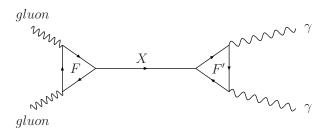
Possible 750 GeV diphoton signal via light pseudoscalars

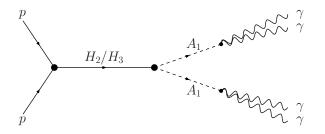
U. Ellwanger, LPT Orsay


with C. Hugonie, arXiv:1602.03344, see also F. Domingo et al., arXiv:1602.07691

Data ($\lesssim~$ Moriond 2016):

- ATLAS at 13 TeV, 710 GeV $< M_{\gamma\gamma} <$ 790 GeV (two bins): 21 events vs. 11.3 expected; local excess 3.9 σ (2.0 σ incl. LLE); compatible with 8 TeV at the 1.2 σ level (assuming ggF)
- CMS at 13 TeV, 750 GeV $< M_{\gamma\gamma} <$ 770 GeV (one bin): 11 events vs. 5.4 expected; local excess 2.8 σ ($\sim 1 \sigma$ incl. LLE); combined with 8 TeV: local excess 3.4 σ (1.6 σ incl. LLE)
- \bullet Signal cross sections of $\sim 3-8$ fb would explain the excesses

"Standard" interpretation:


- X: Scalar or pseudoscalar (possibly composite) with $M_X \sim 750$ GeV
- Coupling to gluons through loops of coloured fermions F
- Coupling to photons through loops of charged fermions F' (\sim F?)
- Possibly a large width ($\gtrsim\,$ a few GeV) in order to explain the ATLAS data

Challenges:

- Need large (loop induced) production cross section \rightarrow need large (\sim non-perturbative) XFF Yukawa coupling
- Need large (loop induced) width into $\gamma\gamma$ \rightarrow need large (\sim non-perturbative) XF'F' Yukawa coupling
- Tree level decays of X must be (practically) forbidden, otherwise the loop induced decay into $\gamma\gamma$ would have a too small branching fraction \rightarrow X must not couple to Standard Model fermions (or Higgs), the new fermions F (F') must be heavier than $M_X/2 \sim 375$ GeV
- \bullet A large width into $\gamma\gamma$ is tough to get...
- \gtrsim 200 BSM scenarios of this type... (more than events)

Alternative scenario with light pseudoscalars A₁: (S. Knapen et al., P. Agrawal et al., J. Chang et al., ...)

Viable if $M_{A_1} \lesssim 800$ MeV; then the photons from A_1 decays are sufficiently collimated such that they appear (mostly) as a single photon in the electromagnetic calorimeters (see below)

Constraints on resonance(s) $H_{(i)}$ at \approx 750 GeV:

- Sufficient production cross section in ggF or ass. prod. with b-quarks
- Large branching fraction into A_1A_1

Constraints on a light pseudoscalar A_1 below ≈ 800 MeV:

- Not ruled out by low energy experiments
- \bullet Large branching fraction into $\gamma\gamma$
- ${\scriptstyle \bullet}$ Decay length ${\ \lesssim 1}$ m, preferably shorter

A concrete scenario: the NMSSM

featuring 3 scalars $H_{1,2,3}$ and two pseudoscalars $A_{1,2}$

With $H_1 = SM$ -Higgs at 125 GeV: Two candidates for scalar(s) H_2/H_3 at \approx 750 GeV:

— the "MSSM-like" scalar H with potentially large production cross section via bbH if $\tan\beta\gtrsim10$

— the singlet-like scalar H_S with potentially large branching fraction into singlet-like A_1A_1 (A_2 is the MSSM-like pseudoscalar with $M_{A_2} \sim M_H$)

 \rightarrow Best solution: both scalars have masses of \approx 750 GeV, H and H_S mix strongly and form H₂/H₃; two nearby narrow states can imitate a large width as seen by ATLAS

A light pseudoscalar A_1 can be a (pseudo-) Goldstone boson of an *R*-symmetry (\leftrightarrow small trilinear couplings A_{λ} , A_{κ} in the scalar potential);

Impossible in the MSSM where the μ -term breaks *R*-symmetry; in the NMSSM, μ is replaced by the vev of a singlet field *S* \rightarrow a (weakly broken) *R*-symmetry is possible

But: Broken by radiative corrections $\sim A_{top}$, gaugino masses \rightarrow Tuning is still required for $M_{A_1} \leq 800$ MeV

Possible A_1 masses satisfying the above constraints:

(1) $M_{A_1} \sim M_{\pi^0} \sim 135$ MeV (Domingo et al., arXiv:1602.07691):

- A_1 mixes with π^0 , hence A_1 decays with a similar width (short decay length) into $\gamma\gamma$; calculable using PCAC

Heavier A_1 : 135 MeV < $M_{A_1} < 2m_{\mu}$:

- Susy loops generate flavour changing couplings of the extra (MSSM-like) Higgs bosons, hence also for A_1 (through mixing with the MSSM-like A_2)
- → dangerous rare decays $K^{\pm} \rightarrow \pi^{\pm} e^+ e^-$ (less constraining: $B^{\pm} \rightarrow K^{\pm} e^+ e^-$) unless the soft Susy breaking terms are chosen such that contributions to flavour changing couplings cancel, which is possible (see arXiv:1602.07691)
- A_1 decays dominantly into e^+e^- with a decay length $\,\gtrsim$ 40 m ightarrow useless

