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Outline
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Primordial GW background 
……..GWs from cosmic inflation 

……..how to read to cosmic GW history book 

……..searching for GWs: CMB versus direct detection 

……..enhanced primordial GW background ? 

Further GW sources in the early Universe 
……..cosmic strings 

……..first-order phase transitions 

……..primordial black holes

stochastic  
GW backgrounds
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The paradigm of slow-roll inflation
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Vanilla inflation - classical dynamics
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changing the equation of state

single-field slow roll inflation:
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slow-roll parameters:
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end of inflation at �f : ✏, ⌘ ⇠ 1

scaling of the horizon

inflation: a = a0 exp(Ht)

comoving Hubble scale:
today = N⇤ Hubble times
before the end of inflation
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R
Hdt, N⇤ ⇠ 50� 60
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V (φ)

φ

large vacuum energy              exponential expansion            homogeneity of CMB 

quantum fluctuations               become classical                    tiny anisotropies in the CMB

The big question: Δ s
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V (φ) = ??

very successful paradigm, but very many possible realizations

Planck collaboration

scalar spectrum,    tensor spectrum



Cosmological Sources of GWs Valerie Domcke (APC) - IPA 2016

Scales and horizons
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perturbation modes

Time

Inflation Radiation Matter

H
ub

bl
e 

ra
di

us

co-moving perturbation modes 
leave Hubble horizon during inflation, 
re-enter after inflation

perturbation with given frequency today 
corresponds to fixed time during inflation 
and re-entry

f → k→ Nk →V (φk )1:1 relation:

Here ⇧ij
ab is the transverse, traceless projector and Tab is the energy momentum tensor sourcing

the gravitational waves. Eq. (16) is solved by employing the Greens function Gk(⌧, ⌧1) for the

corresponding homogeneous di↵erential equation,

hij(k, ⌧) =
2

M2
P

Z
d⌧1Gk(⌧, ⌧1)⇧

ab
ij (k)Tab(k, ⌧1) . (17)

Inserting the background solution for the gauge fields, the amplitude of the tensor perturba-

tions is given by (see e.g. [7, 8]):

⌦GW =
1

12
⌦R,0

✓
H

⇡MP

◆2

(1 + 4.3 · 10�7N H2

M2
P ⇠

6
e4⇡⇠) , (18)

with ⌦R,0 = 8.6 · 10�5 denoting the radiation energy density today and MP = 2.4 · 1018 GeV

denoting the reduced Planck mass, which in the following expressions we will set to unity.

Here the first term in the bracket is the usual vacuum contribution from inflation, whereas

the second term is sourced by the contribution of the gauge fields to the anisotropic stress

energy tensor.

Finally, to depict the power spectra as a function of frequency, we employ:

N = NCMB + ln
kCMB

0.002 Mpc�1 � 44.9� ln
f

102 Hz
, (19)

with kCMB = 0.002 Mpc�1 and NCMB ⇠ 50 � 60. In this convention, the number of e-folds

N decreases during inflation, reaching N = 0 at the end of inflation.

3 General analytical results.

In the equations of Sec. 2, the inflaton potential V (�) was not further specified. Let us now

turn to this point in more detail. We will follow the classification of inflation models of

Ref. [12, 13], which covers the vast majority of single-field slow-roll inflation models and is

based on expressing the first slow-roll parameter ✏ as

✏� ' ✏V ' �p
Np

+O(1/Np+1) , (20)

where �p is a positive constant and p is an integer and

✏� =
�̇2

2H2
, ✏V =

1

2

✓
V 0

V

◆2

. (21)

The parametrization of the slow-roll parameters in powers of 1/N is a natural way to parametrize

the observed smallness of the slow-roll parameters at the CMB-scales while accounting for an

increase over the course of inflation, required to end inflation [12,13,18]. In the following, we

6

N = H∫ dt

spectrum sensitive to primordial spectrum (scalar potential) and post-inflationary expansion

Recombination



Cosmological Sources of GWs Valerie Domcke (APC) - IPA 2016

Some useful properties of GWs
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perturbations of the background metric: 

governed by linearized Einstein equation 

a useful plane wave expansion: 

observational quantity in direct detection

ds

2 = a

2(⌧)(⌘µ⌫ + hµ⌫(x, ⌧))dx
µ
dx

⌫

(h̃ij = ahij , TT - gauge)

Some useful properties of GWs

perturbations of the homogeneous background metric

ds2 = a2(⌧)(⌘µ⌫ + hµ⌫(x, ⌧))dx
µdxµ

governed by linearized Einstein equation (˜hij = ahij , TT - gauge)

˜h
00
ij(k, ⌧) +

 
k2 � a

00

a

!

| {z }
⇠a2H2

˜hij(k, ⌧) = 16⇡Ga⇧ij(k, ⌧)| {z }
source term from �T

µ⌫

k � aH : hij ⇠ cos(!⌧)/a , k ⌧ aH : hij ⇠ const.

useful plane wave expansion

hij (x, ⌧) =
X

P=+,⇥

Z +1

�1

dk

2⇡

Z
d2ˆk hP (k) Tk(⌧)| {z }

⇠a(⌧
i

)/a(⌧)

ePij
�
ˆk
�
e�ik

(

⌧�k̂x

)

transfer function , expansion coe�cients , polarization tensor P = +,⇥
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Properties of GWs - II

Observable quantities:

⌦GW =

1

⇢c

@⇢GW(k, ⌧)

@ ln k
, ⇢GW(⌧) =

1

32⇡G

D
˙hij (x, ⌧) ˙h

ij
(x, ⌧)

E

In principle: Calculate Tµ⌫ , work through equations above
In practice:

⇢GW(⌧) = ⇢quGW(⌧) + ⇢clGW(⌧) .

classical sources (e.g. preheating, cosmic strings):

hij(k, ⌧) = 16⇡G
1

a(⌧)

Z ⌧

⌧
i

d⌧ 0 a(⌧ 0)G(k, ⌧, ⌧ 0)⇧ij(k, ⌧
0
)

inflation (e.g. stochastic source):

⌦GW(k, ⌧) =
r2A2

s

12

k2

a20H
2
0

T 2
k (⌧)

Valerie Domcke — SISSA — 17.04.2015 — Page 7

source: anisotropic 
(not spherical symmetric) 

stress-energy tensor
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Hunting for primordial GWs

tensor anisotropies  
on last scattering surface

polarization of CMB photons 
through Thomson scattering

GW travels freely until today

distortion of space as GW 
passes detector

6

- ground-based interferometers 
- space-based interferometers 
- pulsar timing arrays

CMB direct

- Lensing: T -> E 
- dust contaminates  
    primordial signal 
-  B - modes most sensitive
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Hunting for primordial GWs

r = �t2/�s2

7

sensitive to CMB scales

CMB

BICEP2 ‘14

Lensinghypothetical primordial  
contribution with r ~ 0.17
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Hunting for primordial GWs

r = �t2/�s2

7

sensitive to CMB scales

CMB direct
⌦GW(k) =

�2
t

12

k2

a20H
2
0

T 2
k ' �2

t

12
⌦r

for keq ⌧ k ⌧ kRH

time of re-entryeq RH

with suitable detectors, probe 30 orders of magnitude

BICEP2 ‘14

Rubakov ‘82 
Turner, White, Lidsey ’93 
Seto, Yokoyama ’03 
Smith, Kamionkowski ’05

Lensinghypothetical primordial  
contribution with r ~ 0.17

time of horizon exit
eLISA

LIGO

ET

msec pulsar

BBO/DECIGOinflation
r = 0.1
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But this is not the end of the story…
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Non-standard sources during inflation 

scalars: spectator fields (enhanced by cs < 1)    

gauge fields: pseudoscalar inflation 

phase transition(s) during inflation 

Non-standard evolution after inflation 

stiff equation of state during reheating 

Second order gravitational waves 

sourced by large scalar perturbations   

Bouncing cosmologies, broken spacial diffeomorphism, ………… + your favorite model I forgot to mention 

Cook, Sorbo 2012 
Biagetti, Fasiello, Riotto 2014

Anber, Sorbo ’06./’10/’12, 
Barnaby, Namba, Peloso ’11, 
Barnaby, Pajer, Peloso ‘12 , …

Freese, Spolyar 2004

See also: eLISA inflation working group report, to appear soon; 
Guzzetti, Bartolo, Liguori, Matarrese ‘16 

Spookily ’93; Joyce ’96; 
Giovannini ’99; Sa, Henriques ‘10

Assadulahi, Wands ‘09

see also Hebecker, Jaeckel, Rompineve, Witkowski ’16  
 for PT just after inflation
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pseudoscalar inflation

9

a generic coupling for a pseudoscalar inflaton: 

resulting background equations of motion: 

        tachyonic instability for the gauge field, controlled by  

        exponential growth of gauge field modes towards end of inflation 

        backreaction on inflaton eom, new friction term:  

        + additional source for scalar and tensor fluctuations

notes - GWs from gauge field production during inflation

Valerie Domcke

January 26, 2016

Abstract

Gauge field production during inflation leads to many potentially observable signatures:

Non-gaussianities in the CMB, primordial black holes, primordial magnetic fields, gravita-

tional waves. After reviewing the basic mechanisms, we study the sensitivity of in particular

the latter signal on the choice of inflation model.

