Oscillation phenomenology beyond the standard three-neutrino paradigm Interplay between Particle and Astroparticle Physics (IPA2016) LAL, Orsay, France, 5–9 Sept. 2016

Thomas Schwetz

Orsay, 9 Sept. 2016

Global data on neutrino oscillations

various neutrino sources, vastly different energy and distance scales:

reactors

Homestake, SAGE, GALLEX SuperK, SNO, Borexino

KamLAND, D-CHOOZ DayaBay, RENO

atmosphere

SuperKamiokande

accelerators

K2K, MINOS, T2K OPERA, NOvA

- global data fits nicely with the 3 neutrinos from the SM www.nu-fit.org, talk by M. Maltoni
- exceptions: "anomalies" at 2-3 σ :
 - ▶ short-baseline experiments: → sterile neutrinos?
 - missing up-turn of solar ν spectrum \rightarrow **non-standard interactions?**

Outline

Sterile neutrinos at the eV scale

Non-standard neutrino interactions LMA-dark and the mass ordering determination

Conclusions

Sterile neutrinos at the eV scale? talks by D. Lhuillier, A. Hayes

- reactor anomaly ($\bar{\nu}_e$ disappearance)
- Gallium anomaly (ν_e disappearance)
- LSND $(ar{
 u}_{\mu}
 ightarrow ar{
 u}_{e}$ appearance)
- MiniBooNE ($\nu_{\mu} \rightarrow \nu_{e}, \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ appearance)

mostly based on Kopp, Machado, Maltoni, Schwetz, 1303.3011

- "phenomenological model": eV scale states are not related to seesaw or the mechanism of neutrino mass generation
- eV scale seesaw e.g.: Blennow, Fernandez-Martinez, 11; Fan, Langacker, 12; Donini, Hernandez, Lopez-Pavon, Maltoni, TS, 12

Hints for SBL $\nu_e \rightarrow \nu_e$ disappearance

Reactor anomaly:

calculation of neutrino flux from nuclear reactors Mueller et al., 11; P. Huber, 11

 $f = 0.935 \pm 0.024$ (different from 1 @ 2.7 σ)

talk by A. Hayes

Gallium anomaly:

rate from radio-active sources in Gallium solar ν exps compared to cross section calculations Acero,Giunti,Laveder,07; Giunti,Laveder,10

$$r = 0.84^{+0.054}_{-0.051}$$
 $\Delta \chi^2_{r=1} = 8.7 (2.9\sigma)$

Global ν_e disappearance data

- reactor and gallium anomalies
- reactors at larger baselines (Chooz, Palo Verde, DoubleChooz, DayaBay, RENO, KamLAND)
- ► ν_e disappearance constraints from LSND and KARMEN from $\nu_e + {}^{12}$ C $\rightarrow {}^{12}$ N + e^-

Reichenbacher, 05; Conrad, Shaevitz, 1106.5552

solar neutrinos

additional constraints:

- DayaBay 2016 (important for low Δm²₄₁)
- preliminary results from NEOS IHEP16, talk by D. Lhuillier

$$\begin{split} &\sin^2 2\theta = 0.09\,, \quad \Delta m^2 = 1.78\,\mathrm{eV}^2 \\ &\chi^2_{\mathrm{min}} = 296.8/328\,(64\%) \\ &\Delta \chi^2_{\mathrm{no-osc}} = 12.9/2 \quad (99.8\%\mathrm{CL}, 3.1\sigma) \end{split}$$

$u_{\mu} \rightarrow \nu_{e} \text{ hints from LSND}$

- ▶ LSND signal for $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ transitions at the $E/L \sim 1 \text{ eV}^2$ scale (3.8 σ)
- 2.8σ excess in antineutrinos, consistent with oscillations
- ▶ 3.4 σ excess in neutrinos, marginally consistent with osc. (p-value 6.1%)
- ▶ non-observation of $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ appearance by KARMEN, and others

Can we fit everything together?

