

ACTAR TPC

 Active targets and physics motivation
 ACTAR TPC prototype: Demonstrator GANIL/IPNO/CENBG
 Development of the final system: mechanics, anode, field cage...
 Technical perspectives

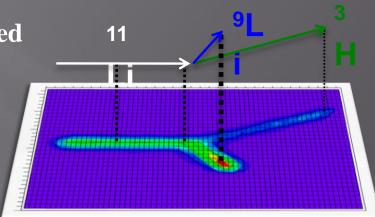
J. Pancin On behalf of the ACTAR-TPC collaboration

Gas Detector WS 2016/J. Pancin

Active targets and TPC

• Based on TPC concept from particle physics

• The Gas is also the target (not always adapted for detection): IKAR, CENBG TPC, MAYA...

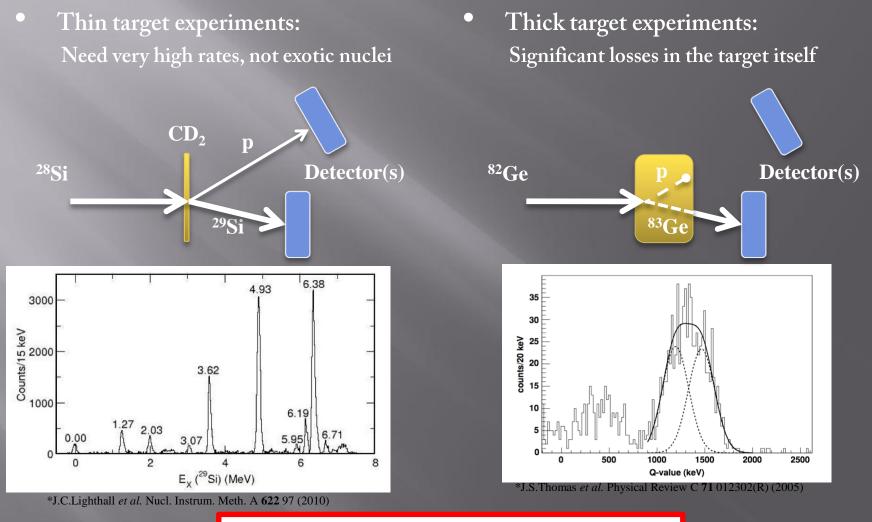

• Advantages vs thick target:

Energy loss like a thin target

- ≻Trajectory reconstruction in 3D
- ➢ High efficiency (gas thickness...)
- ➢ Low beam intensity
- Low energy threshold

Direct study on beam energy dependance

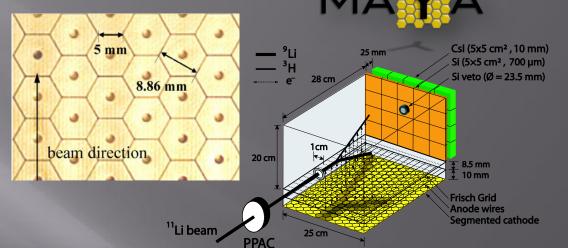
- Nuclear physics interest:
- Structure/reaction dynamics of unstable nuclei
- Weakly-bound many-body systems
- Nucleosynthesis
- Resonant reactions
- Exotic decays...



Accepted Experiment GANIL:

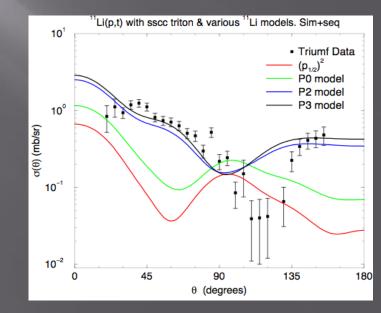
- Resonant proton elastic scattering on ¹⁷F and 2p-decay of excited ¹⁸N (GF. Grinyer et al.)
- Spectroscopy of the unbound proton rich nucleus ³³K (B. Fernandez et al.)
- Study of p-p correlation in 2p radioactivity of ⁵⁴Zn and ⁴⁸Ni with ACTAR TPC

Conventional Techniques



Need thick targets and excellent resolution

MAYA @GANIL


Operational since 2003

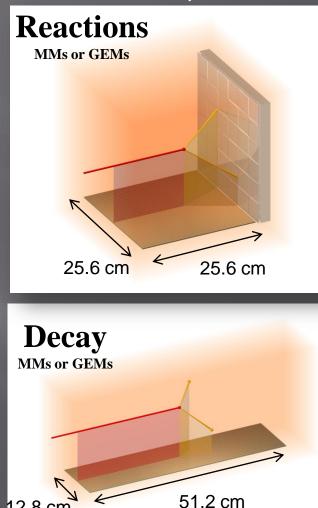
- Wire chamber
- Gassiplex electronics
- Si/CsI wall
- 8 mm hexagonal pads

