Higgs boson mass shift from interference effects in the $gg \to H \to \gamma\gamma$ channel at ATLAS

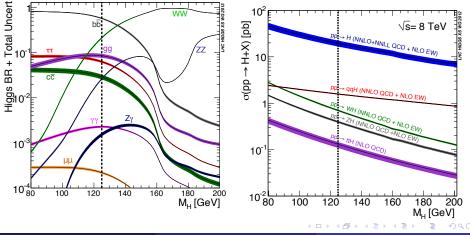
Cyril Becot

New-York University

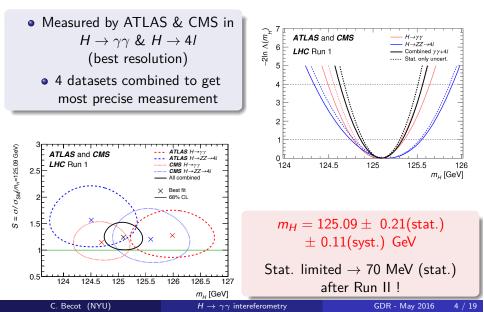
GDR Terascale Nantes - May, 2016

C. Becot (NYU)

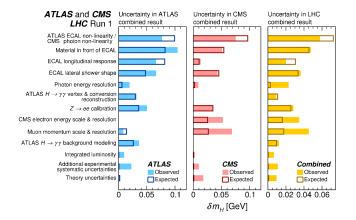
 $H \rightarrow \gamma \gamma$ intereferometry


GDR - May 2016 1 / 19

- **(2)** Summary of the mass measurement in $h \rightarrow \gamma \gamma$
- Obscription of the phenomenon
- 4 Estimate of Δm_H in the Standard Model
- **5** Δm_H for $\Gamma_H > \Gamma_H^{SM}$
- Conclusion


Production and decay vs m_H

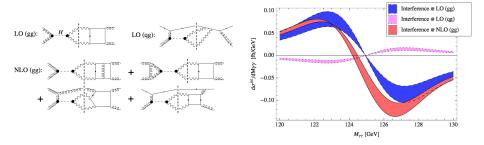
Higgs boson production & decay heavily depends on $m_H \rightarrow$ need to precisely measure it before searching for deviations w.r.t. SM


C. Becot (NYU)

 $H \rightarrow \gamma \gamma$ intereferometry

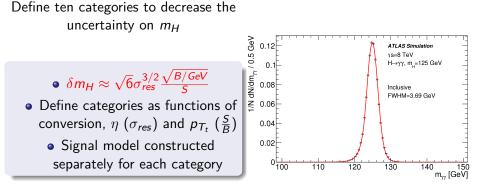
More details on uncertainties

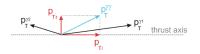
Most uncertainties on m_H linked to the energy scale


However neither of the $H \rightarrow \gamma \gamma$ considered interference between $gg \rightarrow H \rightarrow \gamma \gamma$ and $gg \rightarrow \gamma \gamma$

C. Becot (NYU)

 $H \rightarrow \gamma \gamma$ intereferometry

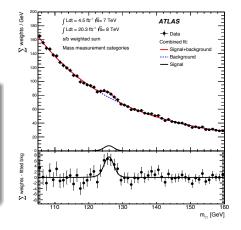

Initial theory estimate of the impact of interference


Impacts yield ($\approx 2\%$, taken into account), and the $m_{\gamma\gamma}$ lineshape

First estimate (LO) : $\Delta m_H = -100$ MeV arXiv:1208.1533 Best estimate (NLO) : $\Delta m_H = -70$ MeV arXiv:1305.3854

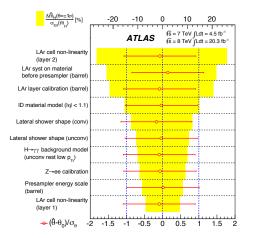
However these estimates were done in pure ggF production, without realistic detector simulation

Signal model : CB+Gaus Parameters fitted on MC samples at different m_H^{MC} and interpolated


Background modelling

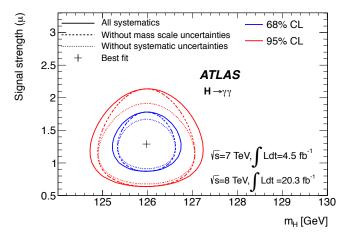
Background model : exponential (high- p_{T_t}) or exp. 2nd degree polynomial