1 Introduction

2 Overview of the mechanism

Collection of the most relevant formulae..

2.1 Homogeneous field equations

Consider a pseudo-scalar inflaton �, coupled to a U(1) gauge field (following [?, 3])

L = �1

2
@µ�@

µ�� 1

4
Fµ⌫F

µ⌫ � V (�)� ↵

4⇤
�Fµ⌫ F̃

µ⌫ . (1)

This is can be generalized to N U(1)’s’ by replacing Fµ⌫ ! F a
µ⌫ [2]. The resulting background

equations for �(t) and Aa(t, x) are

�̈+ 3H�̇+
@V

@�
=

↵

⇤
h ~E ~Bi . (2)

d2

d⌧2
~Aa �r2 ~Aa � ↵

⇤

d�

d⌧
r⇥ ~Aa = 0 , (3)

with dot denoting the derivative with respect to cosmic time t and ⌧ denoting the conformal
time. The Friedmann equations reads

3H2 =
1

2
�̇2 + V +

1

2
h ~E2 + ~B2i . (4)

For �̇ a slowly varying function in time we can solve the equation for ~A analytically. The last
term in the equation for ~A leads to a tachyonic instability and hence to an exponential growth
of one of the two helicity modes of the vector field,

Aa
+ ' 1p

2k

✓
k

2⇠aH

◆1/4

e⇡⇠�2
p

2⇠k/(aH) , (5)

1

A

a(⌧,x) with a2 Ba = r ⇥ A

a, a2 Ea = �A

a0, we obtain the equations of motion

�00 + 2 aH�0 � r2�+ a2
dV (�)

d�
=

↵

f
a2 Ea · Ba ,

✓
@2

@⌧ 2
� r2 � ↵

�0

f
r⇥

◆
A

a = 0 , r · Aa = 0 , (4)

where H = a0(⌧)/a2(⌧) and where the prime denotes di↵erentiation with respect to the
conformal time ⌧ .

2.1 Generation of the gauge field

The rolling inflaton induces the generation of quanta of the gauge field. In order to study
this process we promote the classical field A

a(⌧, x) to an operator Âa(⌧, x). We decompose
Â

a into annihilation and creation operators

A

a(⌧, x) =
X

�=±

Z
d3k

(2⇡)3/2
⇥
e�(k)A

a
�(⌧, k) â�(k) e

ik·x + h.c.
⇤
, (5)

where the helicity vectors e±(k) are defined in such a way that k · e± = 0, k⇥ e± = ⌥i k e±.
Then, the mode functions Aa

± must satisfy the equations Aa
±
00 + (k2 ⌥ ↵ k�0/f) Aa

± = 0.
Since we are looking for inflating solutions, we assume a(⌧) ⇠= �1/(H⌧), and d�/dt ⌘

�̇0 = constant. Hence, the equation for Aa
± reads

d2Aa
±(⌧, k)

d⌧ 2
+


k2 ± 2 k

⇠

⌧

�
Aa

±(⌧, k) = 0 , (6)

where we have defined

⇠ ⌘ ↵
�̇0

2 f H
, (7)

and we will be interested in the case ⇠ >⇠ O(1). Depending on the sign of ⇠, one of the
two solutions Aa

+ or Aa
� of eq. (6) will develop an instability. We assume that ↵ > 0 and

V 0(�) < 0, so that ⇠ > 0.
The solution that reduces to positive frequency for k ⌧ ! �1 is

Aa
±(⌧, k) =

1p
2 k

[i F0 (±⇠,�k ⌧) +G0 (±⇠,�k ⌧)] , (8)

where F0 and G0 are the regular and irregular Coulomb wave functions respectively. At late
times |k ⌧ | ⌧ 2 ⇠ the positive helicity mode A+ behaves as

Aa
+(⌧,~k) ⇠= 1p

2 k

✓
k

2 ⇠ aH

◆1/4

e⇡⇠�2
p

2 ⇠ k/aH , (9)

and is thus amplified by a factor e⇡⇠. On the other hand, the mode Aa
� is not amplified by

the rolling inflaton and we will ignore it from now on.

3

⇠ =
↵�̇

2⇤H

⇠ /
p
✏ = �̇/(

p
2H)

Turner, Widrow ’88, 
Garretson, Field, Caroll ’92,  
Anber, Sorbo ’06./’10/’12, 
Barnaby, Namba, Peloso ’11, 
Barnaby, Pajer, Peloso ‘12 , 
…..
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where dots are used to denote derivatives with respect to cosmic time t, whereas ⌧ denotes

the conformal time. The Friedmann equation reads:

3H2 =
1

2
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1

2
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Assuming �̇ is a slowly varying function in time, we can solve the equation for ~A analytically.

The Fourier modes of ~A must satisfy:

d2Aa
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d⌧2
+

 
k2 ± ↵k�̇

⇤H⌧

!
Aa

±(⌧, k) = 0 . (6)

Here the subscript ± refers to the two helicity modes of the massless gauge field ( ~Aa =

~e±A
a
± exp(i~k~x)). The corresponding helicity vectors ~e±(~k) satisfy ~k ⇥ ~e± = ⌥ik~e⌥, turning

the cross-product in Eq. (4) (arising in turn from the antisymmetric ✏-tensor in F̃µ⌫) into the

± in Eq. (6). This leads to a tachyonic instability in the A+ mode (for �̇ < 0) and hence to

an exponential growth of one of the two helicity modes of the vector field,

Aa
+ ' 1p
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✓
k
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◆1/4

e⇡⇠�2
p

2⇠k/(aH) , (7)

where we have defined

⇠ ⌘ ↵|�̇|
2⇤H

. (8)

W.l.o.g., let us assume that � > 0, V 0(�) > 0, �̇ < 0. The strong gauge field production

modifies the slow-roll equation of motion and the Friedmann equation through4

h ~E ~Bi ' N · 2.4 · 10�4H
4

⇠4
e2⇡⇠ ,

1

2
h ~E2 + ~B2i ' N · 1.4 · 10�4H

4

⇠3
e2⇡⇠ . (10)

Typically the e↵ect in the Friedmann equation is small. However, in the slow-roll equation

for the inflaton, this introduces an additional friction term which can slow down inflation

significantly as ⇠ ⇠ |�̇|/H increases towards the end of inflation. Inflation then extends for

�N⇤ additional e-folds, implying that for a given scalar potential, the point where the CMB

4More precisely, and relevant for small ⇠ [6]:

h ~E ~Bi ' H4

⇠4
e2⇡⇠

1
221⇡2

Z
8⇠

0

x7e�xdx . (9)
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power spectrum of scalar and tensor perturbations affected
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GW spectrum 
of pseudoscalar inflation

10

Figure 5: Power spectrum of scalar perturbations for all the models with the same parameters and color code of

Fig. 4. The upper horizontal line estimates the PBH bound, the lower one indicates the COBE normalization.
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10-29
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N

Figure 6: Gravitational wave spectrum for all the models with the same parameters and color code of Fig. 4.

We are also showing the sensitivity curves for (from left to right): milli-second pulsar timing, eLISA, advanced

LIGO. Current bounds are denoted by solid lines, expected sensitivities of upcoming experiments by dashed

lines. See main text for details.

18

ΩGW = 1
12

H
πMP

⎛
⎝⎜

⎞
⎠⎟

2

(1+ 4.3×10(−7) H 2

MP
2ξ 6

e4πξ )

generically very blue spectrum 
low scale models feature stronger increase

p = 1 (Quadratic)
p = 2 (Starobinsky)
p = 3 (Hilltop)
p = 4 (Hilltop)

Figure 4: Evolution of the parameter ⇠ governing the strength of the gauge interactions for models with

di↵erent values of p as defined in Eq. (20). The parameters for the Starobinsky model are as in Fig. 3, the

parameters for the other models are listed in App. A.

are in tension with the estimated PBH bound of [11] when we restrict to the case N = 1. As

this discrepancy is however only by a O(1) factor, it can both be addressed by taking into

account the theoretical uncertainties in the PBH bound (see also Sec. 5) or by considering

models with N > 1. As evident from the figure, the scalar spectrum for the Hilltop models

i.e. p = 3, 4 presents a much steeper decrease in the first part of the evolution with respect

the other models, as predicted by Eq. (25), ✏V ' N�p.

name full name number of arms armlength [Gm] lifetime [yr]

C1 L6A5M5N2 3 5 5

C2 L6A1M5N2 3 1 5

C3 L4A2M5N2 2 2 5

C4 L4A1M2N1 2 1 2

Table 1: Configurations of the planned space-based GW mission eLISA considered in this paper.