appearance

$$P_{\mu e} = \sin^2 2\theta_{\mu e} \sin^2 \frac{\Delta m_{41}^2 L}{4E} \qquad \sin^2 2\theta_{\mu e} = 4|U_{e4}|^2|U_{\mu 4}|^2$$

disappearance ($\alpha = e, \mu$)

$$P_{\alpha\alpha} = 1 - \sin^2 2\theta_{\alpha\alpha} \sin^2 \frac{\Delta m_{41}^2 L}{4E} \qquad \sin^2 2\theta_{\alpha\alpha} = 4|U_{\alpha4}|^2(1 - |U_{\alpha4}|^2)$$

$$\sin^2 2\theta_{\mu e} \approx \frac{1}{4} \sin^2 2\theta_{ee} \sin^2 2\theta_{\mu\mu}$$

 $\nu_{\mu} \rightarrow \nu_{e}$ app. signal requires also signal in both, ν_{e} and ν_{μ} disappearance (appearance mixing angle quadratically suppressed)

Limits on ν_{μ} disappearance

- CDHS PLB 1984
- SuperK atmospherics Bilenky, Giunti, Grimus, TS 99; Maltoni, TS, Valle 01
- MINOS 1001.0336, 1104.3922
- MiniBooNE ν_μ(ν
 μ) disappearance 1106.5685

New results available from MINOS and IceCube

Can we fit everything together?

tension between appearance and disappearance data

consistency of appearance vs disappearance $\chi^2_{PG}=18/2,~P\approx 10^{-4}$ Kopp, Machado, Maltoni, Schwetz, 1303.3011

T. Schwetz - IPA16

New results from MINOS and Daya Bay

talks @ Neutrino16, 1607.01177

IceCube results PRL 2016

WARNING: maybe not as striking as it looks in this plot?

IceCube results PRL 2016

Collin, Arguelles, Conrad, Shaevitz, 1607.00011

SUPPL. FIG. 1: The solid (dashed) line represents the 90% C.L. IceCube limit when calculated with $\theta_{34} = 0^{\circ} (\theta_{34} = 15^{\circ})$. The result of the SBL+IC global fit is overlaid, Red – 90% CL: blue–99% CL.

WARNING: maybe not as striking as it looks in this plot?

 $\chi^{2}_{\min}(\text{SBL} + \text{IC}) - \chi^{2}_{\min}(\text{SBL}) - \chi^{2}_{\min}(\text{IC}) = 4.67 \,(2 \,\text{dof})$

Outline

Sterile neutrinos at the eV scale

Non-standard neutrino interactions LMA-dark and the mass ordering determination

Conclusions

Non-standard neutrino interactions

Neutrino interactions in the Standard Model:

$$H_{\rm SM}^{\nu_{\alpha}} = \frac{G_F}{\sqrt{2}} \, \bar{\nu}_{\alpha} \gamma_{\mu} (1 - \gamma_5) \nu_{\alpha} \, \sum_f \bar{f} \gamma^{\mu} (g_V^{\alpha, f} - g_A^{\alpha, f} \gamma_5) f$$

assume presence of new physics inducing NSI:

$${\cal H}_{
m NSI} = rac{G_{F}}{\sqrt{2}}\,ar{
u}_{lpha}\gamma_{\mu}(1-\gamma_{5})
u_{eta}\,\sum_{f}ar{f}\gamma^{\mu}\epsilon^{f}_{lphaeta}f$$

•
$$\epsilon^{f}_{\alpha\beta}$$
 parametrizes strength of NSI relative to G_{F}

- restrict to vector-type interactions (matter potential)
- ▶ NSI can be non-universal ($\alpha = \beta$) or flavour-changing ($\alpha \neq \beta$)
- in general not directly related to neutrino mass (dim-6) but generically expected at some level

T. Schwetz – IPA16

Non-standard neutrino interactions

Neutrino interactions in the Standard Model:

$$H_{\rm SM}^{\nu_{\alpha}} = \frac{G_F}{\sqrt{2}} \, \bar{\nu}_{\alpha} \gamma_{\mu} (1 - \gamma_5) \nu_{\alpha} \, \sum_f \bar{f} \gamma^{\mu} (g_V^{\alpha, f} - g_A^{\alpha, f} \gamma_5) f$$

assume presence of new physics inducing NSI:

$$H_{\rm NSI} = \frac{G_F}{\sqrt{2}} \, \bar{\nu}_{\alpha} \gamma_{\mu} (1 - \gamma_5) \nu_{\beta} \, \sum_f \bar{f} \gamma^{\mu} \epsilon^f_{\alpha\beta} f$$

