HLS improved data input for Lattice QCD evaluations of (g-2)_μ

> M. Benayoun LPNHE Paris 6/7

> > Refs. M. Benayoun *et al.* EPJ C75 (2015) 613 M. Benayoun *et al.* ArXiv : 1605.04474

OUTLINE

- > HLS Model & Breaking : BKY & (ρ, ω, ϕ) mixing
- > τ +PDG predictions for $F_{\pi}(s)$ & $e^+e^- \rightarrow \pi^+ \pi^-$ samples
- Global Fits
- $[\tau \stackrel{\scriptscriptstyle \pm}{\rightarrow} \pi^{\scriptscriptstyle \pm} \pi^0 \upsilon_{\tau} // e^+ e^- \rightarrow \pi^+ \pi^- / K^+ K^- / K_L K_S / \pi \gamma / \eta \gamma / \pi \pi \pi]$
- \succ Estimating (g-2)_µ from (B)HLS & Data
- Mellin-Barnes Moment Analysis
- > Sharing the various pieces in a_{μ}^{had} : I=1, I=0, IB, γ
- Conclusions

The HLS Model & Breaking

The HLS Lagrangian + FKTUY (anomalous) pieces

M. Harada & K. Yamawaki Phys. Rep. 381 (2003) 1

- Practical use of HLS implies breaking schemes :
- **BKY mechanism :**

M.Bando et al. Nucl. Phys. B259 (1985) 493

M.Hashimoto Phys. Rev. D54 (1996) 5611

M.Benayoun *et al*. Phys. Rev. D58 (1998) 074006

Vector meson mixing :

M.Benayoun et al. EPJ C55 (2008) 199

M.Benayoun et al. EPJ C65 (2010) 211

Latest Model Status :

M.Benayoun et al. EPJ C72 (2012) 1848

The HLS Model

Define M.Bando et al. Phys. Rep. 164 (1988) 217 M. Harada & K. Yamawaki Phys. Rep. 381 (2003) 1 $\left[\mp i \mathbf{P} / f_{\pi}\right]$ $\xi_{_{\scriptscriptstyle I/P}} =$ e field matrix The covariant derivative $D_{\mu}\xi_{L/R} = \partial_{\mu}\xi_{L/R} - igV_{\mu}\xi_{L/R} + i\xi_{L/R}G_{L/R}$ with $G_{R} = eQA_{\mu}, \quad G_{L} = eQA_{\mu} + \frac{g_{2}}{\sqrt{2}} \left(W_{\mu}^{+}T_{+} + W_{\mu}^{-}T_{-} \right)$

The HLS Model & BKY Breaking

M. Harada & K. Yamawaki Phys. Rep. 381 (2003) 1

- The L/R matrices -> $L/R = (D_{\mu} \xi_{L/R}) \xi_{L/R}^{\dagger}$ HLS : $L_{A/V} = -\frac{f_{\pi}^2}{4} Tr[L \mp R]^2 \rightarrow L_{HLS} = L_A + aL_V$ BKY Breaking : $\rightarrow L_{A/V} = -\frac{f_{\pi}^2}{4} Tr\{[L \mp R] X_{A/V}\}^2$ With $X_{A/V}$ = Diag $\{q_{A/V}, y_{A/V}, z_{A/V}\}$

$$q_{A/V} / y_{A/V} = 1 + (\Sigma \pm \Delta)_{A/V} / 2$$

Isospin Breaking : Vector Field Mixing

• At one loop, the HLS Lagrangian piece (no IB)

$$\left(\rho_{R1} + \omega_{R1} - \sqrt{2} z_V \varphi_{R1}\right) K^{-} \vec{\partial} K^{+} + \left(\rho_{R1} - \omega_{R1} + \sqrt{2} z_V \varphi_{R1}\right) K^{0} \vec{\partial} \overline{K}^{0}$$

→s-dependent transitions among vector fields
VVP Lagrangian : K*K loops // Yang-Mills term : K*K*loops

→ ideal fields no longer mass eigenstates

PS mesons :: isospin symmetry breaking : $m_{K^{\pm}} \neq m_{K^{0}}$

The Mass Matrix Eigen System

At one loop (no IB):

$$M^{2}(s) = \begin{pmatrix} m^{2} + \Pi_{\pi\pi}(s) + \varepsilon_{2}(s) & \varepsilon_{1}(s) & -\sqrt{2} z_{V} \varepsilon_{1}(s) \\ \varepsilon_{1}(s) & m^{2} + \varepsilon_{2}(s) & -\sqrt{2} z_{V} \varepsilon_{2}(s) \\ -\sqrt{2} z_{V} \varepsilon_{1}(s) & -\sqrt{2} z_{V} \varepsilon_{2}(s) & z_{V}[m^{2} + 2 z_{V} \varepsilon_{2}(s)] \end{pmatrix}$$

