Christophe Ochando (LLR/Ecole Polytechnique/CNRS)

Upgrade Phase II

GCAL

HE+ HBX 00

May 3rd 2016 Visite DAS

ME&REH121

CINIS

The HGCAL Project in a nutshell (2)

double sided (2 layers) Cassettes inserted in **mechanical structure** (containing absorber) Modules mounted on both sides of Cu Cooling plate with embedded pipes == Cassettes

W/C-fiber EE alveolar structure

HGC Project Structure to Q1-17 (making Technical Choices, ..)

> 27-28 June 2016: First CMS Comprehensive Review,

including external reviewers: L.Serin (ATLAS), Frank Simon (CALICE)

End of 2017: Technical Design Report

including key technical choices:

Subject	Item	Process/Criteria	Internal Milestone	LHCC Milestone
FH & BH Absorber	Brass or SS	Activation and Cost	Jun-16	Q2 2016
EE Mechanical Design	Full disk or phi sectors	Simulation / Performance& Design pros & cons	Oct-16	Q4 2016
FE electronics	Confirm 130 or 65 nm	Irradiation & Test vehicles	Oct-16	Q4 2016
DC-DC converters	Location: local or remote	Irradiation & Prototyping / System implications	Dec-16	Q4 2016
Electrical/optical links	Location: local or remote	Irradiation / System implications	Dec-16	
BH Active Material	Scintillator Type, Megatile Structure	Radiation hardness, ability to operate cold	Dec-16	Q4 2016
Cold Volume	Si only or full HGCAL	Integration studies / Performance & System Implications	Dec-16	Q4 2016
Si Sensors	p-in-n or n-in-p	Irradiation / Performance & System	Mar-17	01 2017
Si Sensors	6"or 8"	Dialogue with vendors		Q12017

Examples of Milestones for 2016

End of 2019: Construction starts...

Engineering		
Silicon (Active)		
BH (Active)		
Electronics & Elect. Systems		

_ . .

Recent Highlights: Test beams (1)

> Test beams:

- 7 periods in 2016 (FNAL & CERN)
- Study: energy response, resolution, time,... simulation + very fast timing
 - with setups from 1 layer (April) to full HGC (28 EE layers + 12 FH layers, November)

Test beams at FNAL (April, May):

- Very fast progress
- Driving the design and test of Si sensors, PCB, assembly procedure of modules ...

Full hexagon
Half hexagon
Mouse bite
Calibration

 10^{2}

6

Recent Highlights: Test beams (2)

> FNAL Setup for April tests:

- proton beam
- 1 module, 6 X₀ before (W, Cu, W/Cu)

SKIROC2

Cu

Si Cooling pl 1 layer

Beam

Recent Highlights: Test beams (3)

First results:

120 GeV protons as a proxy for MIP and calibration

> Next steps:

- <= 28 layers for tests in May [SKIROC2]
- First tests at CERN in August/May (preceded by CALICE tests), then in November [SKIROC2 or SKIROC2_CMS if validated].

Ch. De La Taille et al., (Omega) **Recent Highlights: Front End** mega Test FE pour TPG: Y. Geerebaert **Stringent requirements for Front-End Electronics** Low power (few mW), low noise (<2000 e-) High radiation (200 Mrad, 10^E16 N) System on chip (digitization, processing...) High speed readout (5-10 Gb/s) SKIROC2_CMS expected in June. Timing information to 50ps accuracy 4-5 boards will be equipped for tests (can start with SKIROC2) Milestones \Rightarrow end january Submit v0 fe chip (SKIROC-CMS) 15-Feb-16 \Rightarrow end april Submit f.e. test vehicles in TSMC130 nm technology 31-Mar-16 1st Comprehensive Review \Rightarrow 26-27 june 1-Jun-16 1st results from f.e test vehicles \Rightarrow 2nd test vehicles : full one channel 30-Sep-16 Confirm choice of front-end electronics (130 nm) ?? Under study 31-Oct-16 Define architecture & specs for LV/HV supply, links and on-module components 15-Dec-16 Define location of DC-DC converters 15-Dec-16 Define location of electrical/optical links 15-Dec-16 ? Testbeam results of TOT architecture Submit V1 ASIC \Rightarrow First 32/64 ch ASIC with full functionnality 31-Mar-17 Choice of Si sensors type: all n-on-p or mixed (i.e. n-on-p and p-on-n) 31-Mar-17 2nd Comprehensive Review 1-Jun-17 1st results from tests of V1 ASIC 30-Sep-17 Submit TDR 1-Nov-17

30-Jun-18 Submit V2 ASIC

HGCAL at LLR: Mechanics (1)

M. Anduze, M. Frotin, C. Ochando, T. Pierre-Emile, Y. Sirois

Focus on EE mechanics: W/C-fiber alveolar structure:

HGCAL at LLR: Mechanics (2)

M. Anduze, M. Frotin, C. Ochando, T. Pierre-Emile, Y. Sirois

Focus on EE mechanics: W/C-fiber alveolar structure:

HGCAL at LLR: Mechanics (3)

M. Anduze, M. Frotin, C. Ochando, T. Pierre-Emile, Y. Sirois

Focus on EE mechanics: W/C-fiber alveolar structure:

Assess Mechanical behavior via FEA simulations:

- in various positions,
- for various material properties,
- stresses from T° cycling

• ..

HGCAL at LLR: Mechanics (4)

M. Anduze, M. Frotin, C. Ochando, T. Pierre-Emile, Y. Sirois

Focus on EE mechanics: W/C-fiber alveolar structure:

Mechanical tests on small samples Before/After irradiation, T° cycling,...

Producing small prototypes Note: Autoclave not big enough for real size production....

2 C-fiber "petal shape" alveoli

Mold for small disk of alveoli

Prototyping / Mechanical tests

> LLR among the main drivers of the HGCAL L1 Trigger project

HGCAL at LLR: L1 Trigger

Now in strong collaboration with Split & CERN

Architecture

Front-End Studies

Define baseline architecture for TP

Work on trigger "raw data"
(Data reduction,

252 cells with

groups of 3 cells

trigger cell geometry, ...)

192 cells with

groups of 3 cells

Development of emulator,
+ standalone tools
(digitization, ..)

Besoin urgent d'un Test Bench SKIROC-CMS au LLR pour rester dans le jeu côté interface trigger avec le chip de FE

C. Charlot, R. Salerno, Y. Sirois

Electrons/Photons (+Taus): Historical expertise of CMS-LLR.

- Develop reconstruction & identification of e/g objects for the TP.
- $H \rightarrow ZZ$, $\gamma \gamma$ main benchmarks.
- Will continue towards the TDR.
- Want to exploit the extraordinary potential for physics of this device (3D shower reconstruction, layer-by-layer PU subtraction, possibly adding timing, ...)

Also, wants to play an important role in CERN test beams (shifts, analysis/reconstruction/simulation)

Conclusion

LLR: Leading role during the Technical Proposal phase:

- mechanics, L1 trigger, performances
- Project is now in R&D Phase
 - must remain a key player for the Technical Design Report !
- IN2P3 & LLR have a unique expertise in High Granular Calorimeters
 - we invented & validated the concept
 - we must be a driving force in this project !

Current situation & prospects:

- All studies, prototypes, ... were done within CMS common budget, previous material from CALICE, LLR internal budget...
- Important P2IO support for mechanics (+L1) for R&D Phase (HFCFC/"HIGHTEC" Project)
- ... but support for IN2P3 is critical to have a decisive impact.

BACK UP SLIDES

HGCAL Parameters

HGCAL Cells Geometry

ECAL, Cassettes & Modules

HGCAL General Layout

Timeline

Technical Proposal published in Summer 2015

(since then, many things have changed...)

- Technical Design Report for end of 2017 beginning of 2018.
- Installation during LS3

Test Beam Plans and Goals

FNAL	Single module with ≤6 X ₀ absorber	March 25 – April 5	Complete Construction and first results are shown today
H2 (SPS)	Fast timing of irradiated diodes and a full hexagonal sensor	18-27 April	Now sharing a period in H2 for several fast-timing devices
FNAL	Full 28-layer EE (tbd)	May 18 - 31	
H2 (SPS)	Fast timing, as above	1-8 June	Extra period requested due to late arrival of SPS beam
T9 (PS)	Possibly a few full modules (tbd)	15-22 June	
H2 (SPS)	Full 28-layer EE (tbd)	31 Aug – 7 Sept	Moved as late as possible. Preceded by CALICE tests.
H2 (SPS)	28-layer EE + 12-layer FH (tbd)	9-14 Nov	Beam area will be available ~2 months before our tests. Cosmics?

Goals: measure energy response, time and position resolutions, compare to simulation

EE mechanical structure options

3 different designs under study (with different level of maturity)

(A) W/C-fiber Alveolar Structure

- phi-sector Disks,
- WITH INSERTABLE_cassettes

(B) Full Disk

 Inspired from PreShower experience

(C) "Tie-rods" design

- Variant of "full disk"
- Made from 30° cassettes, connected in inner/outer periphery +tie-rods + spacers

Physics (2)

➤ (A) Phi-sector Disks

Various configurations simulated

(1) "TP design"3 blocks (8-10) layers rotated by 10°

(2) Disks rotated every 2°
layer by layer
(or every 2 layers==1 cassette)

(3) Disks with staggered layers (ever 2nd or 3rd)

Continuous W

Active-to-active gap: mainly created by C-fiber alveoli (+ Si guard ring, mechanical tolerance): 0.5 – <1cm</p>