• Shape determined on MC, parameters fitted to data

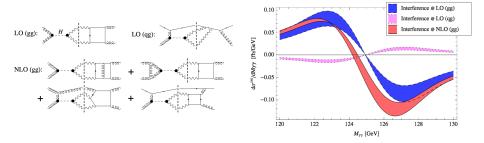

Uncertainty due to choice of shape

- Generate Asimov data with alternative bkg shape
 - Fit it with the nominal model
 - Variation of *m_H* corresponds to the uncertainty

 m_H determined by combined S+B unbinned likelihood fit to 10 categories


Main uncertainties

- All uncertainties implemented as additional nuisance parameters (NP) : $m_H \rightarrow m_H \times (1 + \delta\theta)$
 - θ : constrained by Gaussian (profiled in the fit)
 - $\delta = \text{magnitude of the}$ uncertainty
- Most relevant uncertainties linked to energy scale
 - Especially non-linearities
 - Then $e^{\pm} \rightarrow \gamma$ extrapolations
- Systematic uncertainty $\delta m_H^{\gamma\gamma} = \pm 280 \text{ MeV} \rightarrow \text{most}$ uncertainties below 70 MeV


< □ > < □ > < □ > < □ >

Results (Phys. Rev. D. 90, 052004 (2014))

 $m_{H}^{\gamma\gamma} = 125.98 \pm 0.42 ({
m stat}) \pm 0.28 ({
m syst}) \; {
m GeV}$ $\mu = 1.29 \pm 0.30$

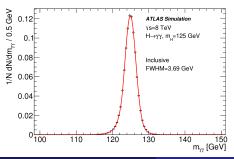
$$\mathcal{I} = -\frac{2}{(\hat{s} - m_h^2)^2 + m_h^2 \Gamma_h^2} ((\hat{s} - m_h^2) \operatorname{Re}(A_{\operatorname{cont}}^* A_{h \to \gamma\gamma} A_{gg \to h}) + m_h \Gamma_h \operatorname{Im}(A_{\operatorname{cont}}^* A_{h \to \gamma\gamma} A_{gg \to h}))$$

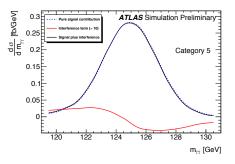
• Assuming narrow peak everything but \hat{s} is constant

• *Im* part becomes non-zero at NLO (two-loops)

• Re part has 0 total XS but distorts the lineshape (non-zero $\frac{d \sigma}{d m_{ex}}$)

Current implementation




- <u>Sherpa 2</u> implements a plug-in allowing studies of this effect, generating separately Signal, Background and Interference (weighted) events
 - Uses the full NLO computation for the three terms, matched to a Parton-Shower (CSS, DiRe in future versions)
 - Parton-shower tuned so that signal p_T distribution matches HRes 2.0 (NNLO+NNLL)
- Background p_T dist. checked against ResBos
- As the effect is small and given the weights distribution, need sizeable number of events to get precise estimate (use 400M)

Generation of events and detector effects

Using FullSim was not possible given the large datasets needed

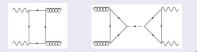
- Smear $m_{\gamma\gamma}$ using the signal model (\approx mass resolution) for the current category
- Apply ε(p_T, η,conv) as additional weight

Final mass distribution and yields in good agreement with previous analyses (m_H , cross-sections)

Background is taken from a fit to data (using official model) Signal is rescaled to NNLO by $k_S = 1.45 \pm 0.1$ (PDF+ α_S), interference term is rescaled by $\sqrt{k_S k_B}$ (nominal : $k_B = k_S$) Fit S + B + I and S + B only to get $\Delta m_H = m_H^{S+B+I} - m_H^{S+B}$

With/out interf.	Quantity	Sample 1	Sample 2	Sample 3	Sample 4	Mean	RMS
S+B	m_H	124.998	124.998	124.997	124.997		
	μ	0.995	0.995	0.995	0.994		
S+B+I	m_H	124.963	124.962	124.962	124.962		
	μ	0.988	0.988	0.988	0.988		
Δm_H [Me	-35	-35	-35	-35	-35	0.3	

Generate 4 different S and I datasets to estimate stat. uncertainty $\Delta m_H = -35$ MeV with negligible variance (correcting would increase m_H) Good closure on $m_H = 125.000$ GeV and $\mu = 1$