As :
$$\left(\begin{pmatrix} m^{2}, \Pi_{\pi\pi}(s) \end{pmatrix} \gg \varepsilon_{2}(s) \gg \varepsilon_{1}(s) \right)$$

Solve <u>perturbatively</u>

$$M^{2}(s) = M_{0}^{2}(s) + \delta M^{2}(s)$$

 $\mathcal{E}_2(s), \mathcal{E}_1(s)$: (kaon loop) Sum , Difference

From Ideal To Physical Fields

$$\begin{pmatrix} \rho_{R1}^{0} \\ \omega_{R1} \\ \varphi_{R1} \end{pmatrix} = \begin{bmatrix} 1 & -\alpha & \beta \\ \alpha & 1 & \gamma \\ -\beta & -\gamma & 1 \end{bmatrix} (s) \begin{pmatrix} \rho^{0} \\ \omega \\ \varphi \end{pmatrix} \qquad R(s+i\varepsilon)\tilde{R}(s+i\varepsilon) = 1$$
Physical Fields

BKY renorm. Fields
$$M \text{ leading order in}_{\mathfrak{E}_{1}(s), \mathfrak{E}_{2}(s)} \begin{bmatrix} \alpha(s) \\ \beta(s) \\ \gamma(s) \end{bmatrix} = \begin{bmatrix} \frac{\varepsilon_{1}(s)}{\left[m_{\rho}^{HK}\right]^{2} + \prod_{\pi\pi}^{\rho}(s) - \left[m_{\varphi}^{HK}\right]^{2}} \\ \frac{\sqrt{2} z_{V} \varepsilon_{1}(s)}{\left[m_{\rho}^{HK}\right]^{2} + \prod_{\pi\pi}^{\rho}(s) - \left[m_{\varphi}^{HK}\right]^{2}} \\ \frac{\sqrt{2} z_{V} \varepsilon_{2}(s)}{\left[m_{\rho}^{HK}\right]^{2} - \left[m_{\varphi}^{HK}\right]^{2}} \end{bmatrix} =$$

Vector Couplings to $\pi \pi :: I=1$ in ω/ϕ

$$\frac{iag}{2}\rho_{I} \pi^{-}\vec{\partial}\pi^{+} \Longrightarrow$$

$$\frac{iag(1+\Sigma_{V})}{2} \left[\rho^{0} + \left[(1-h_{V})\Delta_{V} - \alpha(s)\right]\omega + \beta(s)\varphi\right]\pi^{-}\vec{\partial}\pi^{+}$$
Vector Mixing->1=1

* ρ term unchanged : Charged \equiv neutral (I=1 part) *s-dependent ω and ϕ couplings to $\pi\pi$ (I=1 part)

Vector couplings to $\gamma : \Gamma (V \rightarrow e^+e^-)$

• (γ) V transitions become s-dependent via IB:

ρ couplings to γ/W

• (γ/W) V transitions become s-dependent :

ρ couplings to γ/W

12

Dipion Mass Spectrum

M.Benayoun *et al*. EPJ C55 (2008) 199

Isospin Breaking in the τ Sector

Short Range & Long Range IB corrections

W. Marciano & A. Sirlin, PRL 71 (1993) 3629.

$$H(s) \equiv B_{\pi\pi} \frac{1}{N} \frac{dN}{ds} = \frac{1}{\Gamma_{\tau}} \frac{d\Gamma_{\pi\pi}(s)}{ds} S_{EW} G_{EM}(s)$$

V. Cirigliano *et al.* PL B 513 (2001) 361 & JHEP 08 (2002) 002

 $\succ \pi^{\pm}\pi^{0}$ Phase space factor

> ≈ No sensitivity to $\rho^{\pm} - \rho^{0}$ mass/width diff.

IB in τ & IB in e⁺e⁻ :: unrelated but both involved in global fits

Broken HLS : A Global VMD Model

- The (Broken) HLS model (BHLS) is :
- > a unified VMD framework for :
 - $e^+e^- \rightarrow \pi^+\pi^-/K^+K^-/K_LK_S/\pi^0\gamma/\eta^0\gamma/\pi^+\pi^-\pi^0$
- & $\tau^{\pm} \rightarrow \pi^{\pm} \pi^{0} \nu_{\tau} \& PV \gamma, P \gamma \gamma decays \& \eta/\eta' \rightarrow \gamma \pi^{+} \pi^{-}$ > <u>VALID UP TO THE</u> $\approx \Phi$ MASS REGION (1.05 GEV)
- \succ a nearly empty shell [α_{em} , G_F, f_{π}, V_{ud}, V_{us}] fed via :
- ➤ a Global Fit (≈ 50 data samples simultaneously)

