

Experimental Searches for Sterile Neutrinos

D. Lhuillier CEA Saclay

LSND experiment

Karmen Experiment

Gallium ν_{e} Anomaly

- Calibration of Gallex and Sage detectors with e-Capture v_e sources
 - Gallex: <L>=1.9 m, ⁵¹Cr, 750 keV
 - Sage: <L>=0.6 m, ⁵¹Cr & ³⁷Ar (810 keV)

Short Baseline Reactor Experiments

Agreement of reactor data with prediction up to early 2000

Reactor Antineutrino Anomaly

- Re-evaluation of anti-v spectrum (T. Mueller at al 2011, Huber 2011)
- 6.5% deficit of observed neutrino rates w.r.t. new prediction

Reactor Antineutrino Anomaly

Could be explained by an oscillation of the ν_e flux toward a sterile neutrino in the eV Δm^2 scale

J. Kopp, JHEP 1305 (2013) 050

eV scale Sterile Neutrino Hypothesis

Additional neutrino state not coupling with the Z boson

eV scale Sterile Neutrino Hypothesis

eV scale Sterile Neutrino Hypothesis

Tension between appearance and disappearance

D. Lhuillier - IAP 2016

ICE CUBE Experiment

ICE CUBE sensitivity to Sterile ν 's

 $v_{\mu} + \overline{v}_{\mu}$ disappearance through extra mixing with a sterile state

Cascade events dominated by v_{μ} NC currents Sterile v's would imply an excess through v_{e} , v_{τ} CC

ICE CUBE Result

- Strengthened incompatibility with appearance signals.
- Disappearance result with high sensitivity requiring careful treatment of systematics.
- Scenario of an eV scale sterile neutrino with sin²θ₂₄ << sin²θ₁₄ ?

Direct Tests of $\sin\theta_{14}$

Short Distance from a Compact Source

K.M. Heeger et al., arXiv:1212.2182v1

Daya Bay

 400 m baseline limits the sensitivity to high ∆m²

NEOS

Data-MC agreement

- Low (S/N=23) and stable background.
- Larger baseline and extended core compensated by a huge counting rate: 1972 $\nu_e/\text{day}.$

NEOS

Confirm the event excess observed by DC, DB and RENO around 5 MeV

High sensitivity contour thanks to the large statistical sample accumulated

05/09/2016

D. Lhuillier - IAP 2016

5 MeV excess(es) – Ideas and Facts

- Observed by Double Chooz, DayaBay, Reno and Neos
- However not compatible within exp uncertainties (different amplitude and/or max position).
- Detector response issues might remain.

5 MeV excess – Ideas and Facts

- 1) Forbidden transitions
- 2) Corrections to Fermi theory
- 3) ²³⁸U spectrum:
 - excess appears in latest ab initio calculation using the JEFF library
 - Enhanced contribution of 238U in the 5 MeV range.
 - **RENO** twice more sensitive
- 4) Reference beta spectra measured at ILL with a highly thermalized neutron spectrum

A. Hayes and P. Vogel, arXiv:1605.02047

5 MeV excess – Ideas and Facts

A. Hayes and P. Vogel, arXiv:1605.02047

1) Forbidden transitions

- 2) Corrections to Fermi theory
- 3) ²³⁸U spectrum:
 - excess appears in latest ab initio calculation using the JEFF library
 - Enhanced contribution of 238U in the 5 MeV range.
- 4) Reference beta spectra measured at ILL with a highly thermalized neutron spectrum

Not likely from numerical studies

To be tested by Research reactor experiments

5 MeV excess – Ideas and Facts

Does the 5 MeV bump jeopardize the Reactor Anomaly?

- The 5 MeV bump is about 1% of the total flux
- Rather good shape agreement at low energy
- 235U has to be the main culprit (normalization?)
- ... open issue to be settled by running/ upcoming short baseline measurements

Short Baseline Reactor Experiments

Experiment	Reactor	Overburden	Detection	Segmentation	Optical	Particle ID
	Power/Fuel	(mwe)	Material		Readout	Capability
DANSS	3000 MW	~50	Inhomogeneous	2D, ~5mm	WLS fibers.	Topology only
(Russia)	LEU fuel		PS & Gd sheets			
NEOS	2800 MW	~20	Homogeneous	none	Direct double	recoil PSD only
(South Korea)	LEU fuel		Gd-doped LS		ended PMT	
nuLat i 🐋	40 MW	few	Homogeneous	Quasi-3D, 5cm,	Direct PMT	Topology, recoil
(USA)	²³⁵ U fuel		⁶ Li doped PS	3-axis Opt. Latt		& capture PSD
Neutrino4	100 MW	~10	Homogeneous	2D, ~10cm	Direct single	Topology only
(Russia)	²³⁵ U fuel		Gd-doped LS		ended PMT	
PROSPECT	85 MW	few	Homogeneous	2D, 15cm	Direct double	Topology, recoil
(USA)	²³⁵ U fuel		⁶ Li-doped LS		ended PMT	& capture PSD
SoLid	72 MW	~10	Inhomogeneous	Quasi-3D, 5cm	WLS fibers	topology,
(UK Fr Bel US)	²³⁵ U fuel		°LiZnS & PS	multiplex		capture PSD
Chandler	72 MW	~10	Inhomogeneous	Quasi-3D, 5cm,	Direct PMT/	topology,
(USA)	²³⁵ U fuel		[°] LiZnS & PS	2-axis Opt. Latt	WLS Scint.	capture PSD
Stereo	57 MW	~15	Homogeneous	1D, 25cm	Direct single	recoil PSD
(France)	²³⁵ U fuel		Gd-doped LS		ended PMT	topology

Outer crown filled with LS to reduce edge effects and tag external backgrounds

- [8.9–11.1] m from the compact (<1m)
 57 MWth ILL core, in Grenoble France
- 6 target cells (Gd-doped LS)
- Outer crown (undoped LS)
- 48 PMTs in upper acrylic buffer
- Looking for oscillation patterns: relative shape in the 6 identical cells

- VM2000 + air-gap + acrylic sandwiches (total reflection) to transport light to PMTs
- Detector vessel inserted inside its shielding.
- Installation to be completed end of this month.

D. Lhuillier - IAP 2016

 Data taking this autumn, two reactor cycles expected by spring 2017.

- STEREO aims at covering the reactor anomaly region in ~1 year of reactor on data.
 - 300 days, $L_0 = 10 \text{ m}$
 - E_{prompt}>2 MeV, E_{delayed}>5 MeV
 - $400v_e/day$
 - $\delta E_{scale} = 2\%$
 - All syst. of predicted spectra
 - S/B = 1.5, 1/E+flat model
 - Norm 4%

- Detector vertical motion
- 9.5-12.5 Baseline
- Factor 6 reduction of cosmic rays underneath the 3GW Kalinin reactor- Russia

- Extended core (h=3.5m, f=3.1 m)
- Very high neutrino rate (5000/day)
- Highly segmented plastic scintillator
- Gd doped coating

DANSS

- Data taking started in April 2016
- About 5000 neutrino events/day with ~5% cosmic background in a fiducial detector volume of 78%

Energy spectra of positron cluster measured at different detector position (random and muon-induced backaround subtracted)

On-going analysis

DANSS

Reactor + Ga Δm^2 anomal LSND + MiniBooNE Expected sensitivity for 1 year, 95% CL, shape-only analysis With systematics Assumed systematic effects: • 1% on the E scale 1% Background (~E-2) at one 0.1 • distance from the core $sin^2(2\theta)$ 0.01 0.01 0.1 0.001

10

Highly Segmented – ⁶Li doped detectors

- Finely 3D segmented detector: 15x15x15
 6Li-loaded (0.5%) plastic scintillator
- 2.5" cubes spaced by thin air gaps (arXiv: 1501.06935)
- 5x5x5 demonstrator to be tested this fall.

Prospect

- Oak ridge compact HFIR reactor
- 3t of Li-doped liquid in 120 optical cells
- First phase with near detector 7-10 m in 2017
- Second phase with far det at 15-18 m.

Solid @ BR2

- 60 MW compact core
- baseline range ~ 5.5 10 m
- Phase-1, 1.6 t det to be deployed early 2017.

- Highly 3D segmented detector
 - 5x5x5 cm³ PVT cubes (optically separated)
 - 6LiF:ZnS(Ag) for neutron identification
 - Optical fibers and silicon PMTs
- Event topology used to identify IBDs
 - e+ scintillation E deposit contained
 - e+ annihilation γ 's escaping the first cell
 - n-capture near first cell, identified via PSD
- \rightarrow Efficient and unique n-capture signal.

 $n + {}^{6}\text{Li} \rightarrow {}^{3}\text{H} + \alpha + 4.78 \text{ MeV}$

Sensitivities

Prospect

Soliδ

05/09/2016

- Strong physics case of a quasi background-free measurement
- SOX uses a 144Ce source (β –, T_{1/2}=285 days) and the BoreXino detector
- LS purification
- Good spatial (12 cm @ 2 MeV) and energy resolution (~3.5% @ 2 MeV)
- Few PBq activity required for 10⁴ evts in 1.5 y

Sterile v Search with a source: SOX

Sensitivity

Source expected end of 2017

Accurate spectrum shape measurement

Conclusions

- Exciting time of the sterile neutrino search with many running and upcoming experiments.
- Recent Ice Cube null result strengthens the tension between appearance and disappearance data in the LSND anomaly region.
- The Reactor Anomaly region will be covered by many experiments with fairly different technologies.
- Accurate disappearance measurements very sensitive to systematics.
- Precision measurements of the 235U reactor spectrum at research reactors will provide new tests and constrains to the reactor models.

05/09/2016