Theory uncertainties

K-factor variations

	$K_{S} = 1.35$	$K_S = 1.45$	$K_S = 1.55$	Uncertainty
$K_{B} = 1$	-30 ± 0.2	-29 ± 0.2	-28 ± 0.2	
$K_B = k_S$	-35 ± 0.3	-35 ± 0.3	-35 ± 0.3	
Envelope	5	6	7	± 7

 $\frac{K_S}{K_B} = 1 + \frac{11}{2} \frac{\alpha_S}{\pi} \approx 1.2$

- Vary K_S by 0.1 ($PDF + \alpha_S$)
- Vary K_B from $1 \rightarrow K_S$
- Enveloppe as uncertainty

Renorm. & fact. scale varied by $\frac{m_H}{2} \rightarrow 2m_H$, resum. $\frac{m_H}{4} \rightarrow 2m_H$

With/out interf.	Quantity	Nominal μ_R		en up	μ_{Ren} down		μ_{Fac} up	μ_{Fac} dow	'n
no I	m_H	124.997 124.997		124.998		125.000	124.998		
with I	$m_H^{}$	124.962 124.961		124.963	124.963 124.960		124.967		
Δm_H [Me	-35	-37		-35		-38	-31		
				μ_{Res} u	p µ _{Res} dowr	i	All up	All down	
					0 124.997		124.998	124.997	
					2 124.961		124.959	124.967	
Related uncertainty : ± 5 MeV					-36		-39	-31	

Method uncertainties

• Non-perfect closure for the fit of $m_H = 125.000$ GeV added as a systematics (3 MeV)

- Uncertainty from the choice of background shape (3 MeV)
 Similar than for the measurement of m_H
- Vary background shape for template creation (poly. vs exp., vary order)
 - \bullet However correlate between all categories while mass analysis decorrelates \rightarrow more conservative

 \bullet Other uncertainties (efficiency, ...) were considered and found to be negligible ($< 1~{\rm MeV})$

 $\Delta m_H = -35 \pm 8$ (theo.) ± 4 (syst.) MeV = -35 ± 9 MeV

Variation of the effect across categories

Cat.	1	2	3	4	5	6	7	8	9	10
Nomin.	-41	-2	-54	-13	-59	-39	$^{-1}$	-56	-11	-62
μ_{Ren}^{up}	-43	0	-55	-15	-59	-39	0	-59	-14	-65
μ_{Ren}^{down}	-41	-2	-55	-11	-59	-40	-2	-56	-10	-64
μ_{Fac}^{up}	-45	-2	-58	-14	-65	-41	-4	-61	-14	-69
μ ^{down} Fac	-36	$^{-1}$	-49	-11	-55	-35	1	-49	-10	-57
μ_{Res}^{up}	-40	-15	-55	-24	-60	-40	-15	-57	-23	-62
μ_{Res}^{down}	-42	12	-55	3	-59	-40	11	-58	4	-67
all up	-44	-17	-58	-31	-67	-42	-17	-60	-29	-69
all down	-38	10	-51	1	-53	-35	10	-53	2	-55
$K_B = 1$	-34	-2	-45	-11	-49	-32	-1	-46	-9	-51

Δm_H has been determined separately in each category

Factorization scale has dominating impact on low- p_{T_t} categories

Resummation scale dominating in high- p_{T_t} categories (impact of LO(gg) strongly correlated with μ_{Res} , not LO(qg)) Cancels out in full fit to 10 categories (low stat in high- P_{T_t} + anti-correlated between high/low p_{T_t} categories)

Want to assess models that would keep μ constant but not Γ_H

Conserve observable rate (S + I): $(c_g c_{\gamma})^2 \sigma_S(\Gamma) + (c_g c_{\gamma}) \sigma_I(\Gamma) =$ $\sigma_S(\Gamma_{SM}) + \sigma_I(\Gamma_{SM})$ Rescale S by $(c_g c_{\gamma})^2$, I by $(c_g c_{\gamma})$

	$\Gamma_H = 300 \text{ MeV}$	$\Gamma_H = 600 \text{ MeV}$	
Δm_H [MeV]	-313 ± 72	-453 ± 106	

Uncertainties determined in the same way than before Verifies $\Delta m_H \propto \sqrt{\Gamma_H}$ for small enough widths

- Determined shift of m_H induced by signal-background interference effects in $H \rightarrow \gamma \gamma$ (<u>ATL-PHYS-PUB-2016-009</u>)
- $\Delta m_H = -35 \pm 9$ MeV
- Largely dominated by K-factor uncertainties
- For larger (but still narrow) widths, the shift scales as $\Delta m_H \propto \sqrt{\Gamma_H}$