

"Neutrino mass and nature: status and prospects"

- Florian Fränkle -

Institute for Nuclear Physics (IKP), Karlsruhe Institute of Technology (KIT)

Outline

- Neutrino masses
- Single β-decay experiments
- 163Ho electron capture experiments
- $\mathbf{O} \mathbf{v} \mathbf{\beta} \mathbf{\beta}$ -decay experiments
- Summary

Neutrino masses

- Neutrino flavour eigenstates are related to neutrino mass eigenstates by the lepton mixing matrix (PMNS)
- Neutrino oscillations are sensitive to the differences between the squares of neutrino masses
- Two mass ordering scenarios possible
- The value of the lightest neutrino mass is unknown

$$\begin{bmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{bmatrix} = \begin{bmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{bmatrix} \begin{bmatrix} m_1 \\ m_2 \\ m_3 \end{bmatrix}$$

mass ordering

Neutrino masses

- Neutrinos are massive particles, but so far there are only upper and lower limits
- Absolute neutrino mass scale is one of the big open questions in particle physics, astrophysics and cosmology
- Different approaches to determine neutrino mass:

Neutrino mass and single β -decay

■ β-decay: n \rightarrow p + e⁻ + $\overline{v_e}$

- Neutrino mass influences energy spectrum of β-decay electrons
- Neutrino mass determination via precise measurement of the spectral shape close to the endpoint
- Model independent method

Fermi theory of β -decay:

$$\frac{dN}{dE} = C \cdot F(E,Z) \cdot p(E+m_e) \cdot (E_0 - E) \cdot \sqrt{(E_0 - E)^2 - m_v^2}$$

observable:

$$m_{\nu_e}^2 = \sum_{i=1}^3 |U_{ei}|^2 m_i^2$$

β-spectrum for tritium (E_0 = 18.6 keV, $T_{1/2}$ = 12.3 y):

MAC-E filter

- Magnetic Adiabatic Collimation combined with an Electrostatic Filter
- Technique used by Mainz and Troitsk neutrino mass experiments, current best upper limit $m_v < 2 \text{ eV/c}^2$

The KATRIN experiment

- KArlsruhe TRItium Neutrino experiment
- Goal: Measure neutrino mass with a sensitivity of 200 meV/c² (90% C.L.)

KATRIN – Windowless Gaseous Tritium Source

- Stability of T_2 density profile of 10^{-3} (function of T_2 injection rate, purity, beamtube temperature T_B stability and homogeneity, pump rate)
- T_B stability in prototype experiment 10× better than specified*
- Tritium loop processes 1.4×10^{16} Bq tritium / day (same scale as ITER)
- WGTS currently cooling to operational temperature (30 K)

05.09.2016

^{*} S. Grohmann et al. "The thermal behaviour of the tritium source in KATRIN", Cryogenics, V. 55-56, 2013, p. 5-11, DOI: 10.1016/j.cryogenics.2013.01.001

KATRIN – pumping sections

Differential pumping

Cryogenic pumping

- T₂ partial pressure reduction (10⁵) via differential pumping
- Magnetic guiding of β -electrons
- Removal of positive ions

- \blacksquare T₂ partial pressure reduction (10⁷) via cryosorption of T₂ on argon frost
- Concept successfully tested*
- Magnet system successfully tested

05.09.2016

^{*} F. Eichelhardt et al. "First Tritium Results of the KATRIN Test Experiment Trap" Fusion Science and Technology 54 (2008), Nr. 2, p. 615-618

KATRIN – Spectrometer & Detector Section (SDS)

- Two SDS commissioning measurement phases since autumn 2013
- Main spectrometer successfully operated at -18.6 kV
- Spectrometer pressure ~ 10-10 mbar
- Transmission characteristics of main spectrometer as expected
- Detailed investigations of spectrometer backgrounds

KATRIN backgrounds

- All previously known background processes are efficiently suppressed
- Background rate about 50 times larger then design value (10 mcps), presumably due to ionization of Rydberg atoms by black body radiation

KATRIN outlook

- Elevated background reduces KATRIN sensitivity from 200 to 240 meV/c²
 but further background reduction measures being studied
- Commissioning of complete KATRIN beamline without tritium will start on October 14th ("first light")
- Test of source beamtube cooling system
- Completion of closed tritium loops
- First tritium data in 2017

Cyclotron Resonance Emission Spectroscopy

$$\omega(\gamma) = \frac{\omega_0}{\gamma} = \frac{eB}{E + m_e}$$

- Idea: Measure β -spectrum via coherent cyclotron radiation emitted by an energetic electron in a magnetic field (radiated power about 1 fW)
- Frequency of emitted radiation independent of electron pitch angle Θ
- New form of nondestructive spectroscopy

