On the dark contents of the Universe: a Euclid survey approach

Isaac Tutusaus, Brahim Lamine & Alain Blanchard

Institut de Recherche en Astrophysique et Planétologie

9th February 2016

COBESIX meeting

On the dark contents of the Universe

9th February 2016

1 / 33

Index

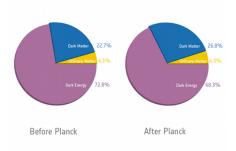
1 Introduction

- 2 Dark Content(s) of the Universe
- 3 Dark Content(s) of the Universe: a Euclid Forecast
- 4 Alternative Description of the Dark Sector

5 Conclusions

Introduction

Current standard model in cosmology: Λ CDM model.



Good phenomenological fit to current cosmological data:

- SNIa (Perlmutter et al. 1999; Riess et al. 1998)
- BAO (Anderson et al. 2014; Ross et al. 2015)
- P(k) (Gil-Marín et al. 2015)
- CMB (Planck Collaboration et al. 2015a)

Introduction

Many sources of constraints:

- Galaxy rotation curves (Persic et al. 1996)
- Gravitational-lensing (Lefor et al. 2013)
- Halo properties (Moore 1994; Jee et al. 2014)
- CMB and LSS data (Yang 2015)

But no direct detection of DM, neither of DE as a Cosmological Constant.

 \Rightarrow There is room for studying models departing from this ideal case.

Dark Content(s) of the Universe Models under study

General assumptions:

- Flat Universe
- FLRW metric
- $P_i = w_i \rho_i$, with w_i constant for i = DM, DE
- Non-interacting fluids
- Fixed radiation contribution:

$$\Omega_r = \Omega_\gamma (1 + 0.2271 N_{eff} f)$$

with
$$N_{eff} = 3.046$$
, $\Omega_{\gamma} = 2.469 \times 10^{-5} h^{-2}$ and
 $f = \left(1 + \left(0.3173 \cdot 187 \times 10^3 \left(\frac{m_{\nu}}{94}\right) \left(\frac{1}{1+z}\right)\right)^{1.83}\right)^{\frac{1}{1.83}}$ (Komatsu et al. 2011)

3

Dark Content(s) of the Universe Models under study

wCDM model: Accounting for DE with $w \neq -1$ (but constant).

$$\frac{H^2(z)}{H_0^2} = \Omega_r (1+z)^4 + \Omega_m (1+z)^3 + (1 - \Omega_r - \Omega_m)(1+z)^{3(1+w)}$$

 ϵ **CDM model:** Accounting for DM with $w \neq 0$ (but constant).

$$\frac{H^2(z)}{H_0^2} = \Omega_r (1+z)^4 + \Omega_b (1+z)^3 + (\Omega_m - \Omega_b)(1+z)^{3(1+\epsilon)} + (1 - \Omega_r - \Omega_m)$$

Dark Content(s) of the Universe Models under study

 $w\Lambda CDM$ model: Accounting for an extra DE term with a constant eq. of state parameter $w_{DE'}$.

$$\frac{H^2(z)}{H_0^2} = \Omega_r (1+z)^4 + \Omega_m (1+z)^3 + \Omega_{DE'} (1+z)^{3(1+w_{DE'})} + (1-\Omega_r - \Omega_m - \Omega_{DE'})$$

 $\epsilon w CDM$ model: Accounting for $w_{DM} \neq 0$ and $w_{DE} \neq -1$ (but both constant).

$$\frac{H^2(z)}{H_0^2} = \Omega_r (1+z)^4 + \Omega_b (1+z)^3 + (\Omega_m - \Omega_b)(1+z)^{3(1+\epsilon)} + (1 - \Omega_r - \Omega_m)(1+z)^{3(1+w)}$$

Method:

• χ^2 minimization (using MIGRAD from MINUIT) to determine the constraints on the parameters:

$$\chi^2 = (\mathbf{u} - \mathbf{u}_{data})C^{-1}(\mathbf{u} - \mathbf{u}_{data})^T$$

- **u** is the vector of the compressed likelihood parameters for the cosmological probe.
- Combining probes: we minimize the sum of the corresponding χ^2 functions.