The GW spectrum for all the models considered in this paper is shown in Fig. 6. In agreement

with the discussion of Sec. 3.2, all of these models are reproducing the schematic behavior

shown in Fig. 2. In particular we can always appreciate two abrupt changes in the slope of

the curves for two di↵erent values of the frequency. Further we depict in Fig. 6 the sensitivity

curves of a selection of current (solid lines) and upcoming (dashed lines) direct GW detectors.

Representing the millisecond pulsar timing arrays covering frequencies around 10�10 Hz, we

16

r & 10�3. Moreover, with the ongoing upgrades, LIGO/VIRGO is expected to reach a sensi-

tivity to detect or rule out the p = 1 and p = 2 case in the next few years, if ↵/⇤ is sizable.

In the case of a positive detection, the upcoming eLISA mission would potentially allow to

di↵erentiate between these two cases, as well as constrain the value of ↵/⇤.

(a) LIGO plot. (b) eLISA plot.

Figure 7: Plot of the (↵/⇤, �) parameter space for the Starobinsky model with contour lines for n
s

(solid blue),

r = {0.003, 0.005, 0.1, 0.2, 0.3, . . . } (dotted) and ⇠
CMB

= {0.5, 1, 1.5, . . . } (dashed). The orange shaded regions

denote the projected sensitivity for advanced LIGO in the O2 and O5 run (left panel) and for eLISA in the

C1 - C4 configurations (right panel).

The complementarity of CMB measurements and direct gravitational wave searches is made

explicit in Fig. 7 for the Starobinsky class of models (p = 2). In the parameter space spanned

by ↵/⇤ and �, we numerically solve the equation of motion (23) for the inflaton field, fixing

V0 (iteratively) to the value required by the COBE normalization. Fig. 7 shows constraints

from CMB measurements (⇠CMB, ns, r) as well as constraints and the projected sensitivity

of direct gravitational wave detectors (eLISA and LIGO/VIRGO). The solid blue lines corre-

spond to fixed values for nS with the shaded regions denoting the one and two sigma regimes;

dotted lines correspond to fixed values for r and dashed lines correspond to constant values

for ⇠CMB. The upper bound ⇠ < 2.5 is marked by the red line. The orange shaded regions

correspond to the observable regions for LIGO (left panel, evaluated at 50 Hz, runs O1, O2

and O5 as detailed in Sec. 4) and LISA (right panel, evaluated at 0.01 Hz, configurations

C1 - C4 as detailed in Sec. 4). Remarkably, the current constraint on ⇠CMB approximately

coincides with the recently published data on LIGO run O1 [25]. For � & 0.2, this moreover

23

Starobinsky-type model

V (φ) =V0 1− e
−γ φ( )2

observable signal for direct detection, sensitive to underlying inflation model

VD, Pieroni, Binetruy 2016

upcoming LIGO runs

ε ~ N − p
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non-standard equation of state after inflation

11

ΩGW(k) =
Δt
2

12
k2

a0
2H0

2 Tk
2 , Tk (t) =

a(ti )
a(t)

= ti
t

⎛
⎝⎜

⎞
⎠⎟

2
3(1+ω )

→ Ω( f ) = Ω( f0 )
f
f0

⎛
⎝⎜

⎞
⎠⎟

2(3ω−1)
1+3ω

ω = 0

ω = 1/ 3

ω = 1

matter

kinetic energy

radiation

10-20 10-15 10-10 10-5 100 105 1010
10-25

10-20

10-15

10-10

10-5
10-5 100 105 1010 1015 1020 1025

f [Hz]

Ω
G
W
h2

k[Mpc-1]

TRH =   10 MeV           104 GeV             1010 GeV

kination phase after inflation: 
Spookily ’93; Joyce ’96 

GW production in 
(hybrid) quintessential models: 
Giovannini ’99; Sa, Henriques ‘10
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FIG. 7: Time evolution of the equation-of-state parameter
w = p/ρ for g = 0.004 and g = 0.025. The duration of the
kination period in the former case is much longer, implying
a higher peak in the gravitational-wave spectrum. In this
figure the values of the parameters are the same as in Fig. 6
and u = − ln(1 + z), where z is the redshift.

stood as follows. If one decreases g (for fixed values of m
and λχ), the value of χ at the minimum of the potential
also decreases (recall that χmin = ±

√

g2(m2 − φ2)/λχ ),
meaning that less energy is acquired by this field as it
oscillates around the minimum during the second stage
of evolution. As a consequence, less energy is available
to be transferred, during the third stage of evolution,
from the scalar field χ to the radiation fluid, leading to a
lower reheating temperature. This, in turn, implies that
after the complete decay of χ a longer period of time is
required for the energy density of radiation to become
greater than the kinetic energy of the scalar field φ, i.e.,
the beginning of the radiation-dominated era is delayed
and, consequently, the kination period becomes longer.
In short, we could say that reheating becomes less effi-
cient as g decreases.
As we have seen in Sect. II, g is not a free param-

eter, its value is bounded from above by the condition
that the motion of φ is not affected by χ [see Eq. (4)]
and from below by the condition that the scalar field
χ responds quickly enough to changes in the potential
U(φ,χ), rolling down toward one of the new minima and
oscillating around it [see Eq. (3)]. Therefore, within the
hybrid quintessential inflationary model, the duration of
the kination period and, consequently, the height of the
peak in the gravitational-wave spectrum, cannot be freely
adjusted, they are limited by the allowed values of the
parameter g.
What in the previous two paragraphs was said rela-

tively to the dependence of the gravitational-wave spec-
trum on the value of g could also be said, with the neces-
sary adaptations, about the parameters m and λχ. The
dependence of the spectrum on the parameter m is il-
lustrated in Fig. 8. There, two spectra are shown, cor-
responding to the minimum and maximum values of m
allowed by the constraints (3) and (4) for fixed values
of λφ, g, and λχ. For both values of m, the parameter
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FIG. 8: Gravitational-wave spectrum for λφ = 10−13, g =
0.01, λχ = 1, and µ = 1. The two curves correspond
to the minimum and maximum values of m allowed by the
constraints (3) and (4), namely, m = 2.5 × 10−3 mp and
m = 0.01mp. In both cases M is of the order of 10−14 mp.
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FIG. 9: Gravitational-wave spectrum for λφ = 10−13, g =
6.3 × 10−4, m = 0.01mp, and µ = 0.1. The three curves
correspond to λχ = 10−4, 10−2, 1. The minimum value of
λχ, allowed by constraints (4) and (6), is 1.5 × 10−5. In all
cases M is of the order of 10−14 mp.

µ is chosen such that constraint (6) is satisfied. As we
see in this figure, the height of the peak, located at high
frequencies, increases as the parameter m decreases. In
Fig. 9, three gravitational-wave spectra are shown for dif-
ferent values of λχ and fixed values of λφ, g, m and µ.
As expected, the height of the peak increases as the pa-
rameter λχ increases. In all cases considered above, the
parameter M is of the order of 10−14mp.
Let us now turn to the analysis of the influence of

the dissipation parameter µ on the duration of the ki-
nation period and, consequently, on the height of the
high-frequency peak of the gravitational-wave spectrum.
Remember that the parameter µ is bounded from below
by the condition that the motion of φ is not affected by
χ [see Eq. (6)]. We also require that this parameter is
smaller than a critical value, µcrit, above which the os-
cillatory motion of the scalar field χ during the third
stage of evolution would become over-damped. For val-
ues of the dissipation parameter µ lying in the interval

stiff equation of state during reheating can enhance primordial GW signal

r = 0.1
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Other (stochastic) backgrounds
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Figure 5.9: GW spectrum today and the (expected) sensitivity of current and upcoming experiments. The
GW spectrum due to inflation (gray), preheating (red) as well as AH and NG cosmic strings (black) is shown
for the same parameters an in Fig. 5.7 and with ↵ = 10�12. The current bounds on the stochastic GW
spectrum from (1) millisecond pulsar timing (taken from [158], with (2) marking the update from EPTA [110])
and (3) LIGO [111] are marked by solid blue lines. The dashed blue lines mark the expected sensitivity of
some planned experiments: (4) KAGRA [169], (5) ET [165], (6) advanced LIGO [10], (7) eLISA [112], (8)
BBO/DECIGO [170] and (9) SKA [113].