π⁺ π⁻ Spectra : NSK, KLOE, BaBar, BES

- Several recent measurements of the $\pi^+ \pi^- FF$:
- i. CMD2, SND

ii. KLOE

iii. BaBar

iv. BES III

CMD2: Phys. Lett. B648 (2007) 28, JETP Lett. 84 (2006) 413 SND: JETP 103 (2006) 380

> KLOE08 : AIP Conf. Proc. 1182 (2009) 665 * KLOE10: Phys. Lett. B700 (2011) 102 KLOE12: Phys. Lett. B720 (2013)336

BaBar : Phys. Rev. Lett. 103 (2009) 231801 * Phys. Rev . D86 (2012) 032013

BES III : M. Ablikim et al Phys. Lett. B753 (2016) 629

Conflicting behaviors within the BHLS framework

M. Benayoun et al EPJ C73 (2013)2453

M. Benayoun et al EPJ C75 (2015)613

A «Democratic» Criterium : τ+PDG

- BHLS predicts $F_{\pi}(s)$ from τ spectrum +(5) PDG
- \rightarrow compare each $F_{\pi}^{\exp}(s)$ to $F_{\pi}^{\tau+PDG}(s)$

M. Benayoun et al EPJ C75 (2015)613

A «Democratic» Criterium : τ+PDG

- BHLS predicts $F_{\pi}(s)$ from τ spectrum +(5) PDG
- \rightarrow compare each $F_{\pi}^{\exp}(s)$ to $F_{\pi}^{\tau+PDG}(s)$

A «Democratic » Criterium : τ+PDG

- BHLS predicts $F_{\pi}(s)$ from τ spectrum +(5) PDG
- \rightarrow compare each $F_{\pi}^{\exp}(s)$ to $F_{\pi}^{\tau+PDGF}(s)$

Fitting $\pi^+\pi^-$ Data using τ Samples

Fit Cond. (χ²/Ν _{π+π -})	KLOE08 (60)	KLOE10 (75)	KLOE12 (60)	NSK (127/209)	BES III (60)	BaBar trunc (250)
Single (χ²/Ν _{π+π -})	1.64 59 %	0.96 97%	1.02 97 %	0.96 [0.83] 97 %[99%]	0.56 99%	1.15 74%
Comb 1 χ ² /N : 1.28 (11%)		1.02	1.48	1.18 <mark>[0.96]</mark>		1.35
Comb 2 χ²/N: 1.21 (22%)		1.01	1.54	1.18 <mark>[0.96]</mark>	0.56	1.36
Comb A χ²/N: 1.06 (97%)		1.02	1.05	1.10[0.89]		
Comb B χ ² /N : 0.98 (99%)		1.00	1.05	1.11[0.90]	0.61	

Fitting $\pi^+\pi^-$ Data using τ Samples

Fit Cond. (χ²/Ν _{π+π -})	KLOE08 (60)	KLOE10 (75)	KLOE12 (60)	NSK (127/209)	BES III (60)	BaBar trunc (250)
Single (χ²/Ν _{π+π -})	1.64 59 %	0.96 97%	1.02 97 %	0.96 [0.83] 97 %[99%]	0.56 99%	1.15 74%
Comb 1 χ ² /N : 1.28 (11%)		1.02	1.48	1.18[0.96]		1.35
Comb 2 χ ² /N: 1.21 (22%)		1.01	1.54	1.18[0.96]	0.56	1.36
Comb A χ²/Ν: 1.06 (97%)		1.02	1.05	1.10 <mark>[0.89]</mark>		
Comb B χ ² /N : 0.98 (99%)		1.00	1.05	1.11[0.90]	0.61	
						21

$π^+ π^-$ Spectra : A τ vs e⁺e⁻ Puzzle?