SNIa:

- Sample of 740 SNIa from SDSS, SNSL and HST (Betoule et al. 2014).
- To use a reduced sample for the compressed likelihood:

$$\chi^2 = \mathbf{r} C_b^{-1} \mathbf{r}^T$$

with $\mathbf{r} = \boldsymbol{\mu}_b - M - 5 \log_{10} D_L(\mathbf{z}_b)$, where $\boldsymbol{\mu}_b$ is the vector of distance modulus at the binned redshifts \mathbf{z}_b , M is a free normalization parameter, C_b is the covariance matrix of $\boldsymbol{\mu}_b$ and D_L is the luminosity distance.

BAO:

• We analyze it through:

$$d_z = \frac{r_s(z_{drag})}{D_v(z)}, \text{ with } D_v(z) = \left((1+z)^2 D_A^2 \frac{cz}{H(z)}\right)^{1/3}$$

- D_A is the angular-diameter distance.
- z_{drag} is the redshift at which the baryons released from the Compton drag of the photons in terms of a weighted integral over the Thomson scattering rate (Eisenstein & Hu 1998).
- ► $r_s(z_{drag}) = \int_{z_{drag}}^{\infty} \frac{c_s(z) dz}{H(z)}$, where $c_s(z) = c(3(1 + R_b(z)))^{-1/2}$ and $R_b(z) = 3\rho_b/(4\rho_\gamma)$
- We use BAO measurements at z = 0.106, z = 0.35 and z = 0.57 (Beutler et al. 2011, Padmanabhan et al. 2012, Anderson et al. 2012).

10 / 33

CMB:

- We consider the following parameters (Wang & Mukherjee 2007):
 - Scaled distance to recombination: $R \equiv \sqrt{\Omega_m H_0^2} \int_0^{z_{CMB}} \frac{dz}{H(z)}$, where z_{CMB} is the redshift of the last scattering epoch (Hu & Sugiyama 1996).
 - ▶ Angular scale of the sound horizon at recombination:

$$l_a \equiv \pi \frac{\int_0^{z_{CMB}} \frac{\mathrm{d}z}{H(z)}}{r_s(z_{CMB})}$$

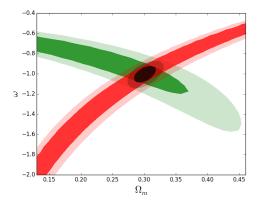
- Reduced density parameter of the baryons: $\omega_b \equiv \Omega_b h^2$
- We use Planck data plus lensing information (Wang & Wang 2013).

$\epsilon \mathbf{CDM}$ and $\epsilon w \mathbf{CDM}$ models:

We modify the matter component and it has an extremely important role in the CMB-era \Rightarrow we adapt the computation of the corresponding parameters:

•
$$z_{CMB}$$
 and z_{drag} : we change
 $(\Omega_m - \Omega_b) \rightarrow (\Omega_m - \Omega_b)(1 + z_{CMB})^{3\epsilon} \approx (\Omega_m - \Omega_b)(10^3)^{3\epsilon}$
• $R = \sqrt{(\Omega_b + (\Omega_m - \Omega_b)(1 + z_{CMB})^{3\epsilon})H_0^2} \int_0^{z_{CMB}} \frac{\mathrm{d}z}{H(z)}$

Dark Content(s) of the Universe Results wCDM model:



- Contours at 68% and 95% ($\Delta \chi^2 =$ 2.30, $\Delta \chi^2 = 6.17$, respectively).
- Marginalization over H_0 and ω_b .
- Main constraints come from the CMB (red) and the SNIa (green).
- Consistent with Betoule et al. 2014 with slightly smaller errors.

