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The Universe accelerates: why?



Maybe a landscape of Universes? 



The acceleration of the Universe could also  be due to many mundane causes:

A calculable cosmological constant and/or vacuum energy

The cosmological dynamics of fields (new matter) 

A modification of General Relativity (GR)

Or not?



The Cosmological Constant

The cosmological constant comprises two terms: a bare cosmological constant which can be seen as a boundary 
condition set initially at the Big Bang and the sum of all the vacuum fluctuations. Vacuum fluctuations couple to 
matter (the Casimir effect) but do they couple to gravity? If yes they entail a serious problem: 

But what is the problem exactly?

In a Lorentz invariant and causal effective field theory, the description of the late acceleration must be captured 
by a (very) low energy effective theory at energies well below all the mass scales of the standard model



The cosmological constant and masses correspond to renormalisable (relevant) operators at low 
energy. Their numerical values is sensitive to UV physics and must be determined at a given scale 
by comparison with experiments. This is the usual renormalisation programme where “infinities” 
are absorbed by “infinite” counterterms, leaving a finite value which is determined experimentally. 
The bare value of the cosmological plays the role of such a counterterm. 

In a top-down approach, every time a particle decouples, it contributes to the vacuum 
energy: 

Phase transitions (EW breaking, QCD) also contribute. 

The measurement of the dark energy now corresponds to the renormalisation 
condition at very low energy.



So what is the problem? 

From a bottom-up approach, there is no problem… the dark energy is measured at low energy and one can 
“integrate in” all the particles of the standard model to take into account the effective vacuum energy in different 
eras of the Universe (before BBN, before the EW transition etc…) . In different eras, the effective cosmological 
constant is subdominant. 

From a top-down approach, there is a hierarchy problem. Why should my “grand unified theory” at very large energy know (or 
care) that when all the particles of the models have decoupled the sum of the bare cosmological constant, defined by the model 
at high energy, and the quantum fluctuations down to the electron (neutrino) scale should be ALMOST zero?

This is a similar problem to the Higgs mass problem. 

In the early Universe, if inflation takes place and then ends, this sets the initial value of the cosmological 
constant to vanish and imposes that the contributions from the decoupling of the  particles of the theory almost 
vanish. 

Why? 



Weinberg’s no-go theorem: 

A generic 4d Quantum Field Theory cannot admit a Poincaré invariant 
vacuum with vanishing vacuum energy and non-vanishing fermion masses. 

Global SUSY is a counter example. 

One can violate some of the hypotheses to try to calculate the dark energy:

Use extra dimensions (the curvature of the extra dimensions absorbs the vacuum energy) 

Use the dynamics of cosmological fields (quintessence)

In the low energy world after BBN is there a way of guaranteeing that the vacuum energy at low energy is (nearly) zero? 





Thawing Freezing



A Simple Example: Pseudo-Goldstone Models

Global U(1) symmetry broken at scale f:

Symmetry broken by small term:

Low energy potential: 

Cosmologically, if initially the field is small compared to f, it is frozen there until its mass becomes larger than the Hubble 
rate. Tuning this event to be in the recent past of the Universe and requiring that the dark energy is due to the low energy 
potential implies: 



A major drawback of these models is that the phase transition must be at the Planck scale, this requires 
embedding this model in theories dealing with quantum gravity… maybe embedding it in string theory 
although no global symmetries there…

On the other hand, this model is useful to see that low energy dark energy fields couple to matter:

The derivative interaction implies no effect on static tests of gravity vs fifth forces. This an example of a 
disformal coupling to matter. 

This is one example of coupling to matter, we will also consider conformal couplings which are 
tightly constrained. 

Extremely small mass for the scalar field.



Modified gravity 



Massive Gravity

The simplest modification is massive gravity (Pauli-Fierz):

Pauli-Fierz gravity is ghost free (negative kinetic energy terms) . Unfortunately, a massive graviton carries 5 
polarisations when a massless one has only two polarisations. In the presence of matter, the graviton wave
function takes the form:

The massless limit does not give GR! (van Dam-Velman-Zakharov discontinuity). The extra polarization is lethal. 
Solved by Vainshtein mechanism (non-linearity).

Ghost in curved space-time!