•
$$\epsilon^{f}_{\alpha\beta}$$
 parametrizes strength of NSI relative to G_{F}

- restrict to vector-type interactions (matter potential)
- ▶ NSI can be non-universal ($\alpha = \beta$) or flavour-changing ($\alpha \neq \beta$)
- in general not directly related to neutrino mass (dim-6) but generically expected at some level

Generalized matter potential

$$H = U \operatorname{diag} \left(0, \frac{\Delta m_{21}^2}{2E_{\nu}}, \frac{\Delta m_{31}^2}{2E_{\nu}} \right) U^{\dagger} + \sqrt{2} G_F N_e(x) \begin{pmatrix} 1 + \epsilon_{ee} & \epsilon_{e\mu} & \epsilon_{e\tau} \\ \epsilon_{e\mu}^* & \epsilon_{\mu\mu} & \epsilon_{\mu\tau} \\ \epsilon_{e\tau}^* & \epsilon_{\mu\tau}^* & \epsilon_{\tau\tau} \end{pmatrix}$$
$$\epsilon_{\alpha\beta} = \sum_{f=e,u,d} Y_f(x) \epsilon_{\alpha\beta}^f$$

with $Y_f(x) \equiv N_f(x)/N_e(x)$

 $N_f(x)$: density of fermion f along the neutrino path

Limits from oscillation data

		90% CL	
Param.	best-fit	LMA	$\rm LMA \oplus \rm LMA\text{-}\rm D$
$\varepsilon_{ee}^u - \varepsilon_{\mu\mu}^u$	+0.298	[+0.00, +0.51]	\oplus [-1.19, -0.81]
$\varepsilon^u_{\tau\tau} - \varepsilon^u_{\mu\mu}$	+0.001	[-0.01, +0.03]	[-0.03, +0.03]
$\varepsilon^{u}_{e\mu}$	-0.021	[-0.09, +0.04]	[-0.09, +0.10]
$\varepsilon^{u}_{e\tau}$	+0.021	[-0.14, +0.14]	[-0.15, +0.14]
$\varepsilon^{u}_{\mu\tau}$	-0.001	[-0.01, +0.01]	[-0.01, +0.01]
$\varepsilon^d_{ee} - \varepsilon^d_{\mu\mu}$	+0.310	[+0.02, +0.51]	\oplus [-1.17, -1.03]
$\varepsilon^d_{\tau\tau} - \varepsilon^d_{\mu\mu}$	+0.001	[-0.01, +0.03]	[-0.01, +0.03]
$\varepsilon^{d}_{e\mu}$	-0.023	[-0.09, +0.04]	[-0.09, +0.08]
$\varepsilon^d_{e\tau}$	+0.023	[-0.13, +0.14]	[-0.13, +0.14]
$\varepsilon^{d}_{\mu\tau}$	-0.001	[-0.01, +0.01]	[-0.01, +0.01]

Gonzalez-Garcia, Maltoni, 1307.3092

- limits at the 1% to 10% level
- exception ϵ_{ee}^{q} : order-one values allowed!

T. Schwetz - IPA16

Presence of NSI:

Gonzalez-Garcia, Maltoni, 1307.3092

Presence of NSI:

improved fit to solar neutrino spectrum

show up in future experiments (affect CP violation measurments)

very large literature – few recent examples (appologize for ommissions):

Coloma, 1511.06357; deGouvea, Kelly, 1511.05562; Liao, Marfatia, Whisnant, 1601.00927; Forero, Huber, 1601.03736; Bakhti, Farzan, 1602.07099; Masud, Mehta, 1603.01380; Blennow, Choubey, Ohlsson, Pramanik, Raut, 1606.08851; Agarwalla, Chatterjee, Palazzo, 1607.01745; Ge, Smirnov, 1607.08513

