Measurements related to nuclear astrophysics and clustering with Nu-ball and STELLA

David Jenkins

USIAS University of Strasbourg Institute for Advanced Study

UNIVERSITY of

Nucleosynthesis in the Universe

Nucleosynthesis and heavy-ion fusion

different burning phases characterize the evolution of a "massive" star

each burning phase is controlled by different nuclear reactions, which govern the:

- ➤ energy production
- ➤ time scale
- \succ nucleosynthesis

The mystery of ¹²C+¹²C

Figure 3. Excitation function data at $\theta_{cm} = 90^{\circ}$ for ${}^{12}C + {}^{12}C$ and ${}^{16}O + {}^{16}O$ elastic scattering (Bromley *et al* 1960).

Figure 6. Deduced nuclear *S* factor for the ${}^{12}C + {}^{12}C$ total reaction cross section (Erb and Browlay 1985)

Figure 4. Reaction cross section data for ${}^{12}C + {}^{12}C$ (Almqvist *et al* 1960) as a function of centre-of-mass bombarding energy. The arrow indicates the expected Coulomb barrier (V_C) for spherical ${}^{12}C$ nuclei.

¹²C + ¹²C, experimental methods

Particles and γ-rays

A new setup :

'Fusion measurements of ¹²C+¹²C at energies of astrophysical interest' C.L. Jiang et al. (collab. ANL; IPHC, S. Courtin et al; CSNSM, A. Lefebvre-Schuhl) Argonne National Laboratory, Chicago, USA Atlas Tandem, ¹²C, intense beam $E_{c.m.} = 3 - 5$ MeV

Detection system : coincidences γ + p and α

Gammasphere : 100 HPGe, e = 10%

Charged particles

¹²C+¹²C fusion at ANL

Particle-gamma measurement of ${}^{12}C+{}^{12}C$ at $E_{cm} = 5 \text{ MeV}$

Relatively easy as cross-sections still quite large

Later measurements pushed down to $E_{cm} \simeq 3 \text{ MeV}$

Limit is beam current (100 pnA) and beam time

Stellar Lab : a mobile experimental station for nuclear astrophysics and nuclear structure physics at future beam facilities

Collaboration: IPHC, IPNO, Univ. York (UK), Univ. Surrey (UK), GANIL, Univ. Aarhus (Denmark), Argonne National Laboratory (USA).

- Physics : heavy-ion fusion reactions in late stages of massive stars (M > 8 M_{solar}).
 Gamma transitions between molecular resonances
- Systems : ¹²C+¹²C, ¹²C+¹⁶O, ¹⁶O+¹⁶O.

ANDEC

- Impact : nuclear molecules, nucléosynthesis, life cycle of stars, age of the Universe
- Technique : coincidences between particle and gamma-rays
 -> low background measurement

S. Courtin, D. Jenkins, G. Fruet, M. Heine, D. Montanari, F. Haas, O. Kirsebom, G. Lotay,, P. Regan, F. Hammache, L. Morris, S. della Negra, F. de Oliveira, N. de Séreville, C. Stodel et al

- 4 MV Van de Graaff Accelerator at IPN, Orsay (France)
- Commissioned Jan.-March 2016
- ^{12}C intensity: 5-10 $\,\mu\,A$
- Considerable beamtime available

STELLA + FATIMA @ ANDROMEDE

- Particles: 3 DSSSD
- Gammas: 36 LaBr₃

M. Krauth, P. Dene

Circles: LaBr₃, STELLA

Other ideas for nuclear astrophysics and clustering with Nu-ball

Constraints on nova models

duration

Nova V4643 Sgr takes 4.8 days to decline 2 orders of mag

 Ejecta:
 Dust grains
 Cosmic gamma ray emitters: ²²Na, ²⁶Al

Cosmic gamma ray emitters

FIG. 2.-Main nuclear paths in both NeNa and MgAl cycles

Extended programme of study of sd-shell nuclei with Gammasphere

"Complete spectroscopy"

Detailed mirror symmetry information

Valuable data into nuclear reaction rates

PHYSICAL REVIEW C 89, 045804 (2014)

Level structure of ³¹S: From low excitation energies to the region of interest for hydrogen burning in novae through the ${}^{30}P(p,\gamma){}^{31}S$ reaction

 D. T. Doherty,^{1,*} P. J. Woods,¹ G. Lotay,^{1,†} D. Seweryniak,² M. P. Carpenter,² C. J. Chiara,^{3,2} H. M. David,^{1,‡} R. V. F. Janssens,² L. Trache,^{4,8} and S. Zhu²
 ¹School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom ²Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
 ³Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA ⁴Cyclotron Institute, Texas A&M University, College Station, Texas 77843, USA (Received 7 January 2014; revised manuscript received 14 March 2014; published 23 April 2014)

Comprehensive measurements of the excitation energy and spin-parity assignments for states in ³¹S are presented, from the first excited state, up to energies relevant for the ³⁰P(p,γ)³¹S reaction in ONe novae. This reaction rate strongly influences heavy element abundances in novae ejecta. States in ³¹S are paired with their ³¹P analogues using γ rays detected with the Gammasphere detector array following the ²⁸Sit⁴He, n) fusion-evaporation reaction. The evolution of mirror energy differences is explored and the results are compared with new shell-model calculations. The excellent agreement observed in this work between experimental data and shell-model calculations provides confidence in using computed estimates in situations where experimental data are unavailable.

PHYSICAL REVIEW C 87, 064301 (2013)

G

γ -ray spectroscopy of the A = 23, T = 1/2 nuclei ²³Na and ²³Mg: High-spin states, mirror symmetry, and applications to nuclear astrophysical reaction rates

D. G. Jenkins,^{1,*} M. Bouhelal,² S. Courtin,³ M. Freer,⁴ B. R. Fulton,¹ F. Haas,³ R. V. F. Janssens,⁵ T. L. Khoo,⁵ C. J. Lister,^{5,†} E. F. Moore,⁵ W. A. Richter,⁶ B. Truett,⁵ and A. H. Wuosmaa^{5,‡} ¹Department of Physics, University of York, York YO10 5DD, United Kingdom ²Laboratoire de Physique Appliquée et Théorique, Université de Tébessa, Tébessa, Algeria ³IPHC, Université de Strasbourg, CNRS-IN2P3, Strasbourg, France ⁴School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT, United Kingdom ⁵Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA ⁶iThemba Labs, P.O. Box 722, Somerset West 7129, South Africa and Department of Physics, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa (Received 27 March 2013; published 4 June 2013)

Are there EM transitions between ¹²C+¹²C molecular resonances?

Perspective:

- Transitions should be strong B(E2) ~ 100s Wu.
- Gamma width ~ eV, break-up width 100 keV -> Gamma branch ~ 10⁻⁵
- Gamma decay will be split between many different final states (resonances)

Fig. 4. – Reaction Q-value of the $^{12}\mathrm{C}(^{12}\mathrm{C},\,^{12}\mathrm{C})^{12}\mathrm{C}$ reaction at $E_{\mathrm{lab}}=32.9$ MeV vs. the fragment γ -ray energies E_{γ} . The spectrum has been obtained with the fragment-fragment- γ coincidence condition and a γ multiplicity $M_{\gamma}=1$ condition (see text).

Spare slides

 $T_{1/2} = 1.05 \cdot 10^{11} \text{ a, nat. ab.} = 0.090\% \Rightarrow A = 90 \text{ Bq}$ $66\% :^{138}\text{La} + e^- \rightarrow^{138} \text{Ba} + \bar{\nu}_e; \ E_{\gamma} = 1.436 \text{ MeV}$ $34\% :^{138}\text{La} \rightarrow^{138} \text{Ce} + e^- + \nu_e; \ E_{\gamma} = 0.789 \text{ MeV}$

Green: exponential background Blue: simulation

y transitions between molecular resonances:

Electromagnetic transitions between ¹²C+¹²C resonant states as a probe for clustering in ²⁴Mg

1st attempt, Haas et al. (1997) ¹²C+¹²C, Orsay Tandem, I_{12C} = 5 pnA Chateau de Cristal + 2 PSD detectors, 5 days experiment, 7 events Low beam intensity + ¹²C and ¹⁶O contamination ...

Ikeda Diagram

Good clusters might be those which have maximally correlated nucleons = closed shell nuclei

Red giant phase

