in track reco)
- Efficiency from negative taggers, corrected for b/c jet contamination and long-lived particles.
- Correction factors in pT and η bins.

Precision: almost fully dominated by systematic effects. To quantify the relative $\sigma[SF_{light}]$: For 80 < p_T< 320 GeV : 5% (L) \rightarrow 20% (T)

ref: BTV-15-001

Boosted b tagging

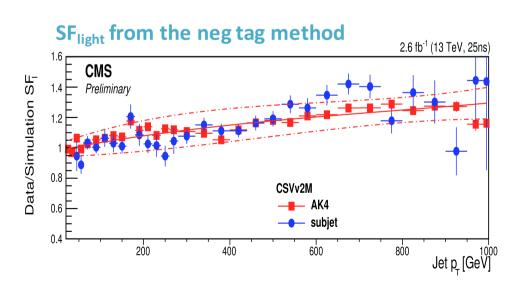

Special consideration for the case of b quarks arising from highly Lorentz-boosted particles (boosted top or boosted Higgs).

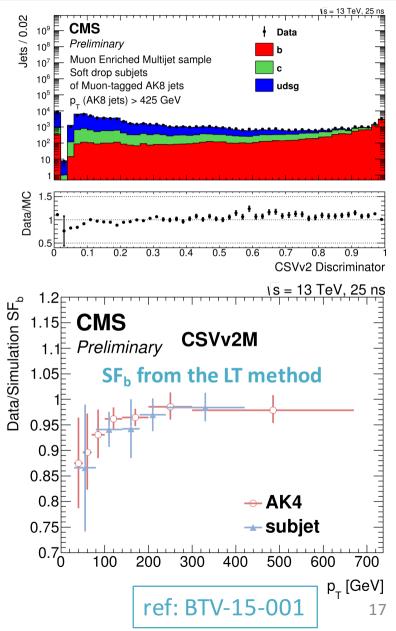
Consequence of the boost of the parent particle: collimated decay products, merged into a single "fat" (large R) jet.

Developed at Run1: b tagging for fat jets (using all jet tracks) and subjets (based on subjet tracks).

Subjet b tagging outperforms fatjet b tagging in most of the cases.

Improvement for Run2: jet-track association, jet flavour definition, and benefits from improvements to the standard CSVv2.




16

Performance measurements in boosted topologies

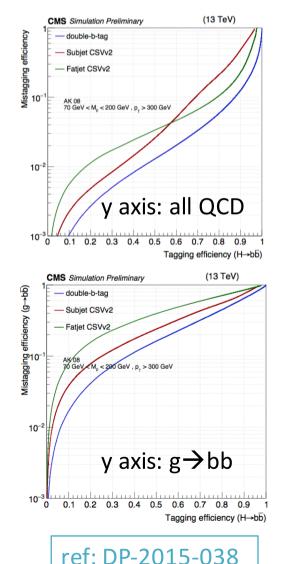
Performance measurements performed on AK4 subjets reconstructed within the AK8 fat jets.

- CSVv2 algo with the same Loose & Medium WP
- Same methods as for AK4 jets used here.
- Good agreement between the results of the 2 jet sizes.

Ongoing developments on boosted topologies

New strategy for the boost $H \rightarrow$ bb topology: design a double b tagger

Specifications: do better than subjet or fatjet b tagging, be stable against p_T & independent from particle mass

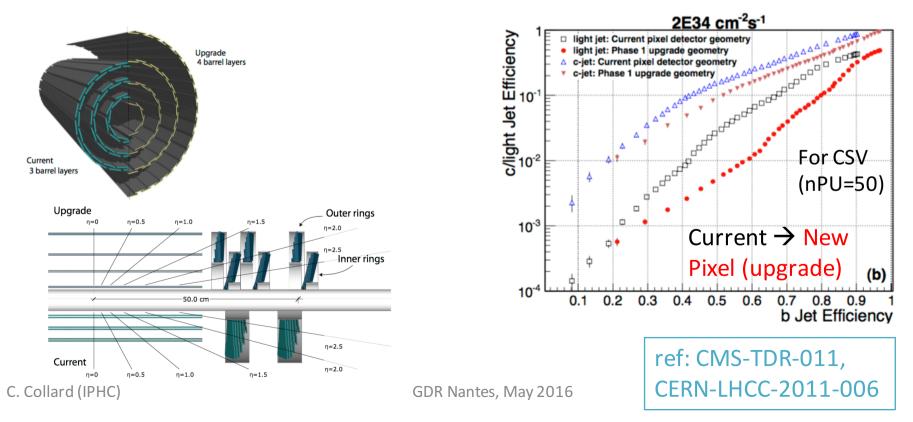

BDT training on $G^* \rightarrow HH \rightarrow 4b$ against QCD using

- track info,
- secondary vertex info,
- the minimum CSVv2 subjet score,
- and if two SVs found:

 $Z = \Delta R(SV_1, SV_2)^* z$ with $z = p_T_1/mass(SV_1 + SV_2)$

Overall outperforms subjet and fatjet b tagging

A new version of this tagger is available within CMS \rightarrow PAS BTV-15-002 in preparation



What is next?

End of 2016 : installation of the new pixel detector of CMS (Phase1).

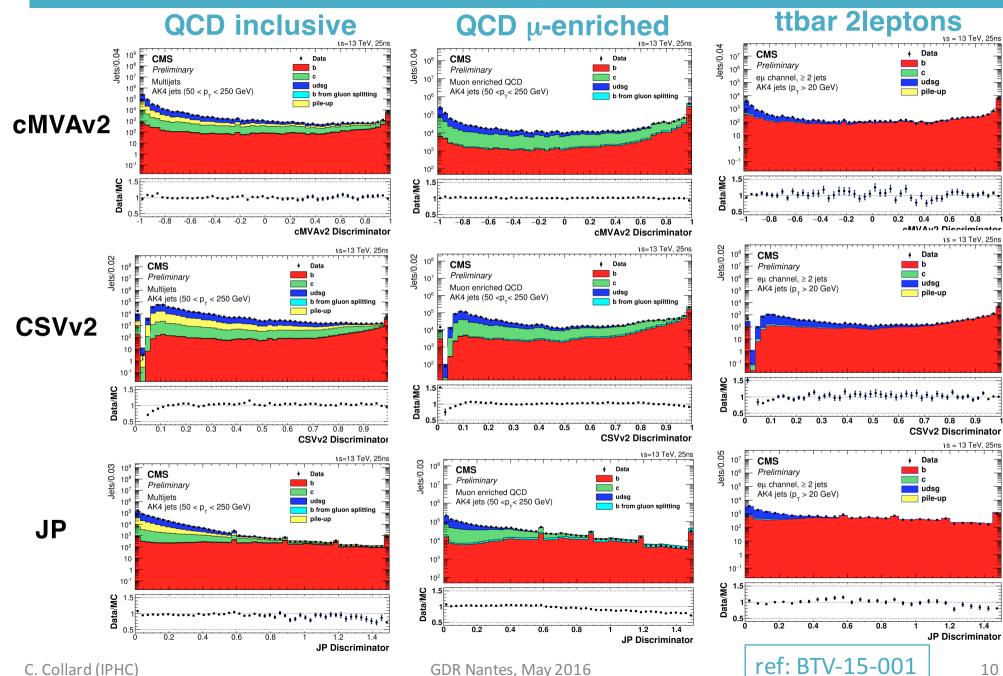
Significant improvement in b tagging due to extra layers, finer granularity, decrease in the amount of material:

- For an efficiency(bjet) = 60%, a factor of 6 for the light reduction is expected.
- For a mistag of 1%, a relative 40% improvement in b-tagging efficiency.