M. Benayoun et al EPJ C75 (2015) 613

Dipion Spectra (τ & NSK+KLOE+BES)

86.8/85 361.5_{404} (Prob $\approx 99\%$) χ^2 Γ__1² **~**₄45 **⊔** 50 50 45 * BESS 09 40 • Belle 45 45 ▲ SND 98 ▲ ALEPH 40 • CMD2 98 40 40 • CLEO ▲ KLOE 10 35 KLOE 12 35 35 35 30 30 30 30 25 25 25 0.75 0.8 0.85 0.7 0.75 0.8 25 20 20 $e^+e^- \rightarrow \pi^+\pi^ \pi^{\pm}\pi^{0}
u$ 15 15 10 10 5 5 0.3 0.5 0.6 0.7 0.8 0.9 0.6 0.7 0.8 0.4 0.3 0.4 0.5 0.9 1.1 1 √s (GeV) √s (GeV)

A Test : The ππ phase shift

HLS Predictions superimposed

g-2 & Global Models/Fits

• NP Hadronic VP contributions to g-2

$$a_{\mu}(H_i) \approx \int_{s_{th}}^{s_{cut}} ds K(s) \sigma(e^+e^- \to H_i, s) \longleftarrow$$
 WA Measured Xsection

 VMD : Underlying physics correlations absorbed -> HLS cross-sections derived through a global fit (param. values & error covariance matrix) :

→ Complement for Vs ≥ 1.05 GeV with WA Xsection

HVP contributions to a_{\mu} (E \leq 1.05 GeV)

- new samples : SND($\pi^0 \gamma$) & CMD3(K_LK_S) || [$\pi \pi \pi$]_{ϕ}
- σ improved by x 4 (for $\sqrt{s} \le 1.05$ GeV) !

Channel	A=M ₀ (incl. τ)	Direct Estimate
π ⁺π⁻	493.46 ± 0.69	(492.98 <mark>± 3. 38</mark>)
π ⁰ γ	4.42 ± 0.02	3.67 ± 0.11
ηγ	0.64 ± 0.004	0.56 ± 0.02
π⁺ π⁻ π ⁰	40.86 ± 0.51	43.54 ± 1.29
K _L K _S	11.67 ± 0.07	12.21 ± 0.33
K⁺K-	17.14 ± 0.16	17.72 ± 0.52
Total < 1.05 GeV	568.20 ± 0.89	(570.68 ± 3.67)

a_μ (π⁺π⁻+τ, √s=[0.630,0.958] GeV)

Data and BHLS estimates

M. Benayoun et al. EPJ C75 (2015) 613

g-2 Estimates & Discrepancy

τ (A+B+C)+PDG	[35.30 \pm 4.58] [4.5 σ]
	Individual $\pi\pi$ Data Sets + τ
NSK (CMD2+SND)	[35.97 ± 4.63] [4.6 σ] [$\chi^2/N_{\pi\pi}$ 0.96] [99.5%]
KLOE 08	[38.78 ± 5.16] [4.8 σ] [$\chi^2/N_{\pi\pi}$ 1.64] [58.9%]
KLOE 10	$[39.21 \pm 5.15] [4.8 \sigma] [\chi^2/N_{\pi\pi} 0.96] [96.6\%]$
KLOE 12	[38.33 ± 4.33] [5.0 σ] [$\chi^2/N_{\pi\pi}$ 1.02] [96.9%]
BESS III	[33.02 ± 4.69] [4.2 σ] [$\chi^2/N_{\pi\pi}$ 0.58] [99.9%]
BaBar (Trunc.)	[29.15 ± 4.07] [3.9 σ] [$\chi^2/N_{\pi\pi}$ 1.15] [73.8%]
BaBar (Full)	[27.40 ± 4.03] [3.7 σ] [$\chi^2/N_{\pi\pi}$ 1.25] [40.1%]
	$\mathbf{scan} \ \pi \pi \ \mathbf{Data}$
NSK (CMD2+SND)+ τ	[35.97 ± 4.63] [4.6 σ] [$\chi^2/N_{\pi\pi}$ 0.96] [99.5%]
NSK	[37.94 ± 4.95] [4.7 σ] [$\chi^2/N_{\pi\pi}$ 0.97] [99.8%]
DHea09 (e^+e^-)	$[28.56 \pm 5.8]$ [3.4 σ]
	$-$ scan +ISR $\pi\pi$ Data
$NSK+KLOE+BESS&\tau$	$[37.55 \pm 4.12] [5.0 \sigma] [\chi^2/N_{\pi\pi} 0.90] [99.1\%]$
NSK+KLOE+BESS	[38.67 ± 4.17] [5.1 σ] [$\chi^2/N_{\pi\pi}$ 0.88] [99.7%]
DHMZ10 $(e^+e^- + \tau)$	$[17.96 \pm 5.4]$ [2.2 σ]
DHMZ10 (e^+e^-)	$[27.16 \pm 4.9]$ [3.3 σ]
$HLMNT11(e^+e^-)$	$[24.56 \pm 4.9]$ [3.1 σ]
$JS11(e^+e^- + \tau)$	$[27.66 \pm 6.0]$ [3.2 σ]
Global (ISR & scan& τ)	$[33.72 \pm 4.08] [4.5 \sigma] [\chi^2/N_{\pi\pi} \ 1.28] [11.3\%]$
Global (ISR & scan)	$[33.63 \pm 4.03] \ [4.5 \ \sigma] \ [\chi^2/N_{\pi\pi} \ 1.59] \ [15.4\%]$
	experiment —
BNL-E821(avrg)	$[0 \pm 6.3]$
-10	40 90 140
	$(a_{\mu}^{carr} - a_{\mu}^{carr}) \times 10^{10}$