to the GW background from cosmic strings in hybrid inflation models, which typically feature
a very small tensor-to-scalar ration, cf. Eq. (4.9). Nevertheless, a precise understanding of
the GW background from inflation is crucial for two reasons: First, although their origin is
very di↵erent, both the AH string and the inflationary GW spectrum are governed by the
respective Hubble-sized modes throughout the expansion history. Hence, the ‘kink’ marking
the transition between an early matter dominated reheating phase and radiation domination
occurs at the same frequency in both spectra. Thus, although the shape of this ‘kink’ is
modified in the case of the signal from AH cosmic strings due to the precise shape of CT ,
cf. Eq. (5.84), any conclusion we can draw from measuring the position of the kink in the
inflationary spectrum holds just as well for the AH cosmic string spectrum. In particular,
this means that we can directly read o↵ the e↵ective kink temperature T⇤, determined by the
parameters of the B�L Higgs sector. Independent requirements on the reheating tempera-
ture TN

RH from successful leptogenesis and DM production then enable us to constrain the

Buchmuller, VD, Kamada, Schmitz ‘12

Cosmic strings from GUT-scale phase transition

Caprini et al ‘15

r ~ 10-6
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Figure 3: Example of GW spectra in Case 2, for fixed T⇤ = 100 GeV, ↵ = 1, vw = 1, ↵1 = 0.3, and

varying �/H⇤: from left to right, �/H⇤ = 1 and �/H⇤ = 10 (top), �/H⇤ = 100 and �/H⇤ = 1000

(bottom). The black line denotes the total GW spectrum, the blue line the contribution from the

scalar field, the green line the contribution from sound waves, the red line the contribution from

MHD turbulence. The shaded areas represent the regions detectable by the C1 (red), C2 (magenta),

C3 (blue) and C4 (green) configurations.
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FIG. 1. Expected sensitivity of the network of advanced LIGO and Virgo detectors to the Fiducial field model. Left panel:
Energy density spectra are shown in blue (solid for the total background; dashed for the residual background, excluding resolved
sources, assuming final advanced LIGO and Virgo [1, 2] sensitivity). The pink shaded region “Poisson” shows the 90% CL
statistical uncertainty, propagated from the local rate measurement, on the total background. The black power-law integrated
curves show the 1� sensitivity of the network expected for the two first observing runs O1 and O2, and for 2 years at the design
sensitivity in O5. (O3 and O4 are not significantly di↵erent than O5; see Table I.) If the astrophysical background spectrum
intersects a black line, it has expected SNR � 1. In both panels we assume a coincident duty cycle of 33% for O1 (actual) and
50% for all other runs (predicted). Right panel: Predicted SNR as a function of total observing time. The blue lines and pink
shaded region have the same interpretation as in the left panel. Each observing run is indicated by an improvement in the
LIGO-Virgo network sensitivity [35], which results in a discontinuity in the slope. The thresholds for SNR = 1, 3 (false-alarm
probability < 3⇥ 10�3) and 5 (false-alarm probability < 6⇥ 10�7) are indicated by horizontal lines.

trum for binary inspirals is an example. A power-law in-
tegrated curve is calculated by taking the locus of power-
law spectra that have expected SNR = 1, where [5]:

SNR =
3H2
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(4)
for a network of detectors i = 1, 2, · · · , n. Hence, if
the spectrum of an astrophysical background intersects
a black curve, then it has an expected SNR � 1. In Eq.
4, Pi(f) and Pj(f) are the one-sided strain noise power
spectral densities of two detectors; �ij(f) is the normal-
ized isotropic overlap reduction function [41, 42]; and T
is the accumulated coincident observation time. While
Eq. 4 is derived by assuming a Gaussian background [5],
it can also be applied to non-Gaussian backgrounds (with
signals that are clearly separated in time) such as the bi-
nary black hole background considered here [43]. The
di↵erent black curves shown in this plot illustrate the
improvement in expected sensitivity in the coming years.

Following [35, 39], we consider five di↵erent phases, de-
noted O1 to O5, corresponding to the first five observing
runs, summarized in Table I. For clarity, we show only
the O1, O2, and O5 power-law integrated curves since
the di↵erences between the projected sensitivities for O3,

O4, and O5 are relatively small. In Fig. 1b, we plot the
expected accumulated SNR for the Fiducial model as
a function of total observation time. For both the sen-
sitivity curves and the accumulated SNR, we assume a
coincident duty cycle for each pair of detectors of 33% for
O1 (actual) and 50% for all other runs (predicted). The
total background associated with the Fiducial model
could be identified with SNR = 3, corresponding to false
alarm probability < 3⇥10�3, after approximately 6 years
of observing. In the most optimistic scenario given by
statistical uncertainties, the total background could be
identified after 1.5 years with SNR = 3 and after approx-
imatively 2 years with SNR = 5, which is even before
design sensitivity is reached. It would take about 2 years
of observing to achieve SNR = 3 and about 3.5 years for
SNR = 5 for the optimistic residual background. The
most pessimistic case considered here is out of reach of
the advanced detector network but is in the scope of third
generation detectors.

Alternative Models — We now investigate the impact of
possible variations on the Fiducial model. We consider
the following alternatives:

• AltSFR di↵ers from the Fiducial model in as-
suming a di↵erent SFR proposed by Tornatore et
al. [44], who combined observations and simulations
at higher redshift; the formation rate is assumed

8

unresolved BH mergers

LIGO/VIRGO collaboration ’16,

…. primordial black holes?
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Cosmic strings
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U(1) phase transition in the early universe (after inflation) -> cosmic strings 

Cosmic string network, topologically stable but looses energy into GWs (and particles) 

Evolution of cosmic string network can be studied numerically in the “Abelian Higgs” or 
 “Nambu Goto” model 

- Abelian Higgs model: Main source for GWs are horizon sized cosmic strings 

- Nambu Goto model: Main source for GWs are small cosmic string loops 
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Cosmic strings

14 (a) Dependence of the temperature spectrum on
Gµ. The green, black and red solid lines represent
the spectra for Gµ = 10−6.5, Gµ = 10−7 and Gµ =
10−7.5, respectively, with p fixed to 1.

(b) Dependence of the temperature spectrum on
p. The black, red and green solid lines represent
the spectra for p = 1, p = 10−0.5 and p = 10−1,
respectively, with Gµ fixed to 10−7.

Figure 2: The power spectra of CMB temperature fluctuations induced by strings for various param-
eter sets. In each figure, the black solid line represents the spectrum for the fiducial parameter set
taken for the Fisher analysis in Sec. 4.3. We also show the spectrum predicted by inflation as a blue
dotted line and the expected noise levels for Planck and CMBpol as a black and orange dotted line,
respectively.

fluctuations CTT,str
l and B-mode polarization CBB,str

l induced by cosmic strings, respectively, for var-
ious parameter sets. We also show the temperature spectrum induced by the inflationary primordial
perturbations CTT,inf

l in Fig. 2, the B-mode polarization from the inflationary GWs CBB,inf
l and that

from the gravitational lensing of E-modes CBB,len
l in Fig. 3, which are calculated by CAMB [95,96].

In addition, we plot the expected noise levels of Planck and CMBpol, which is given by the sum of
the instrumental noise and the cosmic variance

l(l + 1)

2π
N tot

T ;l =
l(l + 1)

2π

√

2

(2l + 1)l
(CTT,inf

l +NT ;l), (17)

for temperature fluctuations, and

l(l + 1)

2π
N tot

B;l =
l(l + 1)

2π

√

2

(2l + 1)l
(CBB,len

l +NP ;l), (18)

for B-modes. 2 The instrumental noise spectra for the temperature NT ;l and the polarization NP ;l

are defined in Sec. 3.
2The variance of Ci

l
is given by (∆Ci

l
)2 = 2

2l+1
(Ci

l
+ Na;l)2, where i denotes TT or BB and a denotes T or P .

When we take a logarithmically homogeneous binning of l with bin width ∆ ln l = 1, there are l multipoles in a bin at
l. Since different multipoles are independent, the noise level par each bin should be given by ∆Ci

l
/
√
l. This allows us

rough estimation of the detectability of the signal by eye in Figs. 2 and 3.

7

(a) Dependence of the B-mode spectrum on Gµ.
The green, black and red solid lines represent the
spectra for Gµ = 10−6.5, Gµ = 10−7 and Gµ =
10−7.5, respectively, with p fixed to 1.

