The ALTO/nu-ball workshop at the IPN of Orsay 19.05.2016

Lifetime determination using large fast-timing arrays

SPONSORED BY THE

Jean-Marc Régis

Institute of Nuclear Physics Cologne, Germany

Content:

The Generalized Centroid Difference Method

to analyze **γ–γ time-difference spectra** from a large **fast-timing array**

The EXILL&FATIMA campaign 2013

at the Institut Laue-Langevin

Results of **Germanium-gated γ–γ fast timing** of excited states in **fission fragments**

How to correct for background contributions to the time spectra?

The EXILL and EXILL&FATIMA campaigns 2012 and 2013 at the

European research reactor of the **Institut Laue-Langevin**

Collimated (12 mm in diameter) cold-neutron beam with flux of about 10^8 n/(s cm^2)

Part of the EXILL (EXOGAM@ILL) array

- Aim: Prompt γ -ray spectroscopy for nuclear structure studies using
- * neutron-capture (n, γ) experiments
- * neutron-induced fission experiments

EXILL campaigns 2012/2013: Prompt γ-ray spectroscopy of neutron-rich fission products

Nuclear astrophysics on r-process nuclei

The γ - γ fast-timing technique and the Generalized Centroid Difference method

J.-M. Régis et al., NIM A 726 (2013)

<u>The Generalized Centroid Difference (GCD) Method for y–y fast-timing arrays</u>

Only combinations with i < j are accepted (simplified sorting algorithm). Invalid or multiple combinations are excluded offline. => 3 TAC and 2 FAN modules for 8 detectors (28 combinations).

Main advantage: almost no degradation of time resolution (<10 ps).

Also possible: digital time-difference measurements using multi-hit TDCs (see talk of Matthias Rudigier)

Calibration of the PRD curve using the ¹⁵²Eu g-ray source:

Picosecond sensitive lifetime determination using the mirror-symmetric GCD method.

The PRD calibration procedure using ¹⁵²Eu:

J.-M. Régis, N. Saed Samii et al., NIM A 823 (2016)

The fast-timing array FATIMA in combination with 8 EXOGAM clovers for Prompt γ -ray spectroscopy of neutron induced capture/fission experiments at ILL 2013

Ring of 8 BGO shielded EXOGAM clovers used to provide one or two selective γ -triggers.

16 almost equal LaBr₃(Ce) detectors for γ - γ lifetime measurements.

Collimated cold-neutron beam

Ø1.2 cm

Trigger-less digital data acquisition of 71 ADC channels

Detector rate: up to 25 kHz Data rate: up to 6.5 MB/s Acquired data: ~ 40 TB

Target position

Energy performance of the EXILL & FATIMA spectrometer @ ILL 2013

Timing performance of FATIMA @ ILL 2013

Consited of: 8 cylindrical Ø1.5"×1.5" and 8 cylindrical Ø1.5"× 2" LaBr3(Ce) scintillators

Identification of fission fragments & investigation on background and contaminations

The first 4+ state in 98Sr: $\tau_{lit.}$ = **115(9) ps** (< FWHM) The correction for background contributions: $\Delta C_{FEP} = \Delta C_{exp.} + \left(\frac{\Delta C_{exp.} - \Delta C_{BG}}{P/B}\right)$ Determination of the time response of the background ΔC_{BG} possible in two ways:

Considering long lifetimes $\tau > 1$ ns: Subtraction of the fast background component?

The first 2⁺ state in ⁹⁸Sr $\tau_{lit} = 4.01(12)$ ns

Conclusion:

The background underneath the **two** FEPs of the γ - γ cascade contribute to the γ - γ time distribution.

A reduction of the complexity of the γ -ray spectra is desired, e.g. using an additional trigger.

 \Rightarrow improved peak-to-backround ratio and reduced uncertainty of related time correction.

Thank you for your attention

EXILL campaigns 2012/2013: Prompt γ-ray spectroscopy of neutron induced fission products

More than **100 nuclei** are produced with intermediate **high mean spin and high \gamma-ray multiplicity**.

At least, **triple** $\gamma - \gamma - \gamma$ **coincidences are needed** to resolve the level scheme of a fission product.

Highly segmented γ -ray detector array is needed.

Ge-gated γ – γ **fast timing possible** using LaBr₃(Ce) scintillator detectors.