Muon HVP : Phenomenology vs LQCD

HVP Evaluations: DR vs MBM

$$s_0 = m_{\pi^0}^2 \left(or \ 4m_{\pi}^2 \right)$$

$$a_{\mu}^{had} = \left[\frac{\alpha m_{\mu}}{3\pi}\right]^{2} \int_{s_{0}}^{\infty} \frac{ds}{s^{2}} \hat{K}(s) R_{hadr}(s)$$
F. Jegerlehner & A.Nyffeler, ArXiv:0902.3360

Mellin Transform of R(s)

E de Rafael Phys. Lett B736(2014) 522

$$a_{\mu}^{had} = \left\lfloor \frac{\alpha}{\pi} \right\rfloor \frac{1}{2i\pi} \int_{c-i\infty}^{c+i\infty} ds \ \hat{F}(s) M(s)$$

 $\hat{F}(s) = -\Gamma(3-2s)\Gamma(-3+s)\Gamma(1+s)$

HVP Evaluations: DR vs MBM

Mellin Transform of R(s)

E de Rafael Phys. Lett B736(2014) 522

$$a_{\mu}^{had} = \left[\frac{\alpha}{\pi}\right] \frac{1}{2i\pi} \int_{c-i\infty}^{c+i\infty} ds \ \hat{F}(s) M(s)$$

$$s_{0} = m_{\pi^{0}}^{2} \left(or \ 4m_{\pi}^{2}\right)$$

$$M(u) = \frac{\alpha}{3\pi} \int_{s_{0}}^{\infty} \frac{dt}{t} \left(\frac{m_{\mu}^{2}}{t}\right)^{(1-u)} R_{hadr}(t) \qquad (>0)$$

$$\tilde{M}(u) = \frac{\alpha}{3\pi} \int_{s_{0}}^{\infty} \frac{dt}{t} \left(\frac{m_{\mu}^{2}}{t}\right)^{(1-u)} \ln\left(\frac{m_{\mu}^{2}}{t}\right) R_{hadr}(t) = -\frac{dM(u)}{du} (<0)$$

Muon HVP & Mellin Moments

HVP :: fastly convergent series of Mellin Moments

E de Rafael Phys. Lett B736(2014) 522

$$\rightarrow a_{\mu}^{had}(0) = \left[\frac{\alpha}{\pi}\right] \left[\frac{1}{3}M(0)\right]$$

$$\rightarrow a_{\mu}^{had}(1) = a_{\mu}^{had}(0) + \left[\frac{\alpha}{\pi}\right] \left[\frac{25}{12}M(-1) + M(-1)\right]$$

$$\to a_{\mu}^{had}(2) = a_{\mu}^{had}(1) + \left[\frac{\alpha}{\pi}\right] \left[\frac{97}{10}M(-2) + 6M(-2)\right]$$

.

Mellin Moments from Data & HLS

	Moment	Evaluation from Data only	Evaluation from HLS (&Data)		
	M(0)	10.307 ± 0.0745	10.1073 ± 0.0575		
•	M(-1)	(2.3507 ± 0.0185) 10 ⁻¹	(2.3760 ± 0.0038) 10 ⁻¹		
	M(-2)	(0.8702 ± 0.0115) 10 ⁻²	(0.9007 ± 0.0011) 10 ⁻²		
	M(-3)	(0.4852 ± 0.0093) 10 ⁻³	(0.5149 ± 0.00064) 10 ⁻³		
	M(-4)	(0.3676 ± 0.0083) 10 ⁻⁴	(0.3956 ± 0.0005) 10 ⁻⁴		
	~M(-1)	-(8.2592 ± 0.0516) 10 ⁻¹	-(8.3035 ± 0.0168) 10 ⁻¹		
	~M(-2)	-(2.6808 ± 0.0294) 10 ⁻²	-(2.7503 ± 0.0035) 10 ⁻²		
	~M(-3)	-(1.3160 ± 0.0228) 10 ⁻³	-(1.3858 ± 0.0017) 10 ⁻³		
	~M(-4)	-(0.9064 ± 0.0199) 10 ⁻⁴	-(0.9726 ± 0.0012) 10 ⁻⁴		