(b) Dependence of the B-mode spectrum on p. The
black, red and green solid lines represent the spec-
tra for p = 1, p = 10−0.5 and p = 10−1, respec-
tively, with Gµ fixed to 10−7.

Figure 3: The power spectra of CMB B-mode polarization induced by strings for various parameter
sets. In each figure, the black solid line represents the spectrum for the fiducial parameter set taken
in the Fisher analysis in Sec. 4.3. The blue dotted line is the spectrum induced by the inflationary
GWs. The tensor-to-scalar ratio r is set to 0.1. The purple dotted line is the spectrum of B-mode
polarization generated through the gravitational lensing of the inflationary E-mode polarization. The
black and orange dotted line represent the expected noise levels for Planck and CMBpol, respectively.

The power spectrum of CMB temperature fluctuations induced by strings has a single bump,
unlike the acoustic oscillations seen in the inflationary CMB power spectra. This is because strings
generate fluctuations constantly and such fluctuations are incoherent, while the primordial fluctu-
ations generated during inflation oscillate coherently. The peak of CTT,str

l corresponds to the scale
of the perturbations generated at last scattering. Another important difference is that CTT,str

l does
not decay exponentially as l increases in contrast to the Silk dumping of the inflationary spectrum
at large l. This makes CTT,str

l larger than CTT,inf
l at high l and it may be observable by future

experiments3. The B-mode power spectrum also does not have oscillations, but has two bumps. The
bump at high l and that at low l correspond to the polarization generated around last scattering
and around reionization, respectively. If the amplitude of the primordial gravitational wave is small,
strings can be the main source of B-mode polarization.

The dependence of CMB power spectra on Gµ is simple. The amplitudes of temperature and
polarization fluctuations are proportional to Gµ, so the power spectra are proportional to (Gµ)2.
The effect of p arises through the correlation length of the string network γ and the r.m.s. velocity
of strings v. For small p, γ becomes smaller and v becomes larger. If p is small, the small value of
γ makes the string network denser and enhances the amplitude of the CMB fluctuations. Also, the
small correlation length γ makes the typical scale of perturbations smaller. However, at the same

3 The power spectra of E-mode polarization CEE
l

and the cross-correlation between temperature and E-mode CTE
l

by strings also decay more slowly than the inflationary spectrum at high l. However, they have small amplitude and
do not affect the observation when we assume realistic parameters.
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Figure 5.9: GW spectrum today and the (expected) sensitivity of current and upcoming experiments. The
GW spectrum due to inflation (gray), preheating (red) as well as AH and NG cosmic strings (black) is shown
for the same parameters an in Fig. 5.7 and with ↵ = 10�12. The current bounds on the stochastic GW
spectrum from (1) millisecond pulsar timing (taken from [158], with (2) marking the update from EPTA [110])
and (3) LIGO [111] are marked by solid blue lines. The dashed blue lines mark the expected sensitivity of
some planned experiments: (4) KAGRA [169], (5) ET [165], (6) advanced LIGO [10], (7) eLISA [112], (8)
BBO/DECIGO [170] and (9) SKA [113].

to the GW background from cosmic strings in hybrid inflation models, which typically feature
a very small tensor-to-scalar ration, cf. Eq. (4.9). Nevertheless, a precise understanding of
the GW background from inflation is crucial for two reasons: First, although their origin is
very di↵erent, both the AH string and the inflationary GW spectrum are governed by the
respective Hubble-sized modes throughout the expansion history. Hence, the ‘kink’ marking
the transition between an early matter dominated reheating phase and radiation domination
occurs at the same frequency in both spectra. Thus, although the shape of this ‘kink’ is
modified in the case of the signal from AH cosmic strings due to the precise shape of CT ,
cf. Eq. (5.84), any conclusion we can draw from measuring the position of the kink in the
inflationary spectrum holds just as well for the AH cosmic string spectrum. In particular,
this means that we can directly read o↵ the e↵ective kink temperature T⇤, determined by the
parameters of the B�L Higgs sector. Independent requirements on the reheating tempera-
ture TN

RH from successful leptogenesis and DM production then enable us to constrain the

direct detection

- similar to inflation signal but amplitude  
    determined by scale of phase transition:  
    can be strongly enhanced!  
- large theoretical uncertainty 
- as for inflation, sensitive to cosmological 
    history

GUT-scale phase transition after hybrid inflation, 
Buchmueller, VD, Kamada, Schmitz ‘12

CMB: direkt search for cosmic strings:

Silk et al ‘13
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primordial black holes
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very large range of mass scales possible - very different to stellar BHs:
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FIG. 3: Constraints on f(M) for a variety of evaporation (magenta), dynamical (red), lensing (cyan), large-scale structure
(green) and accretion (orange) e↵ects associated with PBHs. The e↵ects are extragalactic �-rays from evaporation (EG) [11],
femtolensing of �-ray bursts (F) [187], neutron-star capture constraints (NS) [36], Kepler microlensing and millilensing (K)
[188], MACHO/EROS/OGLE microlensing (ML) [27], survival of a star cluster in Eridanus II (E) [189], wide binary disruption
(WB) [37], dynamical friction on halo objects (DF) [33], millilensing of quasars (mLQ) [32], generation of large-scale structure
through Poisson fluctuations (LSS) [14] and accretion e↵ects (WMAP, FIRAS) [15]. Only the strongest constraint is included
in each mass range, but the accretion limits are shown with broken lines since they are are highly model-dependent. Where a
constraint depends on some extra parameter which is not well-known, we use a typical value. Most constraints cut o↵ at high
M due to the incredulity limit. See the original references for more accurate forms of these constraints.

This peaks at E ⇠ M�1 with a value independent of M . The number of background photons per unit energy per
unit volume from all the PBHs is obtained by integrating over the mass function:

E(E) =

Z M
max

M
min

dM
dn

dM

dN�

dE
(m,E) , (30)

where Mmin and Mmax specify the mass limits. For a monochromatic mass function, this gives

E(E) / f(M)⇥
(
E3 M2 (E < M�1) ,

E2 M e�EM (E > M�1) ,
(31)

and the associated intensity is

I(E) ⌘ cE E(E)

4⇡
/ f(M)⇥

(
E4 M2 (E < M�1) ,

E3 M e�EM (E > M�1) ,
(32)

with units s�1 sr�1 cm�2. This peaks at E ⇠ M�1 with a value Imax(M) / f(M)M�2. The observed extragalactic
intensity is Iobs / E�(1+✏) / M1+✏ where ✏ lies between 0.1 (the value favoured in Ref. [190]) and 0.4 (the value
favoured in Ref. [191]). Hence putting Imax(M)  Iobs(M) gives [11]

f(M) . 2⇥ 10�8

✓
M

M⇤

◆3+✏

(M > M⇤ = 5⇥ 1014g) . (33)
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FIG. 5: Constraints on the dark-matter fraction of primordial black holes in the intermediate-mass range M� < M < 103 M�.
Excluded regions are shaded. EROS constraints are taken from Ref. [27] and are depicted in blue. Wide-binary (WB) constraints
[223, 251] correspond to the green region in the plot. The latest constraints from the survival of the star cluster near the core
of Eridanus II [189] are shown in the red-shaded areas. For all red curves we assume a cluster age of 3Gyr. The various
constraints are due to di↵erent choices of values for the velocity dispersion � and ⇢, the dark-matter density in the center of
the galaxy. Specifically, we chose (�, ⇢) = (5 kms�1, 0.1M� pc�3) (red solid), (�, ⇢) = (10 kms�1, 0.1M� pc�3) (red dashed),
(�, ⇢) = (5 kms�1, 0.01M� pc�3) (red dot-dashed), and (�, ⇢) = (10 kms�1, 0.01M� pc�3) (red dotted).

[38] because these cover the same mass range as the Eridanus II limits. Since the latter are very stringent, we need
a more precise expression than Eq. (46) and care must be taken when considering the associated parameters. The
constraint can be written as [189]

f(M) . 0.5

✓
1 +

0.046M�pc�3

⇢

◆✓
10M�
M

◆⇣ �

10 kms�1

⌘
/

✓
1 + 0.1 ln


10M�
M

⇣ �

10 kms�1

⌘2
�◆

, (52)

where ⇢ is the density and � is the velocity dispersion of the dark matter at the center of the galaxy. This reduces
to Eq. (46) for ⇢ = 3M� pc�3 (a reasonable upper limit) and � = 5kms�1. Equations (46) and (52) assume an age
of 3Gyr for the star cluster. However, it could be as high as 12Gyr [250], in which case these equations must be
modified and yield tighter constraints [189].