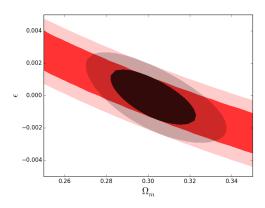
 $\Omega_m = 0.300 \pm 0.012, \ w = -1.003 \pm 0.055 = 1000$ 13 / 33

COBESIX meeting

9th February 2016

Dark Content(s) of the Universe $_{\text{Results}}$

ϵ CDM model:

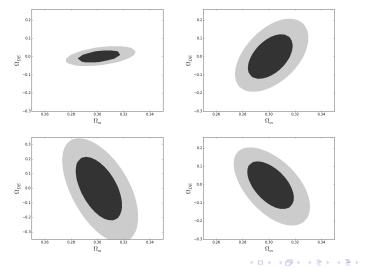


- Contours at 68% and 95% ($\Delta \chi^2 = 2.30, \Delta \chi^2 = 6.17$, respectively).
- Marginalization over H_0 and ω_b .
- Main constraint comes from the CMB (red).
- No correlation between ω_b and ϵ .

3 1 4 3 1

 $\Omega_m = 0.301 \pm 0.014, \ \epsilon = -0.0001 \pm 0.0011$

Dark Content(s) of the Universe Results $w\Lambda CDM$ model:



COBESIX meeting

On the dark contents of the Universe

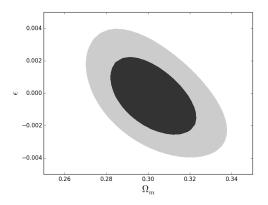
9th February 2016

15 / 33

ъ

Dark Content(s) of the Universe $_{\text{Results}}$

$\epsilon w CDM$ model:



- Contours at 68% and 95% ($\Delta \chi^2 = 2.30, \Delta \chi^2 = 6.17$, respectively).
- Marginalization over H_0 , ω_b and w.
- Slightly larger error for ϵ than in the ϵ CDM model (introduction of the w d.o.f.).

3.5.4.3.5

ъ

 $\Omega_m = 0.302 \pm 0.014, \ \epsilon = -0.0003 \pm 0.0016$

Dark Content(s) of the Universe $_{\text{Results}}$

$\epsilon w CDM$ model:



- Contours at 68% and 95% ($\Delta \chi^2 = 2.30, \Delta \chi^2 = 6.17$, respectively).
- Marginalization over H_0 , ω_b and Ω_m .
- Slightly larger error for w than in the wCDM model (introduction of the ϵ d.o.f.).

3 × 4 3 ×

ъ

 $w = -1.011 \pm 0.077, \ \epsilon = -0.0003 \pm 0.0016$

Dark Content(s) of the Universe Results

Main conclusion:

All the presented models are compatible with the Λ CDM model, but it is clear that the assumptions made on the dark matter sector (ϵ parameter) are not independent of the assumptions on the dark energy sector (w parameter).

Idea: Galaxy power spectrum Euclid survey forecast using a Fisher matrix formalism in a parameterized cosmological model, considering H(z) and $D_A(z)$ as observables.

Forecast construction:

- Matter power spectrum (Amendola et al. 2013): $P_{\text{matter}}(k,z) = \frac{8\pi^2 c^4 k_0 \Delta_R^2(k_0)}{25H_0^4 \Omega_m^2} T^2(k) \left[\frac{G(z)}{G(z=0)}\right]^2 \left(\frac{k}{k_0}\right)^{n_s}$
- Observed power spectrum (Seo & Eisenstein 2003): $P_{\text{obs}}(k_{\perp}, k_{\parallel}, z) = \frac{D_A(z)_{\text{ref}}^2 H(z)}{D_A(z)^2 H(z)_{\text{ref}}} P_g(k_{\perp}, k_{\parallel}, z) + P_{\text{shot}}, \text{ with}$ $P_g(k_{\perp}, k_{\parallel}, z) = b(z)^2 \left[1 + \beta(z) \frac{k_{\parallel}^2}{k_{\parallel}^2 + k_{\perp}^2} \right] P_{\text{matter}}(k, z)$

Forecast construction:

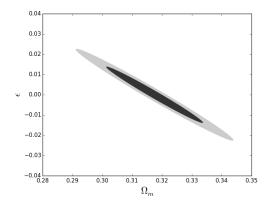
- Fisher matrix for a given redshift interval (Tegmark 1997): $F_{ij} = \int_{-1}^{1} \int_{k_{\min}}^{k_{\max}} \frac{\partial \ln P_{obs}(k,\mu)}{\partial p_i} \frac{\partial \ln P_{obs}(k,\mu)}{\partial p_j} V_{eff}(k,\mu) \frac{2\pi k^2 \, dk \, d\mu}{2(2\pi)^3}, \text{ with}$ $V_{eff}(k,\mu) = \int \left[\frac{n(\mathbf{r})P(k\mu)}{n(\mathbf{r})P(k,\mu)+1}\right]^2 \, d\mathbf{r} = \left[\frac{nP(k,\mu)}{nP(k,\mu)+1}\right]^2 V_{survey}$
- Propagate the Fisher matrix from observables p_i , p_j to parameters q_{α} , $q_{\alpha'}$ (Wang et al. 2010): $F_{\alpha\alpha'} = \sum_{ij} \frac{\partial p_i}{\partial q_{\alpha}} F_{ij} \frac{\partial p_j}{\partial q_{\alpha'}}$
- The Fisher matrix for all the redshift range is the sum of all the Fisher matrices.
- The inverse of the resulting Fisher matrix gives us the errors and the correlations on the parameters.

20 / 33

Forecast construction for the Euclid survey:

- 5 parameters: $z_{\min} = 0.7$, $z_{\max} = 2.1$, area=15000 sq. deg, $N = 50 \times 10^6$ galaxies, $\sigma_z/(1+z) \le 0.1\%$ (Laureijs et al. 2011).
- Reference cosmology: Planck 2014.
- Bias evolution: $b(z) = \sqrt{1+z}$ (Amendola et al. 2013).
- Bin width: 0.1 in redshift.
- $k_{\min} = 0$ and k_{\max} interpolated from Seo & Eisenstein 2003.

Dark Content(s) of the Universe: a Euclid Forecast ϵ CDM model:



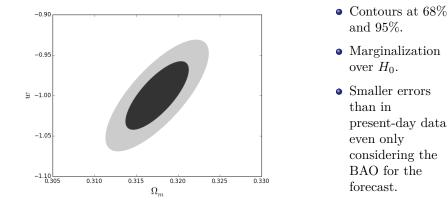
- Contours at 68% and 95%.
- Marginalization over H_0 . ω_b fixed at the reference value.
- Larger error for ε than in present-day data (we do not account for the most constraining probe: the CMB).

 $\Omega_m = 0.318 \pm 0.011, \ \epsilon = 0.0000 \pm 0.0092$

 9th February 2016

22 / 33

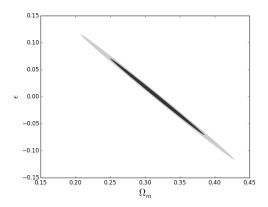
w**CDM model**:



 $\Omega_m = 0.3175 \pm 0.0025, \ w = -1.000 \pm 0.028$

A 3 >

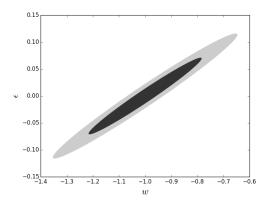
$\epsilon w CDM$ model:



- Contours at 68% and 95%.
- Marginalization over H₀ and w. ω_b fixed at the reference value.
- Larger errors than in present-day data (we do not consider the CMB).

 $\Omega_m = 0.318 \pm 0.045, \ \epsilon = 0.000 \pm 0.047$

$\epsilon w CDM$ model:



- Contours at 68% and 95%.
- Marginalization over H₀ and Ω_m.
 ω_b fixed at the reference value.
- Larger errors than in present-day data (we do not consider the CMB).

 $w = -1.00 \pm 0.14, \ \epsilon = 0.000 \pm 0.047$

25 / 33

Main conclusions:

- The dark matter and the dark energy sectors are still not uncoupled.
- The estimated constraint on w_{DE} is very poor if we allow $w_{DM} \neq 0$. \Rightarrow Two options for the Euclid survey: assume $\epsilon = 0$ or add CMB information.

26 / 33

Alternative Description of the Dark Sector

Gravity probes only the total energy-momentum tensor, which leads to a degeneracy for generalized dark energy models. Because of it, the matter density parameter cannot be measured (Kunz 2009).