"LMA-dark" solution

Miranda, Tortola, Valle, hep-ph/0406280

15 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	The second s
20	
¹³ ∛ 10	
5	Turli
$\begin{array}{c} 0 \\ -2 \\ \epsilon_{ee}^{f} \\ \epsilon_{ee}^{e} \\ \end{array}$	1

20 -

		90% CL	
Param.	best-fit	LMA	$\rm LMA \oplus \rm LMA\text{-}\rm D$
$\varepsilon_{ee}^u - \varepsilon_{\mu\mu}^u$	+0.298	[+0.00, +0.51]	\oplus [-1.19, -0.81]
$\varepsilon^u_{\tau\tau} - \varepsilon^u_{\mu\mu}$	+0.001	[-0.01, +0.03]	[-0.03, +0.03]
$\varepsilon^{u}_{e\mu}$	-0.021	[-0.09, +0.04]	[-0.09, +0.10]
$\varepsilon_{e\tau}^{u}$	+0.021	[-0.14, +0.14]	[-0.15, +0.14]
$\varepsilon^u_{\mu\tau}$	-0.001	[-0.01, +0.01]	[-0.01, +0.01]
$\varepsilon^d_{ee} - \varepsilon^d_{\mu\mu}$	+0.310	[+0.02, +0.51]	\oplus [-1.17, -1.03]
$\varepsilon^d_{\tau\tau} - \varepsilon^d_{\mu\mu}$	+0.001	[-0.01, +0.03]	[-0.01, +0.03]
$\varepsilon^{d}_{e\mu}$	-0.023	[-0.09, +0.04]	[-0.09, +0.08]
$\varepsilon^d_{e\tau}$	+0.023	[-0.13, +0.14]	[-0.13, +0.14]
$\varepsilon^{d}_{\mu\tau}$	-0.001	[-0.01, +0.01]	[-0.01, +0.01]

Gonzalez-Garcia, Maltoni, 1307.3092

$$irac{d}{dt}\left(egin{array}{c} a_{e}\ a_{\mu}\ a_{ au}\end{array}
ight)=H\left(egin{array}{c} a_{e}\ a_{\mu}\ a_{ au}\end{array}
ight)$$

- ▶ neutrino evolution is identical under $H \rightarrow -H^*$ (CPT invariance)
- in vaccum this can be realised by

 $\Delta m_{31}^2 \to -\Delta m_{32}^2 \,, \quad \sin \theta_{12} \leftrightarrow \cos \theta_{12} \,, \quad \delta \to \pi - \delta$

$$H = U \operatorname{diag} \left(0, \frac{\Delta m_{21}^2}{2E_{\nu}}, \frac{\Delta m_{31}^2}{2E_{\nu}} \right) U^{\dagger} + \operatorname{diag}(\sqrt{2}G_{F}N_{e}, 0, 0)$$

standard matter effect breaks the $H \rightarrow -H^*$ symmetry:

$$H = U ext{diag} \left(0, rac{\Delta m_{21}^2}{2E_{
u}}, rac{\Delta m_{31}^2}{2E_{
u}}
ight) U^\dagger + ext{diag} (\sqrt{2} G_F N_e, 0, 0)$$

standard matter effect breaks the $H \rightarrow -H^*$ symmetry:

Generalized mass ordering degeneracy Coloma, Schwetz, 1604.05772

[see also Gonzalez-Garcia, Maltoni, Salvado, 1103.4365; Gonzalez-Garcia, Maltoni, 1307.3092; Bakhti, Farzan, 1403.0744]

$$H = U \operatorname{diag} \left(0, \frac{\Delta m_{21}^2}{2E_{\nu}}, \frac{\Delta m_{31}^2}{2E_{\nu}} \right) U^{\dagger} + \sqrt{2} G_F N_e(x) \begin{pmatrix} 1 + \epsilon_{ee} & \epsilon_{e\mu} & \epsilon_{e\tau} \\ \epsilon_{e\mu}^* & \epsilon_{\mu\mu} & \epsilon_{\mu\tau} \\ \epsilon_{e\tau}^* & \epsilon_{\mu\tau}^* & \epsilon_{\tau\tau} \end{pmatrix}$$