Beam/Energy [MeV/u]	Date	Reaction	Gas	Mixture [%]	Pressure [mbar]
⁸ He @ 3.9	2003	⁸ He(p,p')	C_4H_{10}	100	1000
⁸ He @ 3.5	2003	⁸ He(p,d) ⁷ He	C_4H_{10}	100	525
^{25,26} F @ 50.0	2004	25 F(d, ³ He) ²⁴ O	D_2	100	2200
⁵⁶ Ni @ 50.0	2005	⁵⁶ Ni(d,d')	D_2	100	1050
⁸ He @ 15.4	2005	${}^{8}\text{He}({}^{12}\text{C},{}^{13}\text{N}){}^{7}\text{H}$	C_4H_{10}	100	30
¹¹ Li @ 3.6	2006	¹¹ Li(p,d) ¹⁰ Li	C_4H_{10}	100	150
		¹¹ Li(p,t) ⁹ Li	C_4H_{10}	100	664
⁶ He @ 3.5	2007	⁶ He(p,n) ⁶ Li	C_4H_{10}	100	107
⁶⁸ Ni @ 50.0	2010	⁶⁸ Ni(d,d')	D_2	100	1040
		⁶⁸ Ni(α,α')	$\mathrm{He} + \mathrm{CF}_4$	98/2	500
⁵⁶ Ni @ 50.0	2011	⁵⁶ Ni(a,a')	$\mathrm{He} + \mathrm{CF}_4$	98/2	1200
⁸ He @ 15.4	2011	⁸ He(¹⁹ F, ²⁰ Ne) ⁷ H	$\mathrm{He} + \mathrm{CF}_4$	10/90	175
¹² Be @ 3.0	2012	¹² Be(p,p')	C_4H_{10}	100	100

C.E. Demonchy et al., Nucl. Instrum. and Meth. A 583 (2007) 341

I. Tanihata et al., Phys. Rev. Lett. 100, 192502 (2008)

Gas Detector WS 2016/J. Pancin

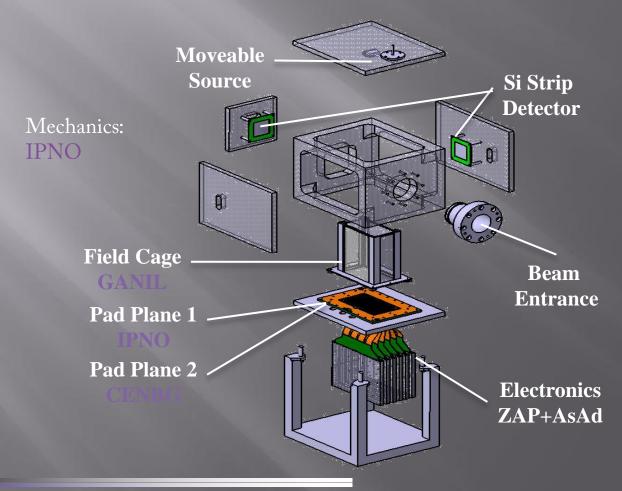

spiral2

Next Generation: ACTAR TPC

What has to be improved :

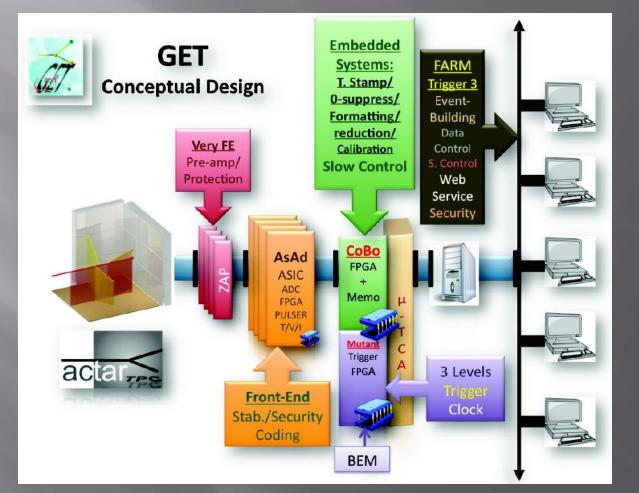
- Multi-particules
- Low energy threshold
- Spatial resolution (angular and range)
- Reconstruction efficiency (granularity+Si walls)
- New electronics (16k channels)
- Energy dynamics (pad polarisation or electrostatic mask)
- Specifications of final detector
 - Micromegas/ GEM (~650 cm², pad size $2 \times 2 \text{ mm}^2$)
 - GET (General Electronics for TPC's) for 16,384 channel:
- 2012 2016 Research and Development
 - Tests of prototype detector (Micromegas & GEM)
 - Building of demonstrator and tests
 - Physics simulations (ACTARsim)
 - GET electronics development п
 - ERC grant for G.F. Grinyer and ACTAR TPC (fév. 2013)