^{*} B. Monreal, J.A. Formaggio, PHYSICAL REVIEW D 80, 051301(R) (2009), DOI: 10.1103/PhysRevD.80.051301

Project 8

expected signal (simulation) *

Prototype system for "proof of principle" test

- Goal: detect single electrons from 83mKr
- Measurement phase finished

^{*} Noah Oblath, "The Project 8 Experiment", KATRIN Analysis Workshop 2014

Project 8

- First detection of single-electron cyclotron radiation (June 2014)
- Spectrum generation via event reconstruction
- Initial energy resolution could be improved to 15 eV (FWHM)
- Measure first tritium spectrum in 2017
- Long-term goal: large scale experiment with atomic tritium source and sub-eV sensitivity (hierarchy scale)

*D.M. Asner et. al. "Single-Electron Detection and Spectroscopy via Relativistic Cyclotron Radiation", Physical Review Letters, 114, 162501 (2015), DOI: 10.1103/PhysRevLett.114.162501

05.09.2016

Neutrino mass and electron capture

- Electron capture: $p + e^{-} \rightarrow n + v_a$
- Neutrino mass affects the de-excitation energy spectrum

$$\frac{dN}{dE_{\rm C}} = A(Q_{\rm EC} - E_{\rm C})^2 \sqrt{1 - \frac{m_{\nu}^2}{(Q_{\rm EC} - E_{\rm C})^2}} \sum C_{\rm H} n_{\rm H} B_{\rm H} \, \phi_{\rm H}^2(0) \frac{\frac{\Gamma_{\rm H}}{2\pi}}{(E_{\rm C} - E_{\rm H})^2 + \frac{\Gamma_{\rm H}^2}{4}}$$

Calorimetric measurement of atomic de-excitation (x-rays, Auger electrons, Coster-Kronig transitions)

^{*} Christian Enss, "Neutrino Mass Determination by Electron Capture in Holmium-163" ECT workshop Determination of the absolute electron (anti-)neutrino mass, Trento

ECHo

- magnetic micro-calorimeter (MMC) arrays with microwave squid multiplexing readout
- fast rise time (\sim 130 ns) and excellent linearity & resolution ($\Delta E \sim 5 \text{ eV}$)

- Phase I: 100 detectors (10 Bq each), $m_y < 10 \text{ eV/c}^2$ by 2018
- Phase II: 10⁵ detectors (10 Bg each), sub-eV sensitivity

Holmes / NuMECS

measurement of ¹⁶³Ho electron capture using transition edge sensors

NuMECS

- funding received for 1000 channel
 Ho detector experiment
- smaller demonstrator array to start data taking 2017

- 163Ho production by proton irradiation of natural dysprosium
- first ¹⁶³Ho spectrum measured but still limited statistics and resolution

^{*} Kathrin Valerius, "Direct probes of neutrino mass" Neutrino 2016, London

Double β-decay

if $0v\beta\beta$ is discovered:

- lepton number violation
- neutrino is its own antiparticle (Majorana particle)
- lacktriangle measure of effective neutrino mass $\mathsf{m}_{\beta\beta}$

$$m_{\beta\beta} = \sum_{i} U_{ei}^{2} m_{i} \qquad (T_{1/2}^{0\nu\beta\beta})^{-1} = G^{0\nu} |M|^{2} m_{\beta\beta}^{2}$$

$0\nu\beta\beta$ experiments

Experiment	Isotope	Technique
AMoRE	¹⁰⁰ Mo	Low-T MMC
CANDLES	⁴⁸ Ca	CaF ₂ scintillator + veto
CDEX	⁷⁶ Ge	Point contact Ge
COBRA	¹¹⁶ Cd, etc	CdZnTe
CUORE/CUORE-0	¹³⁰ Te	TeO ₂ bolometers
CUPID	¹³⁰ Te, ⁸² Se, ¹⁰⁰ Mo, ¹¹⁶ Cd	Hybrid bolometers
DCBA/MTD	¹⁰⁰ Mo	Foils + tracker
EXO200	¹³⁶ Xe	LXe TPC
GERDA	⁷⁶ Ge	Semicoax / point contact HPGe
KamLAND-Zen	¹³⁶ Xe	Liquid scintillator
Majorana Demonstrator	⁷⁶ Ge	Point contact HPGe
MOON	¹⁰⁰ Mo	Foils + scintillator
nEXO	¹³⁶ Xe	LXe TPC
NEXT	¹³⁶ Xe	High-P TPC
NG-Ge76	⁷⁶ Ge	Point contact Ge
PandaX III	¹³⁶ Xe	High-P TPC
SNO+	¹³⁰ Te	Liquid scintillator
SuperNEMO	⁸² Se	Foils + tracker

Germanium detectors

- ⁷⁶Ge has a relative large Q-value (2.039 MeV), above most backgrounds
- Natural abundance of 7.4 % but enrichment up to > 86 % possible
- Production of high-purity germanium (HPGe) crystals removes unwanted naturally occurring radioactive impurities
- HPGe crystal acts simultaneously as source and detector with excellent energy resolution (4 keV @ 2039 keV)
- Point contact detectors allow for multi-site event identification and background reduction

^{*} Steve Elliott, "Initial Results from the MAJORANA DEMONSTRATOR" Neutrino 2016, London

GERDA

- The GERmanium Detector Array (GERDA) searches for neutrinoless double beta decay in ⁷⁶Ge
- Located underground at Gran Sasso National Laboratory
- Five detector strings with a total target mass of 20 kg are installed in 64 m³ of liquid argon
- Installed LAr scintillation light veto for background suppression after Phase I
- Phase II measurements currently ongoing

^{*} Matteo Agostini, "First results from Gerda Phase II" Neutrino 2016, London

[‡] Christoph Wiesinger, "GERDA meets KATRIN" KATRIN analysis workshop 2016, Munich

GERDA

- GERDA Phase II is a high-resolution and background-free experiment
- Combined Phase I + II sensitivity: $T_{1/2}^{0v} > 4.0 \times 10^{25} \text{ yr (90% C.L), preliminary}$

^{*} Matteo Agostini, "First results from Gerda Phase II" Neutrino 2016, London

MAJORANA **D**EMONSTRATOR

- goal: demonstrate backgrounds low enough to justify building a tonne scale experiment
- 44.8 kg of Ge detectors: 29.7 kg enriched (88 %), 15.1 kg natural Ge
- two independent cryostats made from ultra-clean electroformed copper
- located underground at 4850´ Sanford Underground Research Facility
- Cryostat I in operation since January 2016, blind data collection since April 2016
- collected 3 kg yr before blinding:

$$T_{1/2}^{0v} > 3.7 \times 10^{24} \text{ yr}$$

commissioning of Cryostat II ongoing

05.09.2016

^{*} Steve Elliott, "Initial Results from the MAJORANA DEMONSTRATOR" Neutrino 2016, London

KamLAND-Zen

- KamLAND-Zen repurposed the KamLAND liquid scintillator detector for the search of neutrinoless double beta decay in ¹³⁶Xe
- Target mass 383 kg Xe (91 % 136Xe)
- Xe purification system
- Combined result phase 1 + 2:

$$T_{1/2}^{0v} > 1.07 \times 10^{26} \text{ yr (90\% C.L)}$$

- Detector is currently being upgraded for operation with 750 kg enriched Xe
- R&D for future upgrade to 1000 kg Xe in order to cover the region of inverted mass ordering

¹⁰⁰⁰ t ultra-pure LS buffer oil **PMTs** water

^{*} Junpei Shirai, "Results and future plans for the KamLAND-Zen" Neutrino 2016, London

Nemo-3 & SuperNEMO

- Located at 4800 m.w.e. at the Laboratoire Souterrain de Modane (LSM)
- Source separated from detector
- Topological event reconstruction and particle identification allows strong background reduction
- World's best measurements of $2v\beta\beta$ for various isotopes (100Mo, 82Se, 96Zr, 48Ca, ¹¹⁶Cd, ¹³⁰Te, ¹⁵⁰Nd)
- Result for $0\nu\beta\beta$ in ¹⁰⁰Mo: $T_{1/2}^{0v} > 1.1 \times 10^{24} \text{ yr (90\% C.L)}$
- SuperNEMO Demonstrator Module nearing completion at the LSM

^{*} David Walters, "Latest Results from NEMO-3 & Status of the SuperNEMO Experiment" Neutrino 2016, London

summary

- KATRIN experiment is preparing for first tritium runs in 2017
- R&D for new approaches in direct neutrino mass measurements: electron capture of ¹⁶³Ho and cyclotron resonance emission spectroscopy
- lacksquare Several 0
 uetaeta experiments are currently taking data
- R&D for next-generation $0\nu\beta\beta$ experiments targeting the region of inverted mass ordering

Backup

$0\nu\beta\beta$ nuclear matrix elements

