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1. Introduction/Motivations

Goal: Peculiar resummations of perturbative expansions can
give approximations to some nonperturbative parameters

In a nutshell: estimate this way e.g. Fy.(m, = 0)/A3"
'nonperturbatively’,
F, ~92.2MeV — F,.(m, =0) — Anf— AT = my).

How?: start from perturbative F7 ~m2 > (as)" fup In” %
(known at present to 4-loop order for any n)
Now m .- — m variational mass (in a well-defined way),

optimized consistently with RG properties= RG(OPT).
= m = O(ARCP) = F" ™ /AT~ 0.25 4+ .01 — ag(mz) ~ 0.1174 £ .001 % .001

(JLK, A.Neveu, PRD88 (2013))
®applied to (qq) at 3,4 -loops (using spectral density of Dirac operator) gives

(qq >}n/§’ (2GeV) ~ —(0.84 + 0.01)Ars  (JLK, A.Neveu, PRD 92 (2015))



g, — 2 (HVP)

i N

Concerning g,, — 2 (Hadronic vacuum polarization contribution

only):
Motivations similar to lattice: “first principle™ attempt to

calculate the Hadronic Vacuum Polarisation, independently
from dispersion relations from e*te, 7 decay data:

e worth to test our procedure on HVP, before possibly trying on Hadronic light by light
contribution: from previous cases, hope RGOPT HVP to reach ~ 2% accuracy,

light by light contribution needs less accuracy.
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Chiral Symmetry Breaking (XSB ) Order parameters

-

Conventional wisdom: hopeless from standard perturbation:

-

1. {Gg)'/3, Fr,.. ~ O(Agep) ~ 300 MeV
— ag (a priori) large — invalidates pert. expansion

2. (qq), Fx,.. perturbative series ~ (mg)*y,
vanish for m, — 0 at any pert. order (trivial chiral limit)

ol InP (my)

seems to tell that XSB parameters are intrinsically NP

eOptimized pert. (OPT): circumvents at least 1., 2.,
and may give more clues to pert./NP bridge
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2. (Variationally) Optimized Perturbation (OPT)

fTrick: add and subtract a mass, consider m 6 as interaction: T
Locp(g,mq) = Locp(0g,m(1 —0)) (s = g/(4n))

0 < 0 < 1interpolates between L¢,.. and massless L;y;;
(quark) mass m, — m: arbitrary trial parameter

e Take any standard (renormalized) QCD pert. series,
expand in § after:

mg—m(1l—9); g—dg
then take 6 — 1 (to recover original massless theory):

BUT a m-dependence remains at any finite §*-order:
fixed typically by optimization (OPT):
2 (physical quantity) = 0 for m = g (ag) # 0
Exhibit dimensional transmutation: mgp: ~ e~ 1/ (Bog)
L But does this 'cheap trick’ always work? and why? J



Expected behaviour (Ideally...)

- Expect flatter m-dependence at increasing ¢ orders... o
Physical quantity
Exact result
2d order (non—perturbative)

3rd order  ©tC...

=
’ N

’ \
/ \
/

OPT 1st order

O(A)

But not quite what happens.. except for ¢*(D = 1) (oscillator)
Higher orders: — what about convergence?

Main pb at higher order: OPT: 9,,(...) = 0 has multi-solutions
L(some complex!), how to choose right one?? J



Simpler model’s support + properties

hConvergence proof of this procedure for D = 1 \¢* oscillatorT
(cancels large pert. order factorial divergences!) cuida etal'95

particular case of 'order-dependent mapping’ seznec+zinn-Justin '79
(exponentially fast convergence for ground state energy
Ey, = const.\'/3;  good to % level at second §-order)

eFlexible, Renormalization-compatible, gauge-invariant:
applications also at finite temperature (many variants:
'screened pert., ’hard thermal loop resummation’, ...)