Mass term for a graviton



Bimetric Gravity

One way to cure these problems is to consider a non-linear version of massive gravity with two dynamical 
metric: 

where the graviton mass is of order:  



What we have learnt in the last ten years is that such extensions involve light scalar fields, why?:

Massive gravitons have a scalar part 

Their interaction with matter generates fifth forces which would have been seen in the laboratory and 
the solar system. 

5 = 2+ 2 + 1



GRAVITY ACTS ON ALL SCALES

Looking for extensions of General Relativity valid from small to large scales.  

In general, these theories require a fine-tuning of the cosmological constant but have unexpected field theoretic properties which go 
beyond the usual framework of field theory: irrelevant operators dominate, UV completions may not be required (classicalisation)… The 
most general form of these theories is known in some cases (Horndeski for one scalar) but one must  go into the details of the models to 
make them work from the solar system (or the laboratory) to large cosmological scales.



Deviations from Newton’s law are parametrised by:

For large range forces with large λ, the tightest constraint on 
the coupling β comes from the Cassini probe measuring  the 
Shapiro  effect (time delay): Bertotti et al. (2004)

β β



A B

VIOLATION OF THE STRONG EQUIVALENCE PRINCIPLE

C

Tight bound on the perihelion advance of the moon too. 

Lunar ranging 
experiment



How do we hide light scalar fields ?



SCREENING



The effect of the environment

When conformally coupled to matter, scalar fields  have  a matter dependent effective potential

Environment 
dependent 
minimum

The field generated from deep inside is Yukawa 
suppressed. Only a thin shell radiates outside the 
body. Hence suppressed scalar contribution to the 
fifth force.Chameleon



f(R) is  totally equivalent to a field theory with gravity and  a scalar

The potential V is directly related to f(R) Crucial coupling between 
matter and the scalar field

One example: f(R) gravity

Would be ruled out if no chameleon effect 



Dilaton

Damour-Polyakov mechanism



Another simple example: the CUBIC GALILEON

Well inside the Vainshtein radius, Newtonian gravity 
is restored. Well outside gravity is modified. 

The Vainshtein radius is very large for stars, typically 
0.1 kpc for the sun, and a mass for the graviton of the 
order of the Hubble rate .

m graviton mass



K-mouflage models

M is the dark energy scale for cosmologically interesting models. Examples that one may consider:  

Particles have modified trajectories compared to Newton’s law in this background:

Screening happens inside the K-mouflage radius where K’>>1. Still the tiny deviations depend on r 
and can lead to an anomalous perihelion in the earth-moon system. 



These are the only four mechanisms ! 



Summary:  the motion of massive objects in modified gravity theories:
Trajectories due to 
gravity + scalar

Unlike chameleons et al., K-mouflage and Vainshtein do not affect the charge Q: 

outside the Vainshtein-
Kmouflage radius

Outside the Vainshtein-
Kmouflage radius, the 
object feels the scalar 
force

Chameleons and Damour-Polyakov:



There is more than the conformal coupling



Matter couples to a metric which can differ from the Einstein metric involved in the Einstein-Hilbert 
term with a constant Newton constant:

Bekenstein (1992) showed that causality and the weak equivalence principle restricts the form of the 
auxiliary metric:

What is the physics associated with the disformal coupling B(φ,X) ?



As the axions, the disformally coupled scalars can have an effect at high density and high temperature inside 
the inferno at the core of stars. From the gentle burning of main sequence stars, to helium burning stars and 
then the explosion of supernovae, the processes involve higher energies (hence shorter distances) and 
electromagnetic  to strong interaction processes.

There can also be effects in particle physics. 



The Bekenstein coupling generates all sorts of  couplings of extremely light scalar field to the 
standard model: 

What are the constraints and which phenomena are affected? 

Precision tests of the standard model  (all)

Missing energy signals  (disformal)

Displaced vertices  (conformal)



The most constrained test of dark energy at colliders comes from missing energy, for instance monojets
or t-tbar. 

The missing pT distribution can be significantly different from a dark matter signal (in particular for jets).



Where could we observe modified gravity?

Modification of the growth of cosmological structure: future galaxy surveys (Euclid …)

Unscreened region of the Universe



Where could we observe modified gravity?

Gravitational waves: modification of the speed of gravitational waves. 