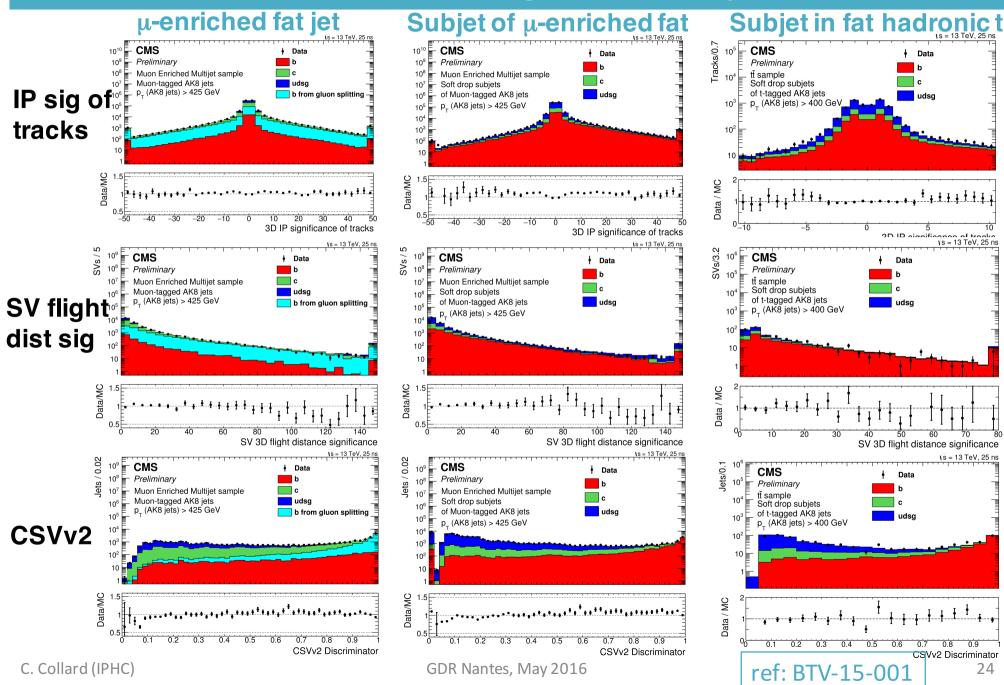
To conclude

Overview of b tagging in CMS: it is working well at 13 TeV

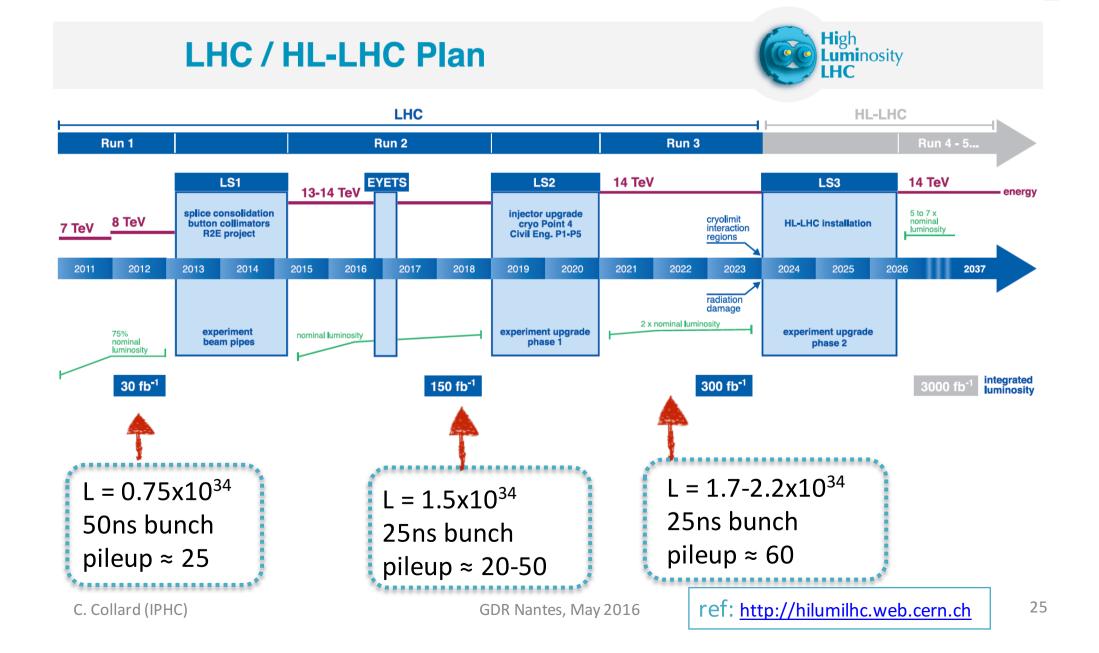
- in standard jet configurations
- in boosted topologies
- [not mentioned in the talk, but working well too
 - at the trigger level
 - in events from heavy-ion collisions]


Additional developments ongoing to improve b-tagging in AK4 & AK8 jets, as well as in view of the new pixel detector.

New public results coming soon: double b tagger (PAS BTV-15-002) and c tagger (PAS BTV-16-001).