M. Benayoun et al. ArXiv:1605.04474

n≥2 : Dominance of {√s < 1.05 GeV}

	Moment	Evaluation HLS (<1.05 GeV)	Evaluation HLS & Data (all E)
	M(0)	8.6041 ± 0.0130	10.1073 ± 0.0575
Г	M(-1)	(2.3197 ± 0.0031) 10 ⁻¹	(2.3760 ± 0.0038) 10 ⁻¹
	M(-2)	(0.8974 ± 0.0011) 10 ⁻²	(0.9007 ± 0.0011) 10 ⁻²
	M(-3)	(0.5147 ± 0.00064) 10 ⁻³	(0.5149 ± 0.00064) 10 ⁻³
	M(-4)	(0.3956 ± 0.0005) 10 ⁻⁴	(0.3956 ± 0.0005) 10 ⁻⁴
-	~M(-1)	-(8.0054 ± 0.0113) 10 ⁻¹	-(8.3035 ± 0.0168) 10 ⁻¹
	~M(-2)	-(2.7338 ± 0.0035) 10 ⁻²	-(2.7503 ± 0.0035) 10 ⁻²
	~M(-3)	-(1.3847 ± 0.0017) 10 ⁻³	-(1.3858 ± 0.0017) 10 ⁻³
	~M(-4)	-(0.9725 ± 0.0012) 10 ⁻⁴	-(0.9726 ± 0.0012) 10 ⁻⁴
		Moment M(0) M(-1) M(-2) M(-3) M(-4) V VM(-1) V VM(-1) V VM(-1) VM(-2) VM(-3) VM(-3) VM(-4)	Moment Evaluation HLS (<1.05 GeV) M(0) 8.6041 ± 0.0130 M(-1) (2.3197 ± 0.0031) 10 ⁻¹ M(-2) (0.8974 ± 0.0011) 10 ⁻² M(-3) (0.5147 ± 0.00064) 10 ⁻³ M(-4) (0.3956 ± 0.0005) 10 ⁻⁴ ~M(-1) -(8.0054 ± 0.0113) 10 ⁻¹ ~M(-2) -(2.7338 ± 0.0035) 10 ⁻² ~M(-3) -(1.3847 ± 0.0017) 10 ⁻³ ~M(-4) -(0.9725 ± 0.0012) 10 ⁻⁴

Mellin Moments : BHLS vs Data

Log M(-n) vs n : {Vs>1.05 GeV} contributes :
M(0) : 15 % (σ :: 75%) (-)
M(-1) : 2.4%
M(-n), n≥2 : ≈0%

Muon HVP from Mellin Moments

Estimates from different methods :

- ✓ Disp. Rel.
 ✓ From Data alone / BHLS
- ✓ Mellin-Barnes Mom. From Data alone/ BHLS (up to 4th order)

Padé App. From Data (VP amp.) $a_{\mu}^{\rm had} \times 10^{10}$ Ī 782.61 ± 4.43 [784.39 ± 5.77] $(\mathbf{0})$ $704.69 {\pm} 4.21$ [706.30 ${\pm} 5.47$] 770 (1) (2) 686.65 ± 4.19 [688.55 ± 5.31] (3) 682.61 ± 4.19 [684.68 ± 5.26] 745 681.48 ± 4.18 [683.62 ± 5.23] (4) [2,2]+[2,1]3,2]+[2,2][2,1]+[1,1]**DR** 681.77±3.14 [683.50±4.75] 720 HLS data Ī 695 ✓ Good convergence $(2)^{-}(3)$ a_{μ}^{had} in units 10^{-10} (0) (1) 670 (4) DR. 3 51 2 4 # of moments
Effects of the tilde Moments on a_{μ}^{had}

• Effects of $\tilde{M}(-1), \tilde{M}(-2), \tilde{M}(-3)$ $x_{\mu}^{\rm had}\!\times\!10^{10}$ (M(-4) not shown) **Dramatic effects from** lacksquare $\tilde{M}(-1)\left(\& \tilde{M}(-2)\right)$ DR # of moments

Remarks on Mellin Moments I

- Dispersion Integral limits : $(m_{\pi 0})^2 \rightarrow \infty$
- BHLS integral limits : $(m_{\pi 0})^2 \rightarrow (1.05)^2 \text{ GeV}^2$

Remarks on Mellin Moments II

• Numerical analysis of $a_{\mu}^{had}(n)$ implies that :

LQCD Predictions and Data

4 LQCD data points from

C. Aubin *et al.* ArXiv:1512.07555

LQCD Predictions and Data

- x representation :
- \rightarrow crucial role of extrapolation for $a_{\mu}^{had}(n)$

Zon limits (GeV) 0.00<Q<0.15 0.15<Q<0.30 0.30<Q<0.45 0.45<Q<1.00

Going the closest to the LQCD scope?