(2) $M_{A_1} \lesssim 2m_{\mu} \sim 211$ MeV (U.E., C. Hugonie, arXiv:1602.03344):

- The muon loop induced BR into $\gamma\gamma$ is enhanced up to \sim 75% if M_{A_1} is just below the threshold (see A. Bharucha et al., arXiv:1603.04464)
- The decay length is reduced to 2–5 m, but the production cross section can be large enough such that enough $A_1 \rightarrow \gamma \gamma$ decays take place before the EM calorimeter
- Soft Susy breaking terms have to be chosen such that flavour changing couplings are cancelled

 $M_{A_1} \gtrsim 500$ MeV: Constraints from rare K decays disappear

(3) $M_{A_1} \sim 510$ MeV (U.E., C. Hugonie, arXiv:1602.03344):

- At the parton level, the dominant decays of A_1 are into $s\bar{s}$ and gluons
- But: one is still in the nonperturbative regime of QCD Best guess: $s\bar{s}$ and $F\tilde{F}_{(QCD)}$ act as interpolating fields; these are part of the η wave function in Fock space ($M_\eta \sim 548$ MeV), hence A_1 decays like the η meson: $BR(\eta \rightarrow \gamma \gamma) \sim 39\%$, $BR(\eta \rightarrow 3\pi^0) \sim 33\%$, $BR(\eta \rightarrow \pi^+\pi^-\pi^0) \sim 23\%$
- $\label{eq:BR} \begin{array}{l} \rightarrow \ BR(A_1 \rightarrow \gamma \gamma) \sim 39\% \ , BR(A_1 \rightarrow 3\pi^0 \rightarrow 6\gamma) \sim 33\% \\ \mbox{ with a decay length below 1 mm (?to be confirmed?)} \end{array}$

- Dominant constraint: Now from searches for $\Upsilon(1S) \to \gamma \eta$ decays by CLEO where no events were seen (but 2 events for $M_{\pi^+\pi^-\pi^0} \sim 510$ MeV in the $\eta \to \pi^+\pi^-\pi^0$ search channel) \to constraints on the coupling $A_1 b \bar{b}$; if too large, CLEO would have observed $\Upsilon(1S) \to \gamma A_1 \to 3\pi^0$ decays

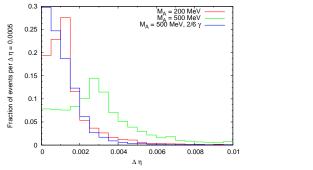
— These constrain the $BR(H_{2,3} \rightarrow A_1A_1)$, still: a signal cross section up to 6.7 fb is possible¹

¹Modulo acceptance of multiphotons as a single photon, see below

(4) $M_{A_1} \sim M_\eta \sim 550$ MeV (U.E., C. Hugonie, arXiv:1602.03344):

- A_1 mixes strongly with the η meson, its corresponding branching fractions are no longer educated guesses (calculable using PCAC)
- But: Constraints from CLEO from unseen $\Upsilon(1S) \rightarrow \gamma A_1$ decays are somewhat stronger, still:

a signal cross section up to 3.4 fb is possible²


These - and a recent MSSM scenario with $M_{\rm stop} \sim 375~{\rm GeV}$ by A. Djouadi and A. Pilaftis - are the only known scenarios for the 750 GeV diphoton excess without extra "ad hoc" fermions, but based on known Susy extension of the SM

²Modulo acceptance of multiphotons as a single photon, see below

If the excess of events persists, these scenarios can be distinguished (or ruled out) experimentally:

- The fineness of first layer of cells of the EM calorimeter along η (rapidity, the angle along the beam axis) ranges from 0.003 to 0.006 (ATLAS); the spread of in $\Delta \eta$ of multiphotons depends on M_{A_1} : (2)(6 α depends the two leading among 6 photons from $3\pi^0$)
 - $(2/6 \gamma \text{ denote the two leading among 6 photons from } 3\pi^0)$

 \rightarrow This plot helps to estimate the acceptances for multiphotons to fake a single photon: $\sim 80\%$ for $M_A \sim 200$ MeV or 2/6 γ , $\sim 30\%$ for $M_A \sim 200$ MeV

- If $M_{A_1} \sim 211$ MeV: The A_1 decay length is macroscopic, and A_1 may decay inside the EM calorimeters (before the EM calorimeters, the $A_1 \rightarrow \gamma \gamma$ vertex is invisible)
- The photons can convert in the material before the EM calorimeter leading to electrons which are visible, but usually added to the photon signal in the EM (20% for rapidity $\eta\sim$ 0 to 45% for $\eta\sim$ 1.6)

→ photon-jets lead to more converted photons than a single photon → one can potentially distinguish single photons from collinear diphotons or, in the case $A_1 \rightarrow 3\pi^0 \rightarrow 6\gamma$, from collinear 6 photons (B. Dasgupta et al., arXiv:1602.04692) iff the A_1 decays occur inside the material

• If the signal originates from two nearby states H_2/H_3 , their masses can potentially be separated (depending on the actual H_2/H_3 mass splitting)

 $\rightarrow With$ more data, the different scenarios can be distinguished!

Exciting times may lie ahead of us!