Parametrization for cMVAv2

Jet flavour	operating point	jet p_{T} range	function
b	Loose	$30 \le p_T < 150 \mathrm{GeV}$	$0.707 + 5.6 \cdot 10^{-3} \cdot p_T - 6.27 \cdot 10^{-5} \cdot p_T^2 + 3.10 \cdot 10^{-7} \cdot p_T^3 - 5.63 \cdot 10^{-10} \cdot p_T^4$
		$150 \le p_T$	$0.906 - 6.39 \cdot 10^{-5} \cdot p_T + 4.11 \cdot 10^{-8} \cdot p_T^2$
	Medium	$30 \le p_T < 175 \mathrm{GeV}$	$0.421 + 0.0107 \cdot p_T - 1.314 \cdot 10^{-4} \cdot p_T^2 + 7.268 \cdot 10^{-7} \cdot p_T^3 - 1.523 \cdot 10^{-9} \cdot p_T^4$
		$175 \le p_T$	$0.79 - 3.17 \cdot 10^{-4} \cdot p_T + 1.24 \cdot 10^{-7} \cdot p_T^2$
	Tight	$30 \le p_T < 160 \mathrm{GeV}$	$0.127 + 0.01578 \cdot p_T - 2.126 \cdot 10^{-4} \cdot p_T^2 + 1.273 \cdot 10^{-6} \cdot p_T^3 - 2.88 \cdot 10^{-9} \cdot p_T^4$
		$160 \le p_T$	$0.634 - 6.74 \cdot 10^{-4} \cdot p_T + 2.69 \cdot 10^{-7} \cdot p_T^2$
С	Loose	$30 \le p_T < 205 \mathrm{GeV}$	$0.40 + 1.23 \cdot 10^{-3} \cdot p_T - 4.60 \cdot 10^{-6} \cdot p_T^2 + 5.71 \cdot 10^{-9} \cdot p_T^3$
		$205 \le p_T$	$0.478 + 1.573 \cdot 10^{-4} \cdot p_T$
	Medium	$30 \le p_T < 170 \mathrm{GeV}$	$0.13 + 1.48 \cdot 10^{-3} \cdot p_T - 1.00 \cdot 10^{-5} \cdot p_T^2 + 2.65 \cdot 10^{-8} \cdot p_T^3 - 2.36 \cdot 10^{-11} \cdot p_T^4$
		$170 \le p_T$	0.20
	Tight	$30 \le p_T < 240 \mathrm{GeV}$	$0.024 + 5.27 \cdot 10^{-4} \cdot p_T - 3.72 \cdot 10^{-6} \cdot p_T^2 + 9.87 \cdot 10^{-9} \cdot p_T^3 - 8.83 \cdot 10^{-12} \cdot p_T^4$
		$240 \le p_T$	0.044
light	Loose	$30 < p_T < 130 \text{GeV}$	$0.124 - 1.0 \cdot 10^{-3} \cdot p_T + 1.06 \cdot 10^{-5} \cdot p_T^2 - 3.18 \cdot 10^{-8} \cdot p_T^3 + 3.13 \cdot 10^{-11} \cdot p_T^4$
		$130 \le p_T$	$0.055 + 4.53 \cdot 10^{-4} \cdot p_T - 1.6 \cdot 10^{-7} \cdot p_T^2$
	Medium	$30 \le p_T < 170 \mathrm{GeV}$	$9.59 \cdot 10^{-3} - 1.96 \cdot 10^{-5} \cdot p_T + 4.53 \cdot 10^{-7} \cdot p_T^2 - 1.08 \cdot 10^{-9} \cdot p_T^3 + 7.62 \cdot 10^{-13} \cdot p_T^4$
		$170 \le p_T$	$5.07 \cdot 10^{-3} + 6.02 \cdot 10^{-5} \cdot p_T - 2.3 \cdot 10^{-8} \cdot p_T^2$
	Tight	$30 \le p_T < 130 \mathrm{GeV}$	$1.24 \cdot 10^{-3} - 1.27 \cdot 10^{-5} \cdot p_T + 1.98 \cdot 10^{-7} \cdot p_T^2 - 7.46 \cdot 10^{-10} \cdot p_T^3 + 8.35 \cdot 10^{-13} \cdot p_T^4$
		$130 \le p_T$	$1.08 \cdot 10^{-3} + 3.54 \cdot 10^{-6} \cdot p_T$


Commissioning for ak4 jets

Commissioning for ak8 jets

LHC planning