Gravitational Cerenkov effect Binary pulsars



Where could we observe modified gravity?

Laboratory experiments: torsion pendulum, atomic interferometry, Casimir effect ….



Conclusions

Light scalar fields could be what remains from massive gravity, string theory …. They need to be screened
in the local environment otherwise tight bounds would be violated. 

This prompts one to study the screening mechanism from a bottom-up approach irrespective of their UV 
completion, if ever needed.

For conformally coupled scalars, there are only four mechanisms: Vainshtein, K-mouflage,  chameleon
and Damour-Polyakov.  

Future tests from laboratory to cosmological tests. 



Supplement 



The screening criterion for an object BLUE embedded in a larger region RED expresses the fact that the Newtonian 
potential of an object must be larger than the variation of the field:

Scalar charge:

Newton’s potential at the surface 

Self screening: large Newton potential

Blanket screening: due to the environment G

Chameleons:



Difficult to distinguish models at the background level…  how about 

Large Scale Structure?



The chameleons modify the growth of structure in a scale and time dependent way.

Galileons only modify the growth in a time-dependent way. All structures up to 
clusters are screened so reducing possible effects.

K-mouflage modifies growth in a time-dependent way. Galaxy clusters are not 
screened so effect on the number of large clusters.



The cosmological background evolves like in the concordance model. The main difference coming
from the modification of gravity arises at the perturbation level where the Cold Dark Matter
density contrast evolves like:

The new factor in the bracket is due to a modification of gravity depending on the comoving scale k. 
Most effects in the quasi-linear regime around Mpc scales, i.e. requires N-body or sem-analytical
methods to go beyond linear perturbation theory. 

Modified gravity

Chameleons:

This is now available for most models.



The growth of structures  depends on the comoving Compton length:

Gravity acts in an usual way for scales larger than the Compton length (matter era)

Gravity is modified inside the Compton length with MORE growth (matter era):

When the coupling is a function of the scalar field, the growth is not power-like but still 
anomalous growth. 



Lensing is also affected:

No modification of the lensing 
potential

But the density contrast is modified and the effective Newton constant varies with time: 

Growth and lensing are modified in all these models. Still linear scales more reliable. Comparison with 
available data of large scale structure and lensing has been performed giving constraints on f(R) and 
other models such as dilatons which are loosely restricted. For f(R), the cosmological bounds are not 
as good as the bounds from astrophysics but subject to fewer uncertainties. 



screened

SDSS catalogue, within 200 Mpc, scalar range 1 
Mpc

Astrophysical tests: 

Motion of screened stars different from 
unscreened HI gas in unscreened dwarf 
galaxies. 

Distance indicators for cepheids and TRGB 
stars in screened and unscreened dwarf 
galaxies are different as their luminosities 
vary

No effects measured so far: bound on the 
range of the scalar interaction.



The latest contours on f(R) from cosmological observables



More clusters for K-mouflage models on large scales 

One of the main stumbling blocks of all these analyses is the difficulty of finding clear features which 
could distinguish models. One of those would be the fact that the physics of large clusters is largely 
affected for K-mouflage models passing the solar system tests. 

Much more analytical and numerical work will be required to chart the different 
modified gravity models which are compatible with local gravity tests. 



In fact, around a background configuration and in the presence of matter, the Lagrangian of such
extensions can be linearised and the main screening mechanisms can be schematically distinguished :

The Vainshtein mechanism reduces the coupling by increasing Z. The K-mouflage mechanism has the 
same effect … while the Damour-Polyakov mechanism suppresses β and the chameleon property 
increases m. 



The Vainshtein and K-mouflage mechanisms can be easily analysed: 

Effective Newtonian potential:

For theories with second order equations of motion:

Vainshtein
K-mouflage

Cosmological choice



Vainshtein

Newtonian gravity retrieved when the curvature is large enough:

On large cosmological scales, this tells us that overdensities such as galaxy clusters are screened :

On small scales (solar system, galaxies) screening only occurs within the Vainshtein radius:



K-mouflage

Newtonian gravity retrieved when the gravitational acceleration  is large enough:

On large cosmological scales, this tells us that overdensities such as galaxy clusters are not screened :

On small scales (solar system, galaxies) screening only occurs within the K-mouflage radius:

Dwarf galaxies are not screened.