(NB our recent RG(OPT) version drastically improves well-known problems of unstable
+badly scale-dependent thermal perturbation (JLK + M.Pinto PRL 116 (2016))
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RG improved (compatible) OPT (RGOPT)

fOur main additional ingredient to OPT Lk, A. Neveu 2010): T

Consider a physical quantity (i.e. perturbatively RG
Invariant), e.g. pole mass M (or latter will be F}):

in addition to OPT Eq: 2 M) (1m, 9,6 = 1)| = = 0

Require (5-modified!) series at order §* to satisfy a standard
(perturbative) Renormalization Group (RG) equation:

RG (M(k)(m,g,(S = 1)) =0

with standard RG operator: (g = 4rag)

d 0 0 0

PR B(9)5- = rmlg)mo

RG = u— 99



~ — Combined with OPT, RG Eqg. reduces to massless form: |

0 0
g, +B(9) g]MW(m 9,0 =1)=0

Note: OPT+RG completely fix m = m and g = ¢

e But Ams(g) satisfies by def. [“a_u + ﬁ(g)a—g] Ams =0
consistently at a given pert. order for 3(g).
Thus equivalent to:

0, M*(m,g,6 =1) o [ MF(m,g,6 =1) -
=0; = 0form,g
am Ams(9) dg Ams(9)

eSort of “virtual” (variational) fixed point (but 5(g ) £ 01)

eOptimal m, § = 4was unphysical: true ag (m qJ)
eReproduces at first order exact nonpert results in simpler (e.g. Gross- Neveu) models




OPT + RG = RGOPT main new features

foEmbarrassing freedom Iin interpolating Lagrangian, e.g.: T
m — m (1 —9)"
In most previous works: linear case a = 1 for 'simplicity’...
but generally (we showed) it spoils RG invariance...

[exceptions: Bose-Einstein Condensate T, shift, calculated from O(2)\¢*, requires a # 1:

gives real solutions +related to critical exponents (Kleinert,Kastening; JLK,Neveu,Pinto '04)

¢OPT,RG Egs: many solutions at increasing §*-orders

— Our approach restores RG +requires OPT, RG sol. to
match standard perturbation (i.e. Asymptotic Freedom In

QCD): @S%O,u%m:§:4ﬂ&swm+u-

— At arbitrary order, AF-compatible RG + OPT branch,

often unique, only appear for a critical universal a:
m—>m(1—5)57%; (€.9. 55 (QCD,ny = 3) = 2)

> It removes spurious solutions mcompatlble with AF J




3. Application: Pion decay constantt’, /A

fChiraI Symmetry Breaking (CSB) su(n;)r x SU(ns)r — SU(nf) 4R T
for ny massless quarks. (ny =2, ny = 3)

F,. given from (nonperturbative) definition at p? — 0:
i{0[T A}, (p) AL(0)[0) = 6V gy F7 + O(pupy)

where quark axial current: A!, = §v,75% ¢

F, # 0: main (lowest order) CSB order parameter

mq # 0. perturbative expansion known to 3,4 loops
(3-loop Chetyrkin et al '95; 4-loop Maier et al '08 '09, +Maier, Marquard private comm.)
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. & @ N



(Standard) perturbative available information

f F2(pert)ms = Nc2m—7; [—L + Z—§(8L2 -+ %L + %) T
+(52)*[fa0(ng)L? + far(ng) L+ faa(ng)L + faz(ng)] + O(a)]

L=1In%, ny=2(3)

Note: finite part (after mass + coupling renormalization) not
separately RG-inv: (i.e. F? ~ (0|T A* A¥|0) mixes with m? 1
operator)

— (extra) renormalization by subtraction of the form:
S(m,ag) = m*(sq/as + s1 + seas + ...) where s; fixed

requiring RG-inv order by order: s, = 167T3(z;30—70)’ S1 = ...