- We only measure H(z) and Ω_k (geometrical analyses (Zolnierowski & Blanchard 2015)).
- ρ is obtained from their difference (assuming GR) \Rightarrow we cannot distinguish observationally the components of a ρ parameterization.

Alternative Description of the Dark Sector

New approach:

$$\rho(a) = a^{-4} \sum_{n \ge 0} \alpha_n a^n$$

- Theoretically motivated: ρ treatment as a whole + α_n reinterpretation (Ω_r , Ω_m , Ω_Λ).
- w > 0 components killed by the CMB.
- All ρ models proposed can be approximated by a polynomial \Rightarrow new approach still general.

Alternative Description of the Dark Sector Direct testing:

Present-day data (marginalization over ω_b and H_0):

•
$$\alpha_1, \alpha_4 \rightarrow (\Omega_m, \Omega_\Lambda) \rightarrow \Lambda \text{CDM: OK}$$

• $\alpha_1, \alpha_2, \alpha_4 \rightarrow (\Omega_m, \Omega_{w=-1/3}, \Omega_\Lambda)$: OK
• $\alpha_1, \alpha_2, \alpha_3, \alpha_4 \rightarrow (\Omega_m, \Omega_{w=-1/3}, \Omega_{w=-2/3}, \Omega_\Lambda)$:
 $\alpha_1 = 0.300 \pm 0.012 \quad \alpha_2 = 0.011 \pm 0.074 \quad \alpha_3 = -0.04 \pm 0.27$

• $\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5 \to (\Omega_m, \Omega_{w=-1/3}, \Omega_{w=-2/3}, \Omega_\Lambda, \Omega_{w=-4/3})$: degenerate

Euclid Forecast (marginalization over H_0):

•
$$\alpha_1, \alpha_2, \alpha_3, \alpha_4$$
:

 $\alpha_1 = 0.318 \pm 0.064$ $\alpha_2 = 0.00 \pm 0.34$ $\alpha_3 = 0.00 \pm 0.68$

• $\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5$: degenerate

29 / 33

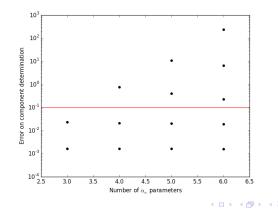
▲ ∃ ▶ ∃ • ੭ < <>

Alternative Description of the Dark Sector

PCA Approach for the Euclid Forecast:

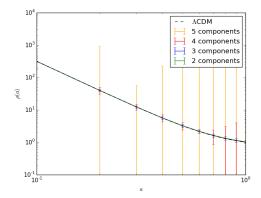
Main idea: Select only the best determined components coming from a linear combination of the α_n parameters.

• Select the eigenvectors of the α_n covariance matrix with the lowest eigenvalues and reconstruct $\rho(a)$ with them.



Alternative Description of the Dark Sector PCA Approach for the Euclid Forecast:

ΛCDM input:

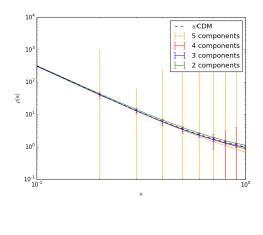


- Errors obtained from bootstrap $(10^4 \text{ iterations}).$
- More components
 ⇒ Larger errors
 (allowing
 bad-constrained
 components).
- 2 principal components ⇒ Good reconstruction.

3 N A 3 N

ъ

Alternative Description of the Dark Sector PCA Approach for the Euclid Forecast: w**CDM input** (w = -0.8):



- Least squares fit to obtain a polynomial approximation to the wCDM ρ (error below 0.03%).
- Bias in the 2 component reconstruction (PCA problem).
- Good reconstruction with 3 components.

32 / 33

3 1 4 3 1

Conclusions

- The assumptions done on the dark matter sector are not independent of the ones done on the dark energy sector.
- We can only measure ρ from cosmological observations (Kunz 2009).
- We propose a theoretically motivated decomposition for ρ which treats it as a whole.
- Our decomposition leads us to reconstruct the input ρ in a galaxy power spectrum Euclid forecast with good precision through a PCA approach.