"Constraints on the Effective Field Theory from theory and observations"

Valentina Salvatelli

Valentina Salva GioBESIX meetingstra Fisebruary 9th 2016

Outline

- Introduction
- Short summary on the EFT of Dark Energy
- Current results from viability conditions and CMB measurements
- What's next?

Introduction

The GR-based standard cosmological model, LCDM, is in good agreement with observations

yet it invokes an unknown dark matter component and a 'not-very-well-understood' cosmological

constant

EFT constraints

DARK ENERGY SURVEY On-going and short coming experiments have discriminating sensitivity to test gravity effects on cosmological scales

PLANCK 2015: a big input to the field

- In February 2015 the Planck experiment released the first results from the full-mission measurements
- In July 2015 all the likelihoods (temperature + polarization) became available
- One paper of the collaboration fully dedicated to the exploration of dark energy and modified gravity models (CMB and other probes)

Main outcomes of PLANCK Scientific perspective:

No evidence for significant deviation from LCDM at the background level.

EFT constraints

Main outcomes of PLANCK

Scientific perspective:

Some tensions emerge when changes in perturbations are considered (if we combine PLANCK with weak lensing/redshift surveys and we consider phenomenological parametrizations).

Main outcomes of PLANCK Scientific perspective:

> No evidence for deviations when considering specific models, but very unpractical to test models

Planck 2015 results. XIV. Dark energy and modified gravity

EFT constraints

The Effective Field Theory of Dark Energy

The origins

Effective Field Theory approach: description of a system through the lowest dimensions operators compatible with the underlying symmetries

Effective Field Theory of Inflation (Creminelli et al '06, Cheung et al. 'Main idea: the scalar field can be eaten by the metric (unitary

gauge) $\phi(t, \vec{x}) \to \phi_0(t)$ $(\delta \phi = 0)$ $-\frac{1}{2} \partial \phi^2 \to -\frac{1}{2} \dot{\phi}_0^2(t) g^{00}$

Effective Field Theory of Dark Energy (Gubitosi et al. 2012)

- 1 Assume WEP (universally coupled $S_m[g_{\mu\nu}, \Psi_i]$) metric)
- 2 Write the most generic action compatible with residual unbroken simmetries (3-d spatial diff.)

The action

Dark energy effects encoded in 6 timeGleyzes et al.functionsBackground (expaigligh history)

$$S = \int d^4x \sqrt{-g} \underbrace{M^2(t)}_2 \left[R - 2\lambda(t) - 2\mathcal{C}(t)g^{00} + \underbrace{\mu_2^2(t)}_2 (\delta g^{00})^2 - \underbrace{\mu_3(t)}_2 \delta K \delta g^{00} + \underbrace{\epsilon_4(t)}_4 \left(\delta K^{\mu}_{\nu} \delta K^{\nu}_{\ \mu} - \delta K^2 + \frac{R^{(3)} \delta g^{00}}{2} \right) + \dots \right]$$

only affect perturbations

Main advantages of the formalism:

1. Clear separation between background and perturbations quantities

Examples

$$S = \int d^{4}x \sqrt{-g} \frac{M^{2}(t)}{2} \left[R - 2\lambda(t) - 2C(t)g^{00} + \mu_{2}^{2}(t)(\delta g^{00})^{2} - \mu_{3}(t)\delta K \delta g^{00} + \epsilon_{4}(t) \left(\delta K^{\mu}_{\nu} \delta K^{\nu}_{\mu} - \delta K^{2} + \frac{R^{(3)} \delta g^{00}}{2} \right) + \dots \right]$$

"Generalized Galileons" (\equiv Horndeski) (Deffayet et al., 2011) Main advantages of the formalism:

1. Clear separation between background and perturbations quantities

2. Unified language for several classes of dark energy/ modified gravity theories

Background redundancies/ separation

$$S = \int d^4x \sqrt{g^{(M^2(t))}} \left[R - 2\lambda(t) - 2C(t)g^{00} + \mu_2^2(t)(\delta g^{00})^2 - \mu_3(t) \,\delta K \delta g^{00} + \epsilon_4(t) \left(\delta K^{\mu}_{\ \nu} \,\delta K^{\nu}_{\ \mu} - \delta K^2 + \frac{R^{(3)} \,\delta g^{00}}{2} \right) + \dots \right]$$

also participates in perturbations

$$\lambda(t), C(t), \mu(t) \equiv \frac{d \ln M^2(t)}{dt} \begin{cases} \overline{w}(t) & \text{Expansion History} \\ \mu(t) \\ \mu_3(t) \\ \epsilon_4(t) & \text{Perturbation sector} \\ \epsilon_4(t) \\ \mu_2^2(t) \\ 2013 & \text{Perturbation sector} \end{cases}$$

The advantage of choosing this set of functions is to work out constraints while maintaining a clear link with the theory space

Constraints from theory and observations on the EFT of DE

Preliminary steps of the analysis:

Which parametrization for the EFT functions?

 How to compute the observables in terms of the EFT parameters?

Which parametrization for the EFT functions?

No effects at early-time

$$\mu(x) = (1-x) \left[p_1 + p_1^{(1)} (x - x_0) \right] H(x),$$

$$\mu_3(x) = (1-x) \left[p_3 + p_3^{(1)} (x-x_0) \right] H(x),$$

$$\epsilon_4(x) = (1-x) \left[p_4 + p_4^{(1)} (x-x_0) \right],$$

EFT free parameters

Fractional matter density

$$x = \frac{x_0}{x_0 + (1 - x_0)(1 + z)^{3w_{\text{eff}}}}$$

 $=\frac{p_1\log(x_0) - 6\log\left(1 + (1 - x_0)p_4\right)}{1 - x_0 + x_0\log(x_0)}$

$$oldsymbol{x_0} \equiv rac{
ho_m(t_0)}{3M_{
m Pl}^2H_0^2}$$

Constrain due to No-early-DE condition

Valentina Salvatelli

 $p_1^{(1)}$

How to compute the observables in terms of the EFT parameters?

Straight way : solving the full set of EFT
 epiction
 CON: hard numerical issues

In this analysis we go for the 2nd way

Effective Newton constant & gravitational slip parameter

Effective Newton constant (satysfying the standard Poisson

$$G_{\text{eff}} = \frac{\text{equation}}{8\pi M^2 (1+\epsilon_4)^2} \frac{2\mathcal{C} + \mathring{\mu}_3 - 2\dot{H}\epsilon_4 + 2H\mathring{\epsilon}_4 + 2H\mathring{\epsilon}_4 + 2(\mu + \mathring{\epsilon}_4)^2}{2\mathcal{C} + \mathring{\mu}_3 - 2\dot{H}\epsilon_4 + 2H\mathring{\epsilon}_4 + 2\frac{(\mu + \mathring{\epsilon}_4)(\mu - \mu_3)}{1+\epsilon_4} - \frac{(\mu - \mu_3)^2}{2(1+\epsilon_4)^2}}$$

Scale-dependent terms negligible if the scalar degree of freedom is responsible for cosmic acceleration

Gravitational slip parame $\eta \equiv \frac{\Psi}{\Phi}$)

$$\eta = 1 - \frac{(\mu + \mathring{\epsilon}_4)(\mu + \mu_3 + 2\mathring{\epsilon}_4) - \epsilon_4(2\mathcal{C} + \mathring{\mu}_3 - 2\dot{H}\epsilon_4 + 2H\mathring{\epsilon}_4)}{2\mathcal{C} + \mathring{\mu}_3 - 2\dot{H}\epsilon_4 + 2H\mathring{\epsilon}_4 + 2(\mu + \mathring{\epsilon}_4)^2}$$

$$\dot{\mu}_3 \equiv \dot{\mu}_3 + \mu \mu_3 + H \mu_3, \dot{\epsilon}_4 \equiv \dot{\epsilon}_4 + \mu \epsilon_4 + H \epsilon_4,$$

Piazza et al. Petenon et al. 2015

Data sets

Planck 2015 (temperature + lowl polarization+ CMB

Theoretical viability conditions

3 scenarios Always enforced

EFT constraints

How the viability affects the constraints ?

An example easy to see : let's fix p4=0

Note: LCDM is always at the border of the stable region

- No deviations from GR in p3 and p4
- A negative p1 is favoured by current measurements ?

... Not really. The chi-square do not improve!

Maybe is an artefact of the chosen EFT parametrization. Let's try with more freedom in the Taylor expansion

Valentina Salvatelli

EFT constraints

What about the Newton constant?

- Only the models with an effective Newton constant greater than in general relativity are stable!
- If also subluminarity is imposed, the slip parameter must be <1.

Do you remember the results with the phenomenological parametrization?

- Indications of deviation from GR lie in the unstable region.
 - No control over the underlying theory in

Valentina phenomenological (common-used) parametrizations. 31

What's next?

Future developments:

 Combination with low-redshift probes (for example cluster counts)

Comparison with alternative parametrizations

Early dark energy case

COBESIX project ?

Merci!