- Data contain I=0, I=1 components & IB & y:
- Test of consistency (Data/BHLS) vs LQCD easier :
- Single out I=1 component in data \succ
 - \rightarrow Isospin Breaking Effects
 - \rightarrow I=0 component

 \rightarrow Photon coupling to hadrons

Not easy with data \rightarrow fit functions

Extract I=1 from Data via BHLS

• The BHLS model :: ≈ perfect fit to data

Extraction method from phenomenology :

IB identified via «τ +PDG» method : switched off

The « τ + PDG » Method

- Perform a global fit within BHLS with:
- $-\tau^{\pm} \rightarrow \pi^{\pm}\pi^{0} \upsilon_{\tau}$ (Aleph, CLEO, Belle)
- $e^+e^- \rightarrow K^+K^-/K_LK_S/\pi^0\gamma/\eta\gamma/\pi^+\pi^-\pi^0$ (scan data from NSK) - $e^+e^- \rightarrow \pi^+\pi^-$ samples : ALL DISCARDED
- & Isospin Breaking information : | from RPP
 - $-\Gamma(\rho \rightarrow e^+e^-)$
 - $-\Gamma(\omega \rightarrow \pi^+ \pi^-)$ & ORSAY phase (~104°)
 - $-\Gamma(\phi \rightarrow \pi^+ \pi^-)$ & $\Gamma(\phi \rightarrow \pi^+ \pi^-) \times \Gamma(\phi \rightarrow e^+ e^-)$

• \rightarrow **Derive** $F_{\pi}^{\tau}(s) \rightarrow F_{\pi}^{ee}(s)$ M. Benayoun *et al.* EPJ C73 (2013) 2453

$π^+ π^-$ Spectra : τ + PDG Predictions

τ + PDG predictions
In spacelike & timelike
regions

π π samples NOT FITTED Average χ2 distance to τ + PDG prediction displayed (conf. B)

M. Benayoun et al EPJ C73 (2013)2453

$π^+ π^-$ Spectra : τ Prediction & FIT

M. Benayoun et al EPJ C75 (2015) 613

τ Form Factor as I=1 Reference

Vector meson couplings to y

• (γ) V transitions become s-dependent via IB:

Vector meson couplings to y

• (γ) V transitions become s-dependent via IB:

The γ issue in Effective Lagrangians

- γ coupling to hadrons :: Lagrangian dependent
- γ coupling to $\pi \pi$:
- > HLS Model : $g_{\gamma\pi\pi} = (1 a/2) e$ (a ≈ 2.5)
- **Solution** Gounaris–Sakurai : $g_{\gamma \pi \pi} = 0$ (a = 2.0)

scalarQED : g_{γππ} = e
 As all give a good description of F_π(s)
 switching off γ : highly model-dependent.

a^{hadr} components from BHLS

10 ¹⁰ *	Exp Data (√s ≤1.05 GeV)	HLS Standard Fit	HLS Fit (no IB) γ & I=0 & I=1	HLS Fit (no IB) γ & I=1
$a_{\mu}^{hadr}(0)$	668.00 ± 3.83	666.22 ± 1.01	631.95 ± 0.95	552.15 ± 0.75
$a_{\mu}^{hadr}(1)$	594.11± 3.56	592.50 ± 0.90	562.08 ± 0.84	489.66 ± 0.67
$a_{\mu}^{hadr}(2)$	576.51± 3.41	574.64 ± 0.88	545.08 ± 0.83	473.49 ± 0.65
a _µ ^{hadr} (3)	572.65 ± 3.35	570.58 ± 0.88	541.25 ± 0.82	469.70 ± 0.64
a _µ ^{hadr} (4)	571.59 ± 3.33	569.41 ± 0.87	540.16 ± 0.82	468.62 ± 0.64
$a_{\mu}^{hadr}(\infty)$	570.68 ± 3.67	568.20 ± 0.89	539.56 ± 0.81	468.03 ± 0.65

BHLS dispatching of a_{μ}^{hadr} (I=1)

HLS Fit (no IB)	γ & I=1 ALL channels	γ & I=1 ππ only	γ & l=1 ππ + (π/η) γ	l=1 & <mark>NO</mark> γ ππ only
a _µ ^{hadr} (0)	552.15 ± 0.75	551.81 ± 0.75	552.14 ± 0.75	562.45 ±0.78
$a_{\mu}^{hadr}(1)$	489.66 ± 0.67	489.37 ± 0.67	489.65 ± 0.67	498.55 ± 0.68
a _µ ^{hadr} (2)	473.49 ± 0.65	473.20 ± 0.64	473.48 ± 0.65	481.60 ± 0.67
a _µ ^{hadr} (3)	469.70 ± 0.64	469.42 ± 0.64	469.70 ± 0.63	477.51 ± 0.66
a _µ ^{hadr} (4)	468.62 ± 0.64	468.34 ± 0.64	468.61 ± 0.64	476.35 ± 0.66
a _µ ^{hadr} (∞)	468.03 ± 0.65	467.75 ± 0.64	468.02 ± 0.64	475.70 ± 0.66

Comments about I=1 & a^{hadr} (I=1)

- Evaluating the various effects (units 10⁻¹⁰) :
- ✓ Isospin Breaking :: ≈30/568 (≈ 5.2%)
- ✓ I=0 (ω & φ) :: ≈ 72/568 (≈ 12.6 %)
- ✓ I=1 & γ
 :: ≈ 468/568 (≈ 82.2 %)
- I=1 & γ :: ≈ 100% ππ
- [(π/η) γ →0.2 10⁻¹⁰, (K⁺K⁻/K_LK_S/πππ → ≈ 0.01 10⁻¹⁰]
- Within BHLS :: γ contributes \approx -7 10⁻¹⁰ !

CONCLUSIONS

- **Effective Lagrangians (BHLS) :: Global Fits**
- optimum to absorb physics correlations
- ***** merge e+e- data & decays (incl. τ/η') consistently
 - → increase (effective) statistics vs e+e- data only
- detect doubtful samples by consistency checks
- Moment information : cross checks with LQCD?
- Specific LQCD predict. vs measurements/models ::
- ☆ removing IB, I=0 from data ≈ a priori possible
- however, an issue with γ

From Belle

The Spacelike & threshold Regions

Predicted Phase shift (I)

Predicted Phase shift (II)

Final Results + Additional Systematics

$$10^{10} \times \left[a_{\mu}^{\exp} - a_{\mu}^{th} \right] = 38.34 + \begin{bmatrix} +0.6 \\ -1.3 \end{bmatrix}_{\phi}^{\phi} + \begin{bmatrix} +0.9 \\ -0.0 \end{bmatrix}_{\tau}^{\tau} + \begin{bmatrix} +0.0 \\ -1.4 \end{bmatrix}_{s=0}^{$$

significance for $\Delta a_{\mu} > 4.6/4.1 \sigma$

Conclusions

1/ broken HLS model → good simultaneous fit of ≈ all data

2/IB \rightarrow NO signal of a (e⁺e⁻ vs τ) puzzle within BHLS

3/ Relative inconsistencies of $\pi \pi$ data sets substantiated

4/ Consistent $\pi \pi$ data sets: CMD2, SND, KLOE 10&12, BES

5/ The discrepancy with BNL g-2 value is $\approx 4.6/4.1 \sigma$

6/ Error on LO-HVP dominated by [1.05, 2] GeV data

7/ Biasing Effects of normalization uncertainties

Transitions at one loop

NA7 Residuals ($\chi^2/N \approx 90/60$)!

Backup Slides II

e⁺e⁻ → K Kbar Data

 $\chi^2 / N_{\rm D} = \frac{30}{36}$

 $=\frac{123}{119}$

3-pion Data

_229/179 χ^2 p

$e^+e^- \rightarrow \pi^0 \gamma$

e⁺e⁻ → ηγ Data

Former : <u>Prediction</u> for $\eta/\eta' \rightarrow \pi\pi \gamma$

Former : <u>Prediction</u> for $\eta/\eta' \rightarrow \pi\pi \gamma$

Global Fit & Scale Uncertainty

M. Benayoun et al EPJ C73 (2013)2453 • Minimize : $\chi^{2} = \left[\sigma_{exp} - \sigma_{th} - \lambda A \right]^{\prime} V^{-1} \left[\sigma_{exp} - \sigma_{th} - \lambda A \right] + \lambda^{2} / \eta^{2}$ •Solve for λ : $\chi^2 \equiv \left[\sigma_{exp} - \sigma_{th} \right]^T \left[V + \eta^2 A A^T \right]^{-1} \left[\sigma_{exp} - \sigma_{th} \right]$ •Choice of A : σ_{exp} (bias) , $[\sigma_{th} \approx \sigma_{iter}]$ (unbiased) S. Chiba & D. Smith, ANL/NDM-121 (1991) **G. D'Agostini** NIM A346 (1994)306 M. Benayoun et al, arXiv:1507.02943 V. Blobel eConf C030908 MOET002 (2003)

R.D.Ball et al JHEP 1005 (2010)075// Nucl. Phys. B838 (2010) 136