Different physical geometries: Reaction and decay


2.8 cm

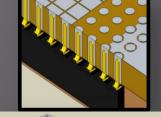
ACTAR-TPC demonstrator

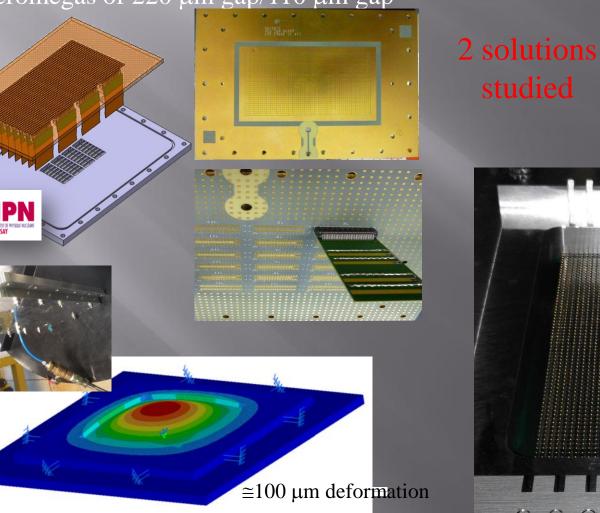
Need for a 2k channels detector to address different questions ($\approx 12 \times 7 \text{ cm}^2$):

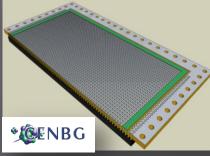

- Mechanical solution for the pad plane
- Field cage
- Source & beam tests with GET electronics

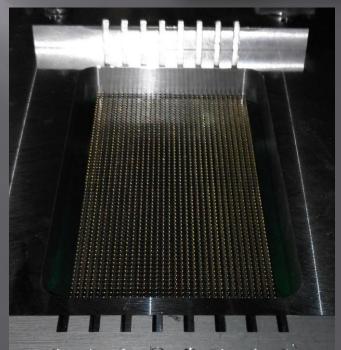
ACTAR TPC Electronics

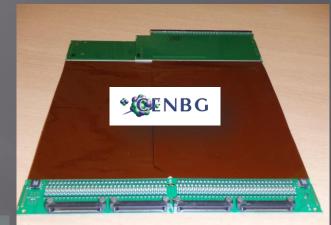
Use GET electronics: Wave-digitizer using 511 analogue memory cells @ 100 MHz max Internal/self trigger and zero suppression for reducing data traffic ANR Funded Project (Nov. 2009 – Oct. 2013; IRFU/CEA, CENBG, GANIL, MSU)

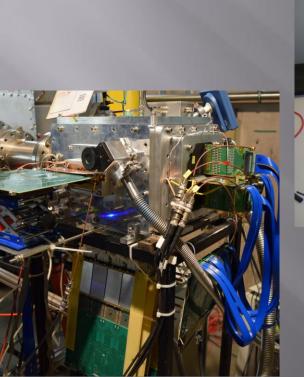


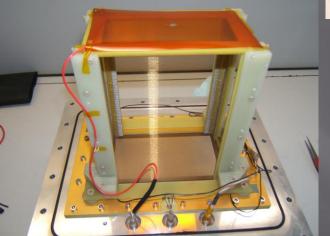

E.C. Pollaco et al., Physics Procedia 37, 1799 (2012)


Demonstrator pad planes

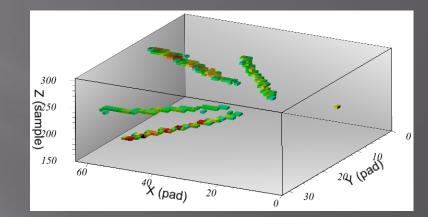

- Gas/air interface (vacuum resistant, no leaks...)
- 2048 $2 \times 2 \text{ mm}^2$ pixels and 16384 for the final detector
- Connectics just behind the pad plane to minimize rounting time, pad plane size and capacitance
- Micromegas of 220 µm gap/110 µm gap

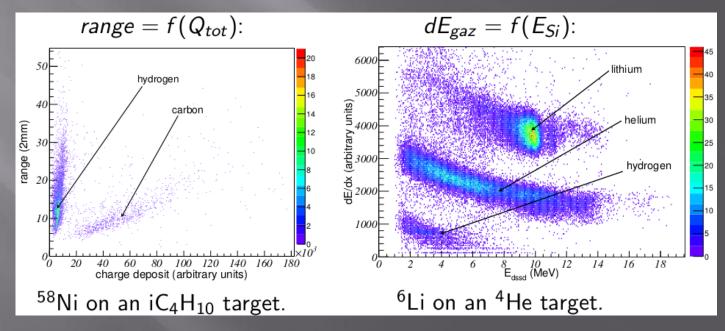

Made at CERN


ACTAR TPC Demonstrator images



Gas Detector WS 2016/J. Pancin


First tests and experiments

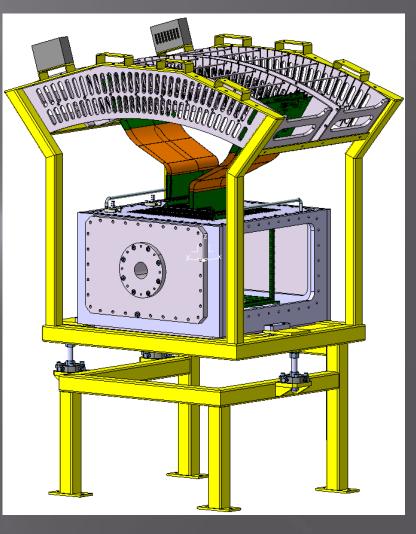

2 experiments at ALTO@Orsay in 2015:
- Study of cluster states in ¹⁰B through ⁶Li on ⁴He gas target