Same well-known feature for m (gq), related to vacuum
energy, needs an extra (additive) renormalization in
Lﬁ-scheme to be RG invariant. J



War m-up calculation: pure RG approximation

- 2-loop + neglecting non-RG (non-logarithmic) terms: o

m2 (8
F2(RG-1,0(g)) = 3% |~L+ $5(8L° + 4L) — (g5 tyas — )

— F2(m — m(1 — §)7/P) g — dag, O(6))|s—1 =
m? 1027 169 5 o 4
3% {_841045 + 348 2_9L + Ti(SLQ + §L)}

OPT+RG: 0,,(FZ/A%), 8QS(F§/Ar2n_S) = 0: have a unique

AF-compatible real solution: L =1In " = — 72 ; a5 = J
— Fr(m, ds) = (22)Y%m ~ 0.25Ams (for AP = e/ (oas))

eIncludes higher orders +non-RG terms: m,,; remains
O(Ams) (rather than m ~ 0): RG-consistent ‘'mass gap’,

And ag ~ .5 stabilizes to more perturbative values
LNB m, &g variational parameters (not directly physical) J



Exact I, RG+OPT solutions at 4-loops (ms)

L(9) =Ln(m/ p)
1 B

perturbative AF

- A>O H>>m)

All branches of RG (thick) and OPT(dashed) solutions Re[L. = In %(g)] to the §-modified
3rd order (4-loop) perturbation (¢ = 4wra.g). Uniqgue AF compatible sol.: black dot

eHowever beyond lowest order, AF-compatibility and reality
of solutions often incompatible...

But, complex solutions are artefacts of solving exactly the
LRG and OPT (polynomial in L) Egs, in ms-scheme... J



Recovering real AF-compatible solutions

fPerturbative 'deformations’ consistent with RG?: T
Evidently: Renormalization scheme changes (RSC)

m —m/(1+ Big' + Bag” + ), g = ¢'(1+ Aig' + Asg” +--+)

L(9.B2)

O(8), s, = / I
— We require contact solution (thus closest to MS):

5-RG(g, L, B;) 57OPT(g, L, B;) — 5:RG 5 .OPT = 0

RSC affects pert. coefficients, but with property:
FMS(m, g; fi;) = FL(m!, d; f1;(By)) + ¢"'remnant(3,)
— differences should decrease with perturbative order J



Resultswith theoretical uncertainties

fBeside recovering real solution, RSC offer reasonably

convincing uncertainty estimates: non-unique RSC
— we take differences between those as th. uncertainties

Table 1: wmain optimized results at successive orders (n; = 3)

5% order nearest-to-ms RSC B; L &g KF—Z (RSC uncertainties)
5, RG-2 By =2.381074 —0.523 | 0.757 0.27 — 0.34

62, RG-3l B3 =3.3910° —1.368 | 0.507 0.236 — 0.255

53, RG-4 By =1.5110"° —1.760 | 0.374 0.2409 — 0.2546

ny =2 £(6%) = 0.213 — 0.269 (s = 0.46 — 0.64)

E(§3) =0.2224 — 0.2495 (65 = 0.35 — 0.42)
A

eEmpirical stability/convergence exhibited, with
LZbog In(m/p) =~ 1i.e. Mgy =~ pe1/(2%9) (like first RG order) N
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Final step: explicit symmetry breaking

foNeed to account for explicit chiral symmetry breaking from T
genuine quark masses m,,, mg, ms % 0:
This relies at this stage on other (mainly lattice) results:

Lz ~ 1.073 £ 0.015 [robust, ny = 2 ChPT + lattice]

]Z::—g ~ 1.172(3)(43) (attice MILC collaboration '10 using NNLO ChPT fits)

But there are different values by other collaborations

+ hint of slower convergence of n; = 3 ChPT, e.g. Bernard, Descotes-Genon, Toucan '10

Alternative: implement explicit sym. break. within OPT
(to be less dependent of lattice/ChPT results):
m — mllse +m(1 —0)/*"); looks promising but involved