NSI can restore the $H \rightarrow -H^*$ symmetry by

 $\Delta m_{31}^2 \rightarrow -\Delta m_{32}^2$, $\sin \theta_{12} \leftrightarrow \cos \theta_{12}$, $\delta \rightarrow \pi - \delta$ \oplus $\epsilon_{ee} \rightarrow -\epsilon_{ee} - 2$, $\epsilon_{\alpha\beta} \rightarrow -\epsilon_{\alpha\beta}^*$ ($\alpha\beta \neq ee$)

Generalized mass ordering degeneracy

$$\epsilon_{ee}
ightarrow -\epsilon_{ee} - 2 \,, \quad \epsilon_{\alpha\beta}
ightarrow -\epsilon^*_{\alpha\beta} \quad (\alpha\beta
eq ee)$$

- in presence of NSI no oscillation experiment can exclude a flipped neutrino mass spectrum
- determination of mass ordering becomes impossible!

Generalized mass ordering degeneracy

$$\epsilon_{ee} \rightarrow -\epsilon_{ee} - 2, \quad \epsilon_{\alpha\beta} \rightarrow -\epsilon^*_{\alpha\beta} \quad (\alpha\beta \neq ee)$$

•
$$\epsilon_{\alpha\beta} = \sum_{f=u,d} Y_f(x) \epsilon^f_{\alpha\beta}$$
 with $Y_f(x) \equiv N_f(x)/N_e(x)$

- ► for $\epsilon^{u}_{\alpha\beta} = -2\epsilon^{d}_{\alpha\beta}$ NSI happen only on protons \rightarrow effects become independent of the matter composition
- ► Ex.: for $\epsilon_{ee}^{u} = -4/3$, $\epsilon_{ee}^{d} = 2/3$ we get $\epsilon_{ee} = -2$ for any matter composition \rightarrow degenerate with no NSI

Need data on NC-like ν_e scattering

- need bounds on ν_e/ν_{τ,μ}
 neutral-current universality from non-oscillation experiments
- historical data CHARM-II, 1986 constrain part of parameter space
- degeneracy remains approximately
- CHARM constraint is model-dependent
- progress expected from exps looking for coherent neutrino-nucleus scattering talk by K. Scholberg

Generalized mass ordering degeneracy...

• requires ϵ_{ee}^{q} of order one (NSI comparable to weak interaction):

$${g^2\over \Lambda^2}\sim G_F$$

- $g \sim 1, \Lambda \gtrsim m_W$ strongly constrained (LHC,LFV,...)
- alternative: $g \ll 1$, MeV $\gtrsim \Lambda \ll m_W$
- ► consistent gauge models for e^q_{ee} ~ 1 exist Farzan, 2015; Farzan, Shoemaker, 2015

Outline

Sterile neutrinos at the eV scale

Non-standard neutrino interactions LMA-dark and the mass ordering determination

Conclusions

Conclusions

eV-scale sterile neutrinos

- no satisfactory fit of global data (app/disapp tension)
- ▶ no signs for steriles in new results → not conclusive yet but hints are getting more and more squeezed ...

non-standard neutrino interactions

- weak hint (2σ) from solar neutrino spectrum
- possible manifestation of new physics in the lepton sector
- LMA-dark: still allowed $\mathcal{O}(1)$ perturbation of neutrino sector
- requires $\epsilon_{ee} \simeq 1$
- implies generalized mass ordering degeneracy impossible to resolve by oscillations → scattering experiments (ν_e NC)

Conclusions

eV-scale sterile neutrinos

- no satisfactory fit of global data (app/disapp tension)
- ▶ no signs for steriles in new results → not conclusive yet but hints are getting more and more squeezed ...

non-standard neutrino interactions

- weak hint (2σ) from solar neutrino spectrum
- possible manifestation of new physics in the lepton sector
- LMA-dark: still allowed $\mathcal{O}(1)$ perturbation of neutrino sector
- requires $\epsilon_{ee} \simeq 1$
- implies generalized mass ordering degeneracy impossible to resolve by oscillations → scattering experiments (ν_e NC)

Thank you for your attention!