As can be seen from Fig. 5, the least restrictive Eridanus II constraint, corresponding to ⇢ = 0.01M� pc�3 and
� = 10 kms�1, admits a monochromatic function containing all the dark matter at M ⇠ 30M� of the kind displayed
in the left panel of Fig. 1. As observations of the dwarf galaxy and wide binaries improve, this gap may be filled
and even the present ones shrink it according to Ref. [38]. However, a monochromatic mass function is not very
physical. A model-independent way of assessing the more realistic extended-mass-function case is to consider where
the di↵erent constraints cross. For ⇢ = 0.1M� pc�3, � = 5kms�1 (red solid curve), which is also the line chosen
in [189], the Eridanus II and microlensing constraints cross at M ⇠ 10M� and f ⇡ 0.4. This means that 40% of
the dark matter can be contained in PBHs with M < 10M�, thereby evading the microlensing bounds, and another
40% in PBHs with M > 10M�, thereby evading the Eridanus II constraints. Hence the Eridanus II and microlensing
constraints together exclude PBHs from having more than 80% of the dark matter in this intermediate-mass range.
The slightly less restrictive Eridanus II constraint with ⇢ = 0.1M� pc�3, � = 10 kms�1 (red dashed line) crosses
the microlensing constraints at M ⇠ 20M� and f ⇡ 0.5, marginally allowing the dark matter to be in PBHs in this
range. However, in this case the extended mass function has to be perfectly tuned to fit beneath the bounds, which
is unlikely. On the other hand, for ⇢ = 0.01M� pc�3, � = 5kms�1 (red dot-dashed curve) and ⇢ = 0.01M� pc�3,
� = 10 kms�1 (red dotted line), one could certainly envisage a mass function which provides all the dark matter.

monochromatic mass function

general mass function

could still form 100% of DM for suitable broad mass function

Carr, Kohri, Sendouda, Yokohama 2010, 
Carr, Kuhnel, Sandstad 2016
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through Poisson fluctuations (LSS) [14] and accretion e↵ects (WMAP, FIRAS) [15]. Only the strongest constraint is included
in each mass range, but the accretion limits are shown with broken lines since they are are highly model-dependent. Where a
constraint depends on some extra parameter which is not well-known, we use a typical value. Most constraints cut o↵ at high
M due to the incredulity limit. See the original references for more accurate forms of these constraints.

This peaks at E ⇠ M�1 with a value independent of M . The number of background photons per unit energy per
unit volume from all the PBHs is obtained by integrating over the mass function:

E(E) =

Z M
max

M
min

dM
dn

dM

dN�

dE
(m,E) , (30)

where Mmin and Mmax specify the mass limits. For a monochromatic mass function, this gives

E(E) / f(M)⇥
(
E3 M2 (E < M�1) ,

E2 M e�EM (E > M�1) ,
(31)

and the associated intensity is

I(E) ⌘ cE E(E)

4⇡
/ f(M)⇥

(
E4 M2 (E < M�1) ,

E3 M e�EM (E > M�1) ,
(32)

with units s�1 sr�1 cm�2. This peaks at E ⇠ M�1 with a value Imax(M) / f(M)M�2. The observed extragalactic
intensity is Iobs / E�(1+✏) / M1+✏ where ✏ lies between 0.1 (the value favoured in Ref. [190]) and 0.4 (the value
favoured in Ref. [191]). Hence putting Imax(M)  Iobs(M) gives [11]
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FIG. 5: Constraints on the dark-matter fraction of primordial black holes in the intermediate-mass range M� < M < 103 M�.
Excluded regions are shaded. EROS constraints are taken from Ref. [27] and are depicted in blue. Wide-binary (WB) constraints
[223, 251] correspond to the green region in the plot. The latest constraints from the survival of the star cluster near the core
of Eridanus II [189] are shown in the red-shaded areas. For all red curves we assume a cluster age of 3Gyr. The various
constraints are due to di↵erent choices of values for the velocity dispersion � and ⇢, the dark-matter density in the center of
the galaxy. Specifically, we chose (�, ⇢) = (5 kms�1, 0.1M� pc�3) (red solid), (�, ⇢) = (10 kms�1, 0.1M� pc�3) (red dashed),
(�, ⇢) = (5 kms�1, 0.01M� pc�3) (red dot-dashed), and (�, ⇢) = (10 kms�1, 0.01M� pc�3) (red dotted).

[38] because these cover the same mass range as the Eridanus II limits. Since the latter are very stringent, we need
a more precise expression than Eq. (46) and care must be taken when considering the associated parameters. The
constraint can be written as [189]

f(M) . 0.5
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where ⇢ is the density and � is the velocity dispersion of the dark matter at the center of the galaxy. This reduces
to Eq. (46) for ⇢ = 3M� pc�3 (a reasonable upper limit) and � = 5kms�1. Equations (46) and (52) assume an age
of 3Gyr for the star cluster. However, it could be as high as 12Gyr [250], in which case these equations must be
modified and yield tighter constraints [189].

As can be seen from Fig. 5, the least restrictive Eridanus II constraint, corresponding to ⇢ = 0.01M� pc�3 and
� = 10 kms�1, admits a monochromatic function containing all the dark matter at M ⇠ 30M� of the kind displayed
in the left panel of Fig. 1. As observations of the dwarf galaxy and wide binaries improve, this gap may be filled
and even the present ones shrink it according to Ref. [38]. However, a monochromatic mass function is not very
physical. A model-independent way of assessing the more realistic extended-mass-function case is to consider where
the di↵erent constraints cross. For ⇢ = 0.1M� pc�3, � = 5kms�1 (red solid curve), which is also the line chosen
in [189], the Eridanus II and microlensing constraints cross at M ⇠ 10M� and f ⇡ 0.4. This means that 40% of
the dark matter can be contained in PBHs with M < 10M�, thereby evading the microlensing bounds, and another
40% in PBHs with M > 10M�, thereby evading the Eridanus II constraints. Hence the Eridanus II and microlensing
constraints together exclude PBHs from having more than 80% of the dark matter in this intermediate-mass range.
The slightly less restrictive Eridanus II constraint with ⇢ = 0.1M� pc�3, � = 10 kms�1 (red dashed line) crosses
the microlensing constraints at M ⇠ 20M� and f ⇡ 0.5, marginally allowing the dark matter to be in PBHs in this
range. However, in this case the extended mass function has to be perfectly tuned to fit beneath the bounds, which
is unlikely. On the other hand, for ⇢ = 0.01M� pc�3, � = 5kms�1 (red dot-dashed curve) and ⇢ = 0.01M� pc�3,
� = 10 kms�1 (red dotted line), one could certainly envisage a mass function which provides all the dark matter.

monochromatic mass function

general mass function

could still form 100% of DM for suitable broad mass function

Carr, Kohri, Sendouda, Yokohama 2010, 
Carr, Kuhnel, Sandstad 2016

could generate GW signal in merger events
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Conclusion and Outlook
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There is no guaranteed early Universe GW signal for upcoming detectors - but many  
    interesting models will be probed 

The stochastic background of cosmic inflation is an extremely powerful tool:  
    It would shed light on the microphysics of inflation, as well as the entire subsequent 
    cosmological history 

The complementarity of CMB and direct GW measurements provides a 
    powerful probe of the physics of cosmic inflation. 

For the simplest models of inflation, the primordial GW signal is unobservable by  
    upcoming GW interferometers. But possible game changers are: 

- non-standard sources during inflation 
- stiff equation of state during reheating 
- second order tensor perturbations 

Other potential GW sources linked to the early universe are preheating, cosmic strings,  
    merger of primordial black holes, phase transitions… 
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    powerful probe of the physics of cosmic inflation. 

For the simplest models of inflation, the primordial GW signal is unobservable by  
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- stiff equation of state during reheating 
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Other potential GW sources linked to the early universe are preheating, cosmic strings,  
    merger of primordial black holes, phase transitions… 

Thank you!
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Figure 2: The present energy density of gravitational waves, ΩGW,0, generated during a mat-
ter dominated era shown as a function of wavenumber k. In this example F = (kdom/kdec)2 =
106. The solid line shows the result predicted using the linear matter power perturbation for
k < kdom, while the dotted line shows the result using the matter power spectrum truncated
at k > kcut = 200kdec.

During and after the radiation-dominated era, the density of gravitational waves on sub-
Hubble scales then redshifts exactly as any non-interacting relativistic particles and in the
present day we have

ΩGW,0(k) ≃
Ωγ,0

12

(
k

kdec

)2

Ph(k, ηdec) , (46)

where the present density of photons is Ωγ,0 ≃ 1.2×10−5, and we neglect additional numerical
factors due to the detailed thermal history, such as the heating of photons by the annihilation
of other relativistic particle species.