RG+OPT Egs... (work in progress)
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Combined results with theoretical uncertainties:

-

Average different RSC +average 2 and §° results:

ns=2
A4floop — 359—|_§6| (rgopt th) + 5| Fr/F) MeV

n=3
A4fl00p — 317+14| (rgopt th) + 13| Fr/Fy) MeV

To be compared with some recent lattice results, e.g.:
o'Schrodinger functional scheme’ (aLPHA coll. Della Morte et al '12):
Ams(ny = 2) = 310 & 30 MeV

e TWisted fermions (+NP power corrections) (Blossier et al '10):
Aﬁ(nf = 2) — 330 £ 23 £+ 22_33 MeV

estatic potential (karbstein etal 14); Ams(ny = 2) = 331 + 21 MeV

- |



Extrapolation to ag at high (perturbative) ¢*

ste only A”f = result, perform standard (perturbative T
4-loop) evolutlon

Am_s < Meharm << Mpottom -

e|n ms-scheme non-trivial decoupling/matching:
standard perturbative extrapolation
(3,4-loop with m,., my thresholds, chetyrkin et al ‘06 ):

2L (0 = ) (1 - HA(55)2 + (~0.97205 + 0846515m)(25))

— ag(my) = 0,1174f:88(1)g(rg0pt th) + ()010| Fr/F) =+ .0005¢401

ay " (my) = 0.3087997 + .007 + 00240

Compare to 2013 (2015) world averages:
ag(myz) = 0.1185 £ 0.0006 ( ag(my) = 0.1177 4+ 0.0013)
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4. QCD chiral condensate

. N

exact result known to 3 loops (Chetyrkin et al '94; Chetyrkin +Maier, private comm.)

OO @
& @

m (qq)(m, 9)ms = 35 [——Lm—l—%(L2 —%Lm+1—52)
+ (1652 ) [ fao(ng) Ly, +f31(nf)L + fa2(ng) Lm + fss(nyg)]]

(L, = 1n %, g =4rag(p))

erturbative quark condensate: for n; massive quarks (n; = 2, 3)

NB: finite part (after mass + coupling renormalization) not separately RG-inv: (i.e. m{gq)

mixes with m?* 1 operator: related to vacuum energy anomalous dimension

- |



Direct RGOPT of m(gq)?

~ RGOPT procedure directly on the (RG-invariant) m(qq): o
first order: wrong (positive) sign of (one-loop) (Gq)
Higher orders: complex ms solutions, with large imaginary
parts: no pert. RSC real solutions... no stability trend.

Problem traced to strong sensitivity to (vacuum energy)
anomalous dimensions, related to original quadratic
divergence of the condensate

NB one-loop cutoff quadratic divergence has correct
(negative) sign (success of Nambu-Jona-Lasinio model)
but sign changes in dimensional regularization +M .S

— Like with other variational methods, sensible to start from a
more suitable basic quantity to optimize: here the spectral J
density of the Dirac operator, related to (Gq)



Spectral density p()\) and (gq)

fEucIidean Dirac operator: i ID u,(x) = A\, un(x); D =@+ 944T

On a lattice: p(A\) = + (>, 0(X — M)

V' — oo: dense spectrum, and (7q)y .o = —2m fo d)\/\§+ .
p(A): spectral density of the (euclidean) Dirac operator.

Banks-Casher relation: (gq)(m — 0) = —mp(0)
'Washes out’ large A\ problems (quadratic UV divergences)

Conversely: —p(A) = 5= ({qg)(ix + €) — (Ga) (i — €)) |
i.e. p(A\) determined by discontinuities of (gq)(m) across
Imaginary axis.

Perturbative expansion: — In(m — <) discontinuities
\_% no contributions from non-log terms (like anom. dim.)



OPT and RG adapted to spectral density

fPerturbative Iogarithmic discontinuities from T
ORE (LR TR
l.e..

ln( )%1/2 IHQ(Q)%IHM; ln?’(m)%%anