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Introduction

Motivation

Study of QCD two-point functions of color singlet local operators
(with possible insertions of soft operators).
Integrals of these Green’s functions over their euclidean momenta
(with appropriate weights) govern the hadronic contributions
to many electromagnetic and weak interaction processes.

Two simple examples (with no soft insertions)

Hadronic Vacuum Polarization two-point function (HVP)

Πµν(q) = i
∫

d4x eiq·x〈0|T (Jµ(x)Jν(0)) |0〉 = (qµqν − q2gµν)Π(Q
2) ,

The Left-Right two-point function (LR) (in the chiral limit)

Πµν

LR (q) = 2i
∫

d4x eiq·x〈0|T
(

Lµ(x)Rν(0)†
)

|0〉 = (qµqν−gµνq2)ΠLR(Q
2) .

They provide excellent theoretical laboratories
to test non perturbative approaches.
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HVP Contribution to the Muon Anomaly

X

µ

Hadrons

Muon Anomaly from HVP (C. Bouchiat-L. Michel ’61)

Standard Formulation in terms of the Hadronic Spectral Function

1
2
(gµ − 2)Hadrons≡ aHVP

µ =
α

π

∫ ∞

4m2
π

dt
t

∫ 1

0
dx

x2(1 − x)
x2 + t

m2
µ
(1 − x)

1
π

ImΠ(t)

where (me → 0)

σ(t)[e+e−→(γ)→Hadrons] =
4π2α

t
1
π

ImΠ(t)

The Underlying Physics is well understood
We need, however, a very accurate evaluation.
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aHVP
µ

as an Integral over the Euclidean HVP Two-Point Function

Dispersion Relation:

−Π(Q2) =

∫ ∞

0

dt
t

Q2

t + Q2
︸ ︷︷ ︸

1
π

ImΠ(t) , Q2 = −q2 ≥ 0 .

Euclidean Representation (Lautrup- de Rafael ’69)

aHVP
µ =

α

π

∫ 1

0
dx (1 − x)

∫ ∞

0

dt
t

x2

1−x m2
µ

t + x2

1−x m2
µ

︸ ︷︷ ︸

1
π

ImΠ(t) ,

aHVP
µ =

α

π

∫ 1

0
dx(1 − x)

[

−Π

(
x2

1 − x
m2

µ

)]

, Q2 ≡
x2

1 − x
m2

µ .

Euclidean Representation in terms of the Adler-like Function

aHVP
µ =

α

π

1
2

∫ 1

0
dx x(2 − x)A

(

Q2 ≡
x2

1 − x
m2

µ

)

,

A(Q2) = −m2
µ

∂Π(Q2)

∂Q2
= m2

µ

∫ ∞

0
dt

1
(t + Q2)2

1
π

ImΠ(t) .
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Comment on Lattice QCD (L-QCD) Evaluations

They use ω ≡ Q2

m2
µ

= x2
1−x instead of x-Feynman (T. Blum ’03):

aHVP
µ =

α

π

∫
∞

0

dω

ω

1

4

[

(2 + ω)
(

2 + ω −
√
ω
√

4 + ω
)

− 2
]

︸ ︷︷ ︸

G(ω)

(

−ω
d

dω
Π
(

ωm2
µ

))

︸ ︷︷ ︸

Adler Function
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L-QCD evaluations -at a few ω points- need extrapolations.
Models and/or Padé Approximants
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Mellin-Barnes Representation of Dispersion Relations

-Dispersion Relations have Factorizable Mellin Transform s-

A(Q2) = −m2
µ

∂Π(Q2)

∂Q2
= m2

µ

∫ ∞

0

dt
t

t
(t + Q2)2

1
π

ImΠ(t) .

Mellin-Barnes representation of the Base Function 1
(

1+ Q2
t

)2

m2
µ

t
1

(

1 + Q2

t

)2 =
1

2πi

∫ c+i∞

c−i∞
ds
(

Q2

m2
µ

)−s
(

m2
µ

t

)1−s

Γ(s)Γ(2 − s) .

Mellin Transform of the Spectral Function

M(s) =
∫ ∞

0

dt
t

(

m2
µ

t

)1−s
1
π

ImΠ(t) .

Inserting this in the Euclidean integral aHVP
µ with Q2 = x2

1−x m2
µ

aHVP
µ =

α

π

1
2πi

∫ c+i∞

c−i∞
ds
∫ 1

0
dx

x
2
(2 − x)

(
x2

1 − x

)−s

M(s) Γ(s)Γ(2 − s) .
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Mellin-Barnes Representation of the Muon Anomaly (EdeR, P.L.’14)

Integrating over x , i.e. Q2 = x2

1−x m2
µ results in:

Integral Representation of aHVP
µ (Model Independent)

aHVP
µ =

(α

π

) 1
2πi

c+i∞∫

c−i∞

ds F(s) M(s)
︸ ︷︷ ︸

, Re c∈ ]0,+1[

F(s) = −Γ(3 − 2s)Γ(−3 + s)Γ(1 + s)

M(s) =
∫ ∞

4m2
π

dt
t

(

m2
µ

t

)1−s
1
π

ImΠ(t)

︸ ︷︷ ︸

Mellin Transform of the Spectral Function

M(s) is finite for s < 1 and singular at s = 1:

MpQCD(s) ∼

s→ 1

(α

π

)(2
3

)

Nc
1
3

1
1 − s

.

Very Useful Representation to extract Asymptotic Expansions.
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Mellin Transform of Phenomenological Toy Model Spectral Function

M(s) =
∫ ∞

4m2
π

dt
t

(

m2
µ

t

)1−s
1
π

ImΠ(t)

︸ ︷︷ ︸

Mellin Transform of the Spectral Function

Shape of M(s) in the phenomenological toy model of D. Bernecker et al, ’11; L. Lelllouch, ’14
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New Approach to Evaluate aHVP
µ

(EdeR, P.L.’14)

Integral Representation of aHVP
µ (Model Independent)

aHVP
µ =

(α

π

) 1
2πi

c+i∞∫

c−i∞

ds F(s) M(s)
︸ ︷︷ ︸

, Re c∈ ]0,+1[

F(s) = −Γ(3 − 2s)Γ(−3 + s)Γ(1 + s)

M(s) =
∫ ∞

4m2
π

dt
t

(

m2
µ

t

)1−s
1
π

ImΠ(t)

︸ ︷︷ ︸

Mellin Transform of the Spectral Function

M(s) is finite for s < 1 and singular at s = 1:

MpQCD(s) ∼

s→ 1

(α

π

)(2
3

)

Nc
1
3

1
1 − s

.

Systematic Expansion in Moments Approximants.
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Moment Analysis

Two types of Moments

Normal Power Moments:

M(−n) =

∞∫

4m2
π

dt

t

(
m2

µ

t

)1+n
1

π
ImΠ(t) , n = 0, 1, 2, . . .

Log Weighted Power Moments (first derivative of the Mellin transform at integer n > 0 values):

M̃(−n) =
∫

∞

4m2
π

dt

t

(
m2

µ

t

)1+n

log
m2

µ

t

1

π
ImΠ(t) , n = 1, 2, 3, · · ·

Expansion in Moment Approximants has Fast Convergence

aHVP
µ =

(
α

π

){
1

3
M(0) +

25

12
M(−1) + M̃(−1)

+
97

10
M(−2) + 6M̃(−2)

+
208

5
M(−3) + 28M̃(−3) + O

[

M̃(−4)
]}

These moments are known phenomenologically from e+e− data
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The Moment Approximants in a Phenomenological Toy Model

aHVP
µ (e+e−) = (6.923 ± 0.042)× 10−8 (0.6%)

M. Davier et al’ 10

aHVP
µ (toy model) = 6.936 × 10−8

D. Bernecker and H.B. Meyer, ’11; L. Lelllouch, ’14

Numerical Values of the Moment Approximants (Toy Model)
(
α

π

) 1
3
M(0) = 8.071 × 10−8 (16%)

(
α

π

)[1
3
M(0) +

25
12

M(−1) + M̃(−1)
]

= 7.240 × 10−8 (4%)

(
α

π

)[
1

3
M(0) +

25

12
M(−1) + M̃(−1) +

97

10
M(−2) + 6M̃(−2)

]

= 7.022 × 10−8 (1%)

Fourth Approximation is already within 0.4% of the toy model result
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The Moment Approximants in L-QCD

The Leading Moment provides a rigorous upper bound to aHVP
µ

J.S. Bell-de Rafael ’69: the operator ∂λFµν∂λFµν governs low-energy hadronic QED observables

aHVP
µ <

(α

π

) 1
3

∫ ∞

4m2
π

dt
t

m2
µ

t
1
π

ImΠ(t)

︸ ︷︷ ︸

M(0)

=
(α

π

) 1
3

(

−m2
µ

d
dQ2

Π(Q2)

)

Q2=0
︸ ︷︷ ︸

L−QCD

The bound overestimates aHVP
µ by less than 18% (not bad for a rigorous bound)

The slope of Π
(

Q2
)

at the origin (r.h.s.) should be evaluated in lattice QCD

It is difficult to imagine that, unless lattice QCD does better than phenomenology in this
simple case, it will ever reach a competitive accuracy of the full determination of aHVP

µ .

M(−n) Moments correspond to successive derivatives of Π(Q2) at Q2 = 0

M(−n)
︸ ︷︷ ︸

n=0,1,2...

=

∞∫

4m2
π

dt

t

(
m2

µ

t

)1+n
1

π
ImΠ(t) =

(−1)n+1

(n + 1)!
(m2

µ)
n+1

(

∂n+1

(∂Q2)n+1
Π(Q2)

)

Q2=0

These derivatives can ( perhaps? ) be determined in Lattice QCD
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The Log Weighted Moments in L-QCD

M̃(−n) =
∫

∞

4m2
π

dt

t

(
m2

µ

t

)n

log
m2

µ

t

1

π
ImΠ(t)

They require the evaluation of integrals of the type

Integrals in the Euclidean to be evaluated in L-QCD

Σ(−n) ≡
∫

∞

4m2
π

dQ2

(
m2

µ

Q2

)n+1 (

−Π(Q2)

Q2

)

n = 1, 2, 3 . . .

Example:

M̃(−1) = − log
4m2

π

m2
µ

M(−1)
︸ ︷︷ ︸

L−QCD

+Σ(−1)
︸ ︷︷ ︸

L−QCD

−
m2

µ

4m2
π

M(0)
︸ ︷︷ ︸

L−QCD

+O [M(−2)]

Contrary to the evaluation of aHVP
µ , the Euclidean moments Σ(−1), Σ(−2), ...

are not weighted by a heavily peaked kernel at small Q2 .

The threshold of integration is at a rather large value Q2 = 4m2
π instead of zero.

The determination of these Euclidean moments in L-QCD and their comparison with the
corresponding phenomenological expressions in terms of the hadronic spectral function,
provide valuable further tests.
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Conclusions about the HVP Moments Contribution

Present L-QCD determinations of HVP in the Euclidean need to be
complemented by approximation methods in order to get aHVP

µ .

The moment analysis approach may gradually lead to an accurate
determination of aHVP

µ , providing at the same time many tests of L-QCD
evaluations to be confronted with phenomenological determinations
using experimental data.
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Comment on Padé s Approximants

They approximate Π(Q2) with rational functions of Q2 ( S. Peris et al’ 12-16 )

Π(Q2)[N,D] = Q2

(

a0 +
N∑

r=1

ar

Q2 + br

)

.

Padé’s imply Spectral Functions with N-poles, e.g. for a0 = 0:

1
π

ImΠ(t) =
N∑

r=1

arδ(t − br ) .

They are not, however, Large- Nc approximations
BUT a finite N cannot reproduce the pQCD behaviour !

* * *

We need Approximants
with an Infinite Number of Delta-Functions

to reproduce the pQCD behaviour
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Hurwitz-like Approximants (D. Greynat-E . de Rafael, in progress)

Inspired by previous work on Large-Nc QCD, BUT does not require Large-Nc

We want functions which may approximate the QCD M(s) behaviour and propose

The Hurwitz function defined by the Dirichlet Series

ζ(s, v) =
∞∑

n=0

1
(n + v)s

, Res > 1 and Re(v) 6= −n ,

which can be analytically continued to a meromorphic function in the entire complex s-plane.

It has only a single pole at s = 1 with residue 1.

This fixes the pQCD requirement

Hurwitz Approximants to the Mellin Transform of the Spectral Function

First Approximant:

1

π
ImΠ(t) = Aσ2

∞∑

n=0

δ(t − M2 − nσ2) , A =

(
α

π

)(
2

3

)
Nc

3

M(s) =
∫

∞

M2

dt

t

(
m2

µ

t

)1−s
1

π
ImΠ(t) ⇒ A

(
m2

µ

σ2

)1−s

ζ

(

2 − s,
M2

σ2

)
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First Hurwitz Approximant to M(s) and aHVP
µ

Mfirst(s) =
(

α

π

)(
2

3

)
Nc

3

(
m2

µ

σ2

)1−s

ζ

(

2 − s,
M2

σ2

)

The ratio v ≡ M2

σ2 can be fixed demanding no 1
Q2 term in the OPE of Π(Q2)

v ≡
M2

σ2
=

1

2
Only One Parameter Left!

MATCHING the Moments Mfirst(0) and Mexp(0) fixes

M = 687 MeV

This results in the prediction

aHVP
µ (first) =

(
α

π

)
1

2πi

c+i∞∫

c−i∞

ds F(s)× Mfirst
(s)

=

(
α

π

)2 v

3

m2
µ

M2

∫ 1

0
dxx(2 − x)ζ

(

2,

[

1 +
x2

1 + x

m2
µ

M2

]

v

)

= 6.97 × 10−8 ,

which represents an accuracy of 0.6% !!!
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Comparison of Mellin Transforms

The Mellin Transform of the Toy Model (Red curve)
and of the First Hurwitz Approximant (Blue curve)
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Detailed Comparison of Mellin Transforms

The Mellin Transform of the Toy Model (Red curve)
and of the First Hurwitz Approximant (Blue curve)
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Plot of the Adler Function

A(Q2
) = −Q2 ∂Π(Q2)

∂Q2
= A

Q2

σ2
ζ

(

2,
Q2 + M2

σ2

)

︸ ︷︷ ︸

First Hurwitz Approximant

A =

(
α

π

)
2

3

Nc

3
,

M2

σ2
= 1/2 , M = 687 MeV

The Red Curve is the Phenomenological Fit. The Blue Curve the First Hurwitz Approximant
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Comments and Conclusions

The First Hurwitz Approximant does already an excellent job ! The
only required input was M(0) (which L-QCD could get...).

This Approximant can be improved , if necessary, by taking
superpositions of Hurwitz functions, with input from L-QCD .

Fixing the Hurwitz parameters with M(0) is not necessary. Input
from L-QCD determination of Π(Q2) at values of Q2 conveniently
chosen could instead be used.

No need of Pad é’s. No need of cutting integrals in short and long
distance components.

Applications to other Green’s functions are underway.
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