4.1 Linear scalar perturbations

If we take Eq. (37) for the amplitude of tensor perturbations for k < kdec at the start of the
radiation era, when H = kdec, we have

ΩGW (k, η) ≃
23

12
△4

R

(
kdomk

k2
dec

)
I1(k/kdom) , (47)

and this remains constant (assuming no further production of gravitational waves on sub-
Hubble scales) during the radiation era. The present day density of second-order gravita-
tional waves produced due to first-order scalar perturbations is thus given by

ΩGW,0(k) ≃
23

12
△4

RΩγ,0

(
kdomk

k2
dec

)
I1(k/kdom) , (48)

12

k / kinf

Ω
G
W
/(
Δ
s4 Ω

r) kRH kinf

matter dominated reheating phase

second order GW production

18

Large scalar perturbations re-entering the horizon after inflation  

grow in a matter-dominated reheating phase 

source second order tensor perturbations 

max. amplitude: 

detectable signal for eLISA/LIGO/VIRGO for 
relatively small reheating temperatures and   

note: very large      on small scales leads to the formation of primordial black holes, 
which in turn can produce GWs in merger processes.    

ΩGW
max ≈ Δ s

4Ωr
kinf
kRH

⎛
⎝⎜

⎞
⎠⎟

2

(Δ s
2 )small scales ≫ (Δ s

2 )CMB

~ k

Assadulahi, Wands ‘09

Δ s
2

primordial scalar fluctuations can source gravitational waves after inflation

Tomita ’67, ……
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Cosmic strings (Nambu-Goto)
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GWs from cosmic strings
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[Blanco-Pillado et al. ’11]

↵ = 0.1
[Sanidas et al ’12]

[Damour, Vilenkin ’01]

[Siemens et al. ’07]

[Silk et al. ’12]

large uncertainties from loop size and decay mode

Valerie Domcke — SISSA — 17.04.2015 — Page 11

effect of loop-size     in NG model.             preferred by most recent simulations.  α = 1α
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pseudoscalar inflation
observational signatures
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CMB: scalar and tensor fluctuations, in particular non-gaussianities, 
 but also spectral index and    -distortions. 

blue GW signal (enhanced on small scales), maximally chiral. 
    suppressed at CMB scales but interesting for LISA, LIGO/VIRGO,… 

PBH formation due to enhanced scalar power on small scales 

indirekt bound on tensor spectrum from         in BBN and CMB 

very interesting setup for multi-messenger analysis

Anber, Sorbo ‘12

Barnaby, Namba, Peloso ’11, 
Barnaby, Peloso ’11, 
Barnaby, Pajer, Peloso ’12, 
Meerburg, Pajer ’12

Linde, Mooij, Pajer ‘12

Allen ’96, 
Pagano, Salvati, Melchiorre ‘15
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main focus here on CMB and direct GW observations, 
can the inflaton gauge field coupling enable us to probe the microphysics of inflation?

A brief overview:

µ
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pseudoscalar inflation
background dynamics

21
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Figure 1: Schematic view of the evolution of the inflaton field � (left panel) and the parameter ⇠ controlling

the influence of the gauge fields (right panel) as a function of the number of e-folds of inflation.

with NCMB ' 50�60 denoting the number of e-folds of inflation elapsed since the CMB scales

exited the horizon, N⇤ denoting the amount of these required to cover the same distance in

field space for ↵ = 0 and consequently �N⇤ denoting the number of additional e-folds of

inflation due to the friction of the gauge fields, cf. Fig. 1. We will define the end of this

regime based on the GW spectrum (18), i.e.

⇠ < ⇠1 with
e4⇡⇠1

⇠61
=

�
4.3 · 10�7H2

1

��1
. (26)

where we can estimate H1 as the Hubble parameter at the CMB scale,

H2
1 ' ⇡2

2
�2

s

16�p
(NCMB)p

. (27)

For a given value of ⇠CMB at CMB scales, this value of ⇠ can be translated into a value for N ,

⇠1
⇠CMB

=

✓
NCMB ��N⇤
N1 ��N⇤

◆p/2

. (28)

which finally can be translated into a frequency according to Eq. (19).

power law regime (B)

As ⇠ > ⇠1, the contribution from the gauge fields begins to dominate the GW spectrum.

In this regime, as long as the additional friction in Eq. (3) is small, the equation of motion

Eq. (24) still holds and the evolution of ⇠ is still well described by Eq. (28), leading to a

strongly blue scalar and tensor spectrum. Regime (B) lasts until the gauge field friction term

in Eq. (23) overcomes the Hubble friction, i.e. for

⇠1 < ⇠ < ⇠2,
e2⇡⇠2

⇠52
'

⇣↵
⇤

⌘�2 ⇥
0.4 · 10�4H2

⇤�1
. (29)

8

evolution of the inflation field evolution of ⇠ /
p
✏ = �̇/(

p
2H)

a useful classification of inflation models: Mukhanov ’13

additional friction, CMB observables 
    evaluated at ‘later’ point on 

which holds independently of the inflation model. Here, as in Eq. (31), we have exceptionally

re-introduced the parameter N to emphasize the parameter dependence of this bound. Since

this bound is saturated at the end of inflation, this maximal value moreover is reached at a

universal frequency. Inserting N = 0 into Eq. (19) yields

fmax ' 3.6 · 108 Hz . (33)

Next let us consider the inflationary dynamics in the strong gauge field regime. With ⇠

approximately constant, we can estimate

� ' �̄,NN + �0, (34)

with |�̄,N | = 2⇠̄⇤/↵, ⇠̄ = (⇠max + ⇠2)/2. With this we can estimate the amount of e-folds in

this strong gauge field regime,

N2 = (�2 � �0)
↵

2⇤⇠̄
, (35)

with �0 denoting the value of the inflaton field at the end of inflation, to good approximation

determined by ✏V = 1. As above, the value of N can be translated into the corresponding

frequency. Moreover, by solving the vacuum slow-roll dynamics between �2 and �0 using

Eq. (24), i.e. setting ↵ = 0, we can finally determine �N⇤ as

�N⇤ = N2 �N0
2 , (36)

with N0
2 the numer of e-folds elapsed between �2 and �0 for ↵ = 0. Reinserting this value

into the above expressions of regime (A) and (B), we obtain an analytical description of all

the relevant points in scalar and tensor spectrum.

3.2 The scalar and tensor spectra

The scalar power spectrum is observed to be nearly scale-invariant around the CMB pivot

scale with an amplitude of �2
s ' 2.2 · 10�9. Within the framework of Eq. (20), the tilt of this

spectrum is obtained as

ns ' 1� O(1)

N⇤
, (37)

with the O(1) - factor depending on the choice of inflation model. Including the e↵ects of the

gauge field production, N⇤ = NCMB ��N⇤ < NCMB, and hence the spectral index decreases

compared to the ↵ = 0 case. The observed value of ns thus imposes an upper bound on �N⇤.

The precise value depends on the O(1) in Eq. (37), but typically we find �N⇤ . 10 � 20.

Consequently, this constrains the value of N2 through Eq. (36) and implies an upper bound

on ↵/⇤ in Eq. (35).
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N p +O(1 / N

p+1)

ns r

V (φ)

3 parameters: 
α ,β, p

large gauge field effects 
 at the end of inflation, 

in particular for large    (small   !)rp

p
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Figure 1: Schematic view of the evolution of the inflaton field � (left panel) and the parameter ⇠ controlling

the influence of the gauge fields (right panel) as a function of the number of e-folds of inflation.

with NCMB ' 50�60 denoting the number of e-folds of inflation elapsed since the CMB scales

exited the horizon, N⇤ denoting the amount of these required to cover the same distance in

field space for ↵ = 0 and consequently �N⇤ denoting the number of additional e-folds of

inflation due to the friction of the gauge fields, cf. Fig. 1. We will define the end of this

regime based on the GW spectrum (18), i.e.

⇠ < ⇠1 with
e4⇡⇠1

⇠61
=

�
4.3 · 10�7H2

1

��1
. (26)

where we can estimate H1 as the Hubble parameter at the CMB scale,

H2
1 ' ⇡2

2
�2

s

16�p
(NCMB)p

. (27)

For a given value of ⇠CMB at CMB scales, this value of ⇠ can be translated into a value for N ,

⇠1
⇠CMB

=

✓
NCMB ��N⇤
N1 ��N⇤

◆p/2

. (28)

which finally can be translated into a frequency according to Eq. (19).

power law regime (B)

As ⇠ > ⇠1, the contribution from the gauge fields begins to dominate the GW spectrum.

In this regime, as long as the additional friction in Eq. (3) is small, the equation of motion

Eq. (24) still holds and the evolution of ⇠ is still well described by Eq. (28), leading to a

strongly blue scalar and tensor spectrum. Regime (B) lasts until the gauge field friction term

in Eq. (23) overcomes the Hubble friction, i.e. for

⇠1 < ⇠ < ⇠2,
e2⇡⇠2

⇠52
'

⇣↵
⇤

⌘�2 ⇥
0.4 · 10�4H2

⇤�1
. (29)
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Figure 5: Power spectrum of scalar perturbations for all the models with the same parameters and color code of

Fig. 4. The upper horizontal line estimates the PBH bound, the lower one indicates the COBE normalization.

Figure 6: Gravitational wave spectrum for all the models with the same parameters and color code of Fig. 4.

We are also showing the sensitivity curves for (from left to right): milli-second pulsar timing, eLISA, advanced

LIGO. Current bounds are denoted by solid lines, expected sensitivities of upcoming experiments by dashed

lines. See main text for details.
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Figure 6: Gravitational wave spectrum for all the models with the same parameters and color code of Fig. 4.

We are also showing the sensitivity curves for (from left to right): milli-second pulsar timing, eLISA, advanced

LIGO. Current bounds are denoted by solid lines, expected sensitivities of upcoming experiments by dashed

lines. See main text for details.

18

p = 1 (Quadratic)
p = 2 (Starobinsky)
p = 3 (Hilltop)
p = 4 (Hilltop)

Figure 4: Evolution of the parameter ⇠ governing the strength of the gauge interactions for models with

di↵erent values of p as defined in Eq. (20). The parameters for the Starobinsky model are as in Fig. 3, the

parameters for the other models are listed in App. A.

are in tension with the estimated PBH bound of [11] when we restrict to the case N = 1. As

this discrepancy is however only by a O(1) factor, it can both be addressed by taking into

account the theoretical uncertainties in the PBH bound (see also Sec. 5) or by considering

models with N > 1. As evident from the figure, the scalar spectrum for the Hilltop models

i.e. p = 3, 4 presents a much steeper decrease in the first part of the evolution with respect

the other models, as predicted by Eq. (25), ✏V ' N�p.

name full name number of arms armlength [Gm] lifetime [yr]

C1 L6A5M5N2 3 5 5

C2 L6A1M5N2 3 1 5

C3 L4A2M5N2 2 2 5

C4 L4A1M2N1 2 1 2

Table 1: Configurations of the planned space-based GW mission eLISA considered in this paper.

The GW spectrum for all the models considered in this paper is shown in Fig. 6. In agreement

with the discussion of Sec. 3.2, all of these models are reproducing the schematic behavior

shown in Fig. 2. In particular we can always appreciate two abrupt changes in the slope of

the curves for two di↵erent values of the frequency. Further we depict in Fig. 6 the sensitivity

curves of a selection of current (solid lines) and upcoming (dashed lines) direct GW detectors.

Representing the millisecond pulsar timing arrays covering frequencies around 10�10 Hz, we

16

amplitude @ NCMB fixes one parameter 
large power on small scales -> PBHs 
nearly universal amplitude on small scales

increase at small scales to universal value 
low scale models feature stronger increase 
Onset of increase depends on coupling

we find both universal and inflation model specific features

N = N⇤. As in our numerical simulations we have used the complete evolution, we provide

these constraints in the most general form. However, for the estimates of Sec. 4.2, we use

their approximated expression in terms of N⇤.

• COBE Normalization: It sets the value of the scalar power spectrum at the CMB

scales. This condition can be used to fix a constraint on the inflationary potential. In

particular we have [15]:

�2
s

��
N=N

CMB

= (2.21± 0.07) · 10�9 . (48)

• Planck measurements: These further constrain the spectral index ns, the running of

the spectral index ↵s and the tensor-to-scalar ratio r, defined as

ns � 1 =
d ln�2

s

d ln k
, ↵s =

dns

d ln k
, r =

�2
t

�2
s

. (49)

The constraints on these parameters from the Planck mission [15] read (at 68% CL for

ns and ↵s, 95% CL for r):

ns = 0.9645± 0.0049 , ↵s = �0.0057± 0.0071 , r < 0.10 . (50)

In slow-roll approximation and for a negligible gauge field contribution at the CMB

scales, the quantities above are given by:

�2
s =

1

24⇡2

V (�)

✏V (�)
, ns ' 1 + 2⌘V � 6✏V , r ' 16✏V , (51)

where ✏V is defined in Eq. (21) and ⌘V is defined as ⌘V = V,��/V . It is useful to express

⌘V as:

⌘V =
1

2

d ln ✏V
dN

+ 2✏V , (52)

yielding [12]:

ns = 1� p

N
� 6✏ . (53)

For p > 1, the term proportional to ✏ is negligible, indicating that ns ⇠ 0.96 suggests

p < 2.4 for N* < 60.

• Small non gaussianities: As discussed in [7–11], to respect the constraints on small

primordial non gaussianities we need ⇠CMB ⌘ ⇠|N=N
CMB

. 2.5. This implies:

⇠CMB =
↵

2⇤

�����
�̇

H

�����
N=N

CMB

. 2.5. (54)

More details on the derivation of this constraint are given in Sec. 5.
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εV !
β
N p

α

Δ s
2 (k) = Δ s

2 (k)vac + Δ s
2 (k)gauge =

H 2

2π | !φ |
⎛
⎝⎜

⎞
⎠⎟

2

+ α 〈
!
E
!
B〉

3bH !φ
⎛
⎝⎜

⎞
⎠⎟

2

b = 1− 2πξ α 〈
!
E
!
B〉

3ΛH !φ
,

uncertainties in strong  
back reaction regime, 
Sloth ’15, Peloso ‘16

The resulting background equations for �(t) and Aa(t, x) are

�̈+ 3H�̇+
@V

@�
=

↵

⇤
h ~E ~Bi . (3)

d2

d⌧2
~Aa �r2 ~Aa � ↵

⇤

d�

d⌧
r⇥ ~Aa = 0 , (4)

where dots are used to denote derivatives with respect to cosmic time t, whereas ⌧ denotes

the conformal time. The Friedmann equation reads:

3H2 =
1

2
�̇2 + V +

1

2
h ~E2 + ~B2i . (5)

Assuming �̇ is a slowly varying function in time, we can solve the equation for ~A analytically.

The Fourier modes of ~A must satisfy:

d2Aa
±(⌧, k)

d⌧2
+

 
k2 ± ↵k�̇

⇤H⌧

!
Aa

±(⌧, k) = 0 . (6)

Here the subscript ± refers to the two helicity modes of the massless gauge field ( ~Aa =

~e±A
a
± exp(i~k~x)). The corresponding helicity vectors ~e±(~k) satisfy ~k ⇥ ~e± = ⌥ik~e⌥, turning

the cross-product in Eq. (4) (arising in turn from the antisymmetric ✏-tensor in F̃µ⌫) into the

± in Eq. (6). This leads to a tachyonic instability in the A+ mode (for �̇ < 0) and hence to

an exponential growth of one of the two helicity modes of the vector field,

Aa
+ ' 1p

2k

✓
k

2⇠aH

◆1/4

e⇡⇠�2
p

2⇠k/(aH) , (7)

where we have defined

⇠ ⌘ ↵|�̇|
2⇤H

. (8)

W.l.o.g., let us assume that � > 0, V 0(�) > 0, �̇ < 0. The strong gauge field production

modifies the slow-roll equation of motion and the Friedmann equation through4

h ~E ~Bi ' N · 2.4 · 10�4H
4

⇠4
e2⇡⇠ ,

1

2
h ~E2 + ~B2i ' N · 1.4 · 10�4H

4

⇠3
e2⇡⇠ . (10)

Typically the e↵ect in the Friedmann equation is small. However, in the slow-roll equation

for the inflaton, this introduces an additional friction term which can slow down inflation

significantly as ⇠ ⇠ |�̇|/H increases towards the end of inflation. Inflation then extends for

�N⇤ additional e-folds, implying that for a given scalar potential, the point where the CMB

4More precisely, and relevant for small ⇠ [6]:

h ~E ~Bi ' H4

⇠4
e2⇡⇠

1
221⇡2

Z
8⇠

0

x7e�xdx . (9)

4

ΩGW = 1
12

H
πMP

⎛
⎝⎜

⎞
⎠⎟

2

(1+ 4.3×10(−7) H 2

MP
2ξ 6

e4πξ )
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