- Hoyle state in ¹²C through ¹²C on ⁴He gas target

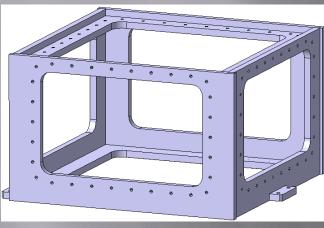
2 beam tests at GANIL in 2016 with ⁵⁸Ni and ²⁴Mg at 5MeV/n in pure iC_4H_{10} et 100 mbar and He+iC₄H₁₀(10%) at 200 mbar respectively

Still under analysis

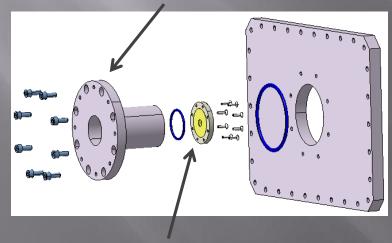
Courtesy B. Mauss (GANIL)


Gas Detector WS 2016/J. Pancin

ACTAR TPC final design


• To be ready mid-2017

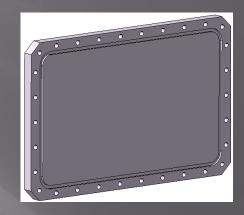
- Vaccum chamber and flanges
- Feedthroughs; high voltage, vacuum, source...
- Electronic rack for Asad cards
- Chassis
- Entrance window
- Drift cage
- Anode routing
- Calibration procedures

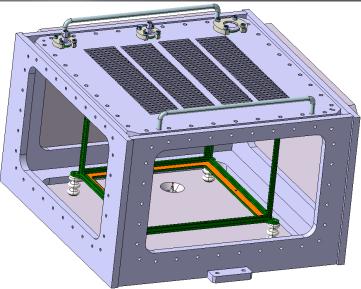


ACTAR TPC CHAMBER

- Stainless steel machined welded frame (+/-1 bar)
- \cdot 2 Identical opening on the top and bottom
- 4 Identical opening on the sides (same flanges)

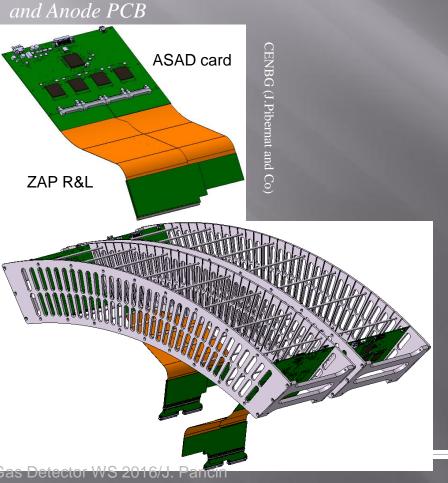
Adaptor beam line/flange ISO-F DN100




window: mylar... Bas Detector WS 2016/J. Pancin

SIDE FLANGES:

- 20 mm thickness
- Will be used for Silicon wall, gas feedthrough, source holders, ...

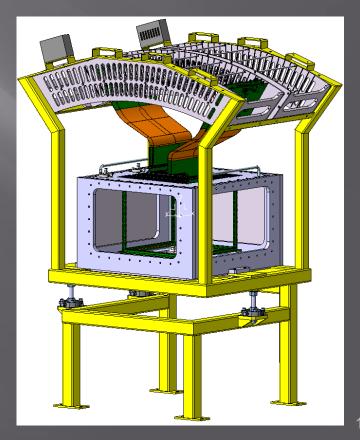


ACTAR TPC: ELECTRONICS RACK AND CHASSIS

ASAD RACK:

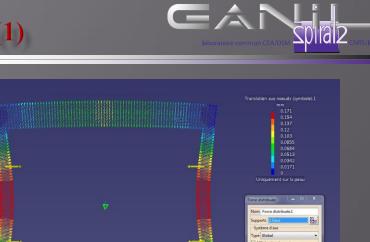
- 2x Parallel raws of 32 ASAD cards
- ASAD cards are arranged in semi-circular shape to use same ZAP lenght

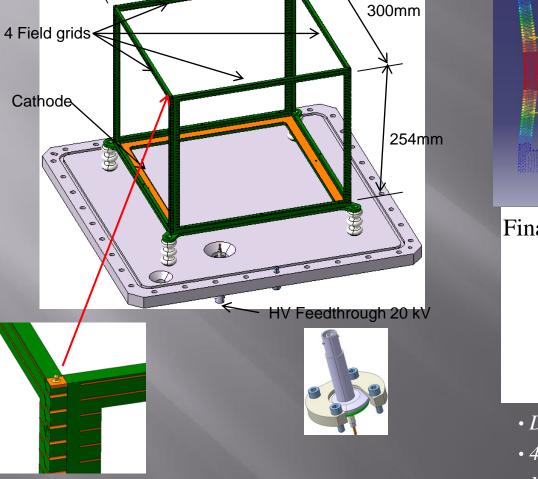
- Eventually 2x32 Adapter cards between Zap



CHASSIS:

- Steel machine welded frame


-2 Parts: 1 fixed on the floor and 1 ajustable +/5mm on XYZ axis


- The ajustable part supports : ACTAR, ASAD rack, vent. cooling, and low voltage distribution

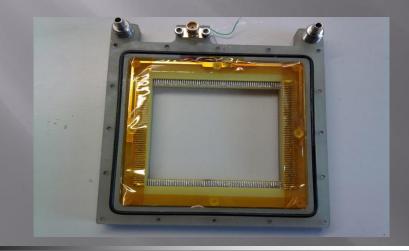
ACTAR TPC DRIFT CAGE (1)

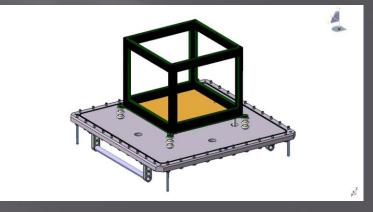
300mm

ZOOM Gold touch point: On each grid, output voltage 0.5kv, In contact with the Anode PCB

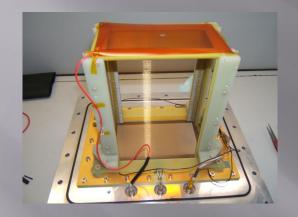
- Final design
 - Dark zone minimized
 - 4 identical field grids
 - Mechanically independant of the Anode
 - No wire to plug
 - Ancillary detectors position
 - Corona ring

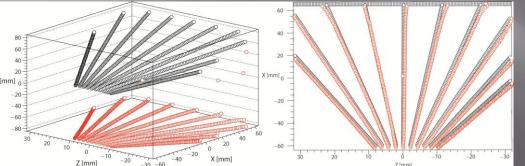
OK Annule

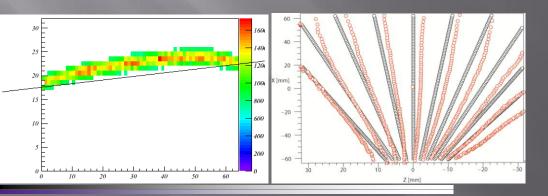

Thin wire integration



GA

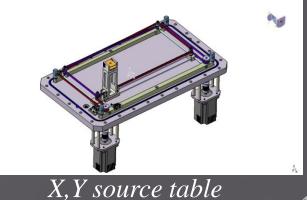

pla2

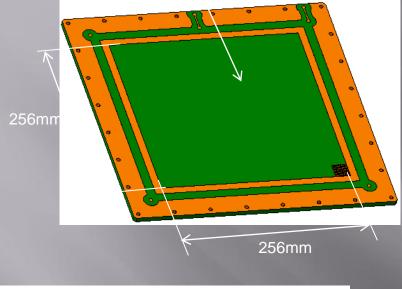


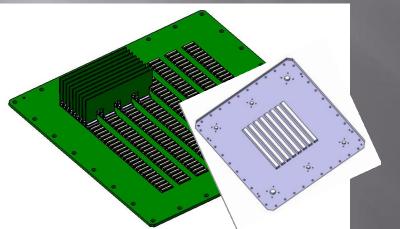


Gas Detector WS 2016/J. Pancin

ACTAR TPC DRIFT CAGE (2) ELECTROSTATIC SIMULATIONS

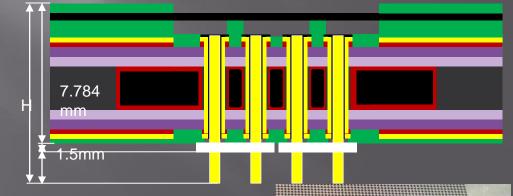



- Electrostatic simulations performed with SIMION, GARFIELD and OPERA in agreement with math. calculations
- Some effects are correctly reproduced
- Transversal elec. field ×5 to reproduce all effects
- Tests performed showed that a double grid 1mm/2mm pitch should be enough



ACTAR TPC ANODE (1)

128x128 Pads 2x2mm area



P. Gangnant/M. Blaizot-GANIL Connecteurs JST au pas de 0.5 mm • Minimize capacitance

- Simplify the routing
- Minimize deformations and keep planeity
- Integrate the 16384 GET channels on the pad planes

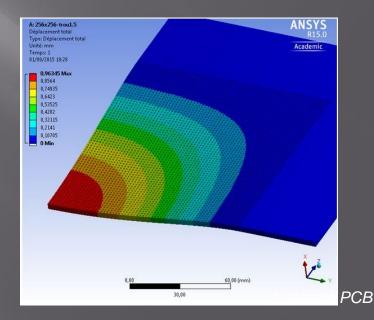
We have kept the 2 solutions

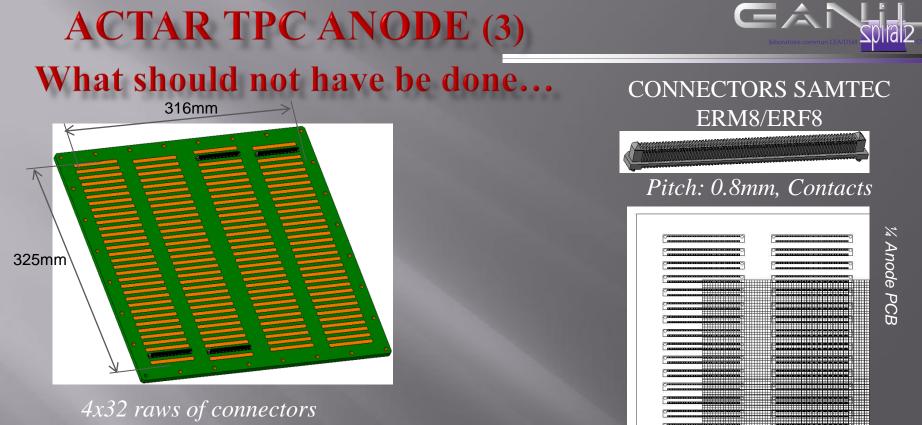
J. Pibernat-CENBG

Currently integrated at CERN

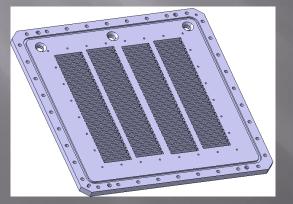
ACTAR TPC ANODE (2)

CENBG Technical Proposal :


ACTAR Anode type CENBG

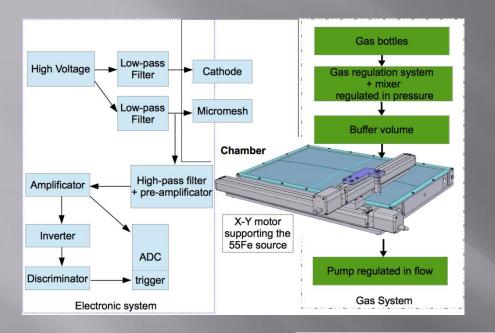

Metallic frame is integrated in the anode : one part metallic frame « filled » with epoxy)

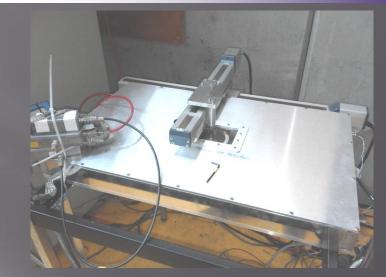
Mechanical Simulation by Matthieu MICHEL (GANIL) => to check for deformation of the part for different thickness and material


For stainless steel 7mm thickness: 0.15mm deformation for 1000mbar pressure

	Aluminium	Inox
Epaisseur 3.8	2.7	1
Epaisseur 5	1.2	0.42
Epaisseur 6	0.7	0.25
Epaisseur 7	0.43	0.15

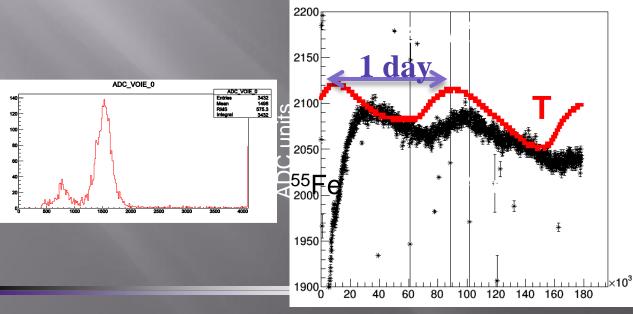
Located on a **bigger area** than the pads area To place all connectros and sustain pressure diff.




Actar Anode type IPNO-GANIL, realized by Maria BLAIZOT (GANIL)

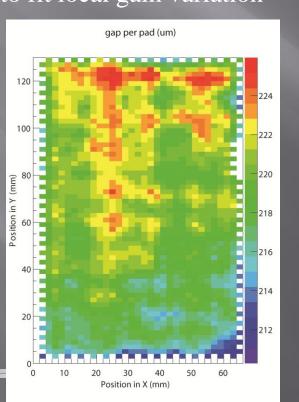
- 20 Layers (9 ground and 11 signals)
- Between 4.5mm &6.4mm thickness

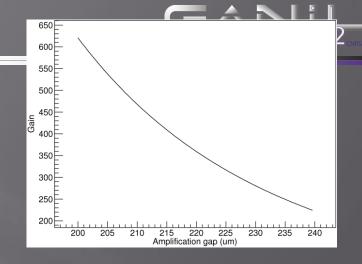
- A nightmare to design (pads routing all different) - NOT FEASIBLE...

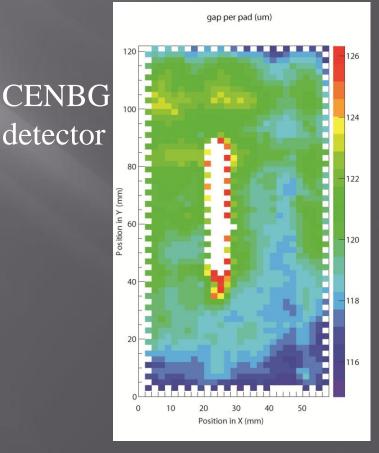

MICROMEGAS calibration

oliai

The design fits with the size of the final detectors

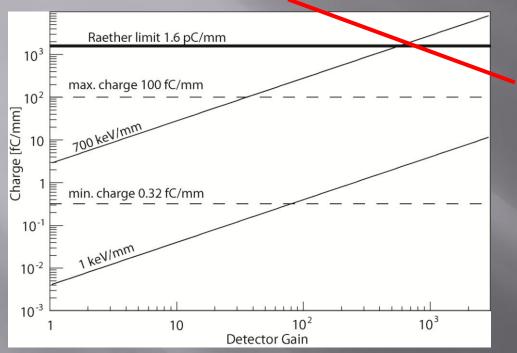



 \cong 2 days for 1024 channels No simple stability correction \Rightarrow Relative calibration


Micromegas calibration

Parallel plate approx. + MAGBOLTZ to calculate α coef. Gain $\propto \exp(\alpha \times d)$ α the 1st Townsend coef d the gap All pad responses aligned with ref. pad Ref. pad aligned to MAGBOLTZ gain with d_{ref} Calculation of d_{pad} to fit local gain variation

Demonstrator pad plane $\Delta d \cong +/-2.5\%$ $\Delta G \cong +/-5\%$



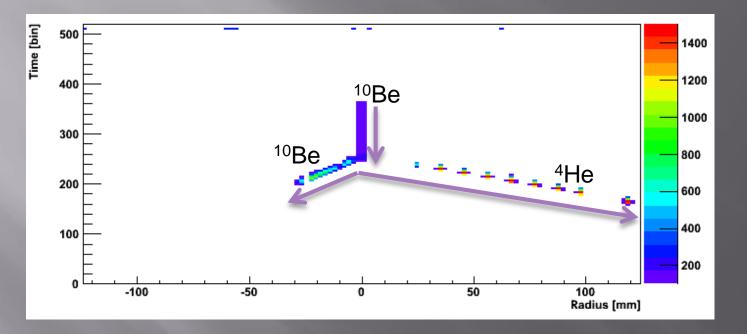
Dynamical range (1)

Experiments with wide range of energy loss: $dE \propto z^2/v^2$ (⁸⁰Zn(d,p)⁸¹Zn for instance):

- Dynamical range <200 due to electronics
- Raether limit 10⁶-10⁷ e⁻/mm
- Gain degradation
- Capacitive coupling (mesh/pad)

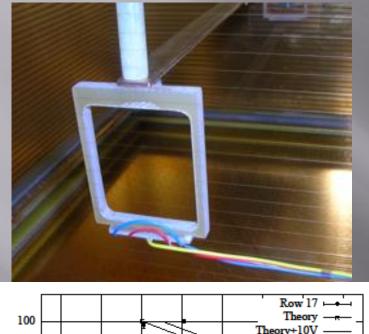
□ Masking completely the beam with a metallic foil over the pads or a gating grid (E. Pollacco et a/NIMA723(2013))

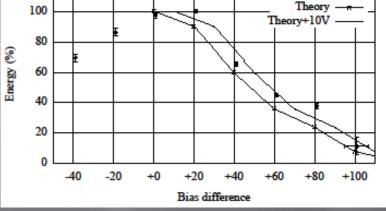
□ Decrease the gain below the beam by pad biasing

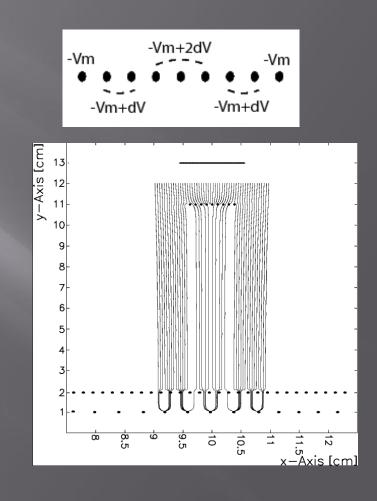

□ Use a tuneable mask to lower the amount of ionization electrons created by the beam

□ Use of adaptable charge dynamics on the electronics

Dynamical range (2)


□ Example of pad biasing in AT-TPC



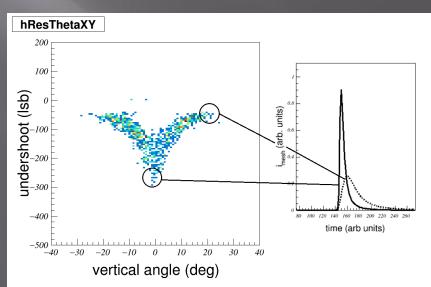

Low gain strips: (θ, TKE) for ¹⁰Be / low-energy ⁴He
 High gain strips every five anode pads: θ for ⁴He
 Pad biasing on ACTAR TPC central pads through ZAP cards

Dynamical range (3)

□ Tuneable mask below the beam, factor ×10 on dynamical range

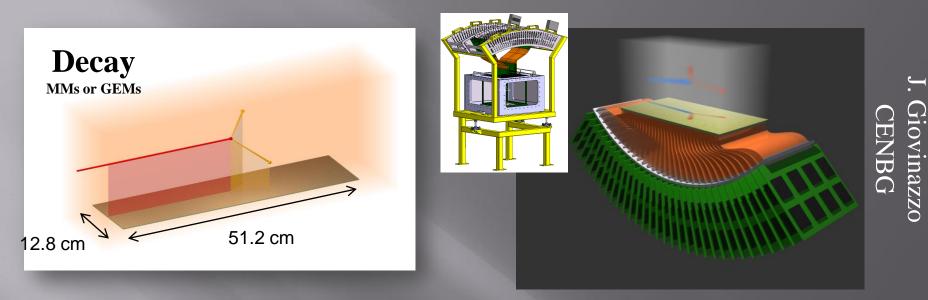
Used for ${}^{68}Ni(\alpha, \overline{\alpha'})$ in 2011 in MAYA (M. Vandebrouck et al., PRL113 (2014))

Dynamical range (4)



Capacitive coupling due to the mesh/pad capacitance:

- Overshoot due to strong energy deposit
- Partial readout (thresh.)
- Can be seen with alphas
- Use of masks
- Or GEMs...(decay exp.)


 α at 5 MeV with a gain of 3.10³ and 120 fC elec. range

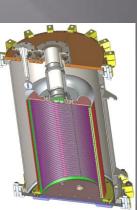
ACTAR TPC Decay chamber

- No auxilliary detector
- Increase implantation length and decrease pressure (low energy protons...)
- Same electronics
- Re-design all the detector (chassis, elec. rack, chamber...)
- Field cage (no transparency needed...)
- Strong issue on the anode (size...)
- To be designed in the forthcoming monthes (CENBG, GANIL)

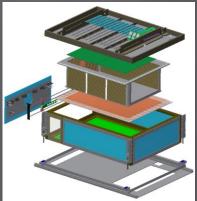
ACTAR TPC Project Timeline

ERC Project Planning

Experiments in G3/SPIRAL (2017), LISE (2018), HIE-ISOLDE (2018)


WP 1: Physics & Sims	2014					2016		2017					2018							
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	0	Q2 Q	3 Q4	C	Q1 Q	2 Q	3 Q4
WP 1.1: Demonstrator Expt															_	bic				_
IPNO PAC Meeting															0	DIC				
GANIL in-beam test	ANR Deliverable																,			
IPNO Demonstrator Campaign															_					
Demonstrator @ GANIL in G3									1.2					-						
WP 1.2: Commissioning Expt												1								_
ACTAR TPC LOI'S @ SPIRAL WS																			1	
Mount in G3	1.00																			
Experiments (E1)																				
the second s																				
WP 1.3: 2p Decay Expt																				
ACTAR TPC LOI's @ LISE WS											_									
Mount at LISE							663												_	
Experiments (E2)	1 C				i i i		Per e													
WP 1.4: HIE ISOLDE Expt							744					i								
ACTAR TPC LOI'S @ ISOLDE WS	100											1								
Setup and Installation	1.00																			
Experiments (E3)																				
and the second second second																				
GANIL PAC Meeting																				
ISOLDE PAC Meeting					A	CTAF	<u>r TPC</u>		I	ACT/	AR T	' <u>PC</u>		AC_{1}	TAR T	PC _		ACT	'AR T	PC
and the second					Dem	onstrate	or – IP	NO			strator			(GANIL		GA	ANIL &	HIE I	SOLDE
END OF PROJECT (Jan 2019)																				

To conclude...



- > ACTAR TPC Demonstrator
 - > Detector tested at GANIL
 - Beam tests and 2 experiments already performed
- > ACTAR final detector
 - > Should be fully mounted for spring 2016
 - First experiments accepted
- ACTAR decay chamber
 - > To be designed in 2017
- > Other projects around the world:

SAMURAÏ-TPC @ RIKEN

Collaboration

USC

H.Alvarez-Pol

M.Camaaño

B.Fernández

P.Konczykowski*

GANIL
M.Babo
M.Blaizot
P.Bourgault
S.Damoy
B.Duclos
G.Fremont
P.Gangnant
J.Goupil
G.F.Grinyer
A.T.Laffoley
S.Lecerf
L.Legeard
C.Maugeais
B.Mauss

M.Michel J.Pancin T.Roger **F.Saillant**

Students

K.U. Leuven S.Ceruti LDaemen* **T.Marchi O.Poleshchuk** R.Raabe **F.Renzi** J.A.Swartz* C.Wouters* J.C.Yang GANIL **P.Senecal** C.Spitaels K.Turzo

V.Vandevoorde G.Voltolini

G.Wittwer

CDD and Postdocs

RIKEN D.Suzuki

*Alumni

IPNO

F.Flavigny G.Minier*

P.Rosier*

CEA/IRFU E.C.Pollacco **P.Sizun**

CENBG

B.Blank

J.Giovinazzo

T.Goigoux

J.L.Pedroza

J.Pibernat

+ GET Team

)||a|2

European Research Council Established by the European Commission



Gas Detector WS 2016/J. Pancin

Acknowledgements

The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC Grant agreement n° 335593 (ACTAR TPC)

■ For more information: <u>http://pro.ganil-</u> <u>spiral2.eu/laboratory/detectors/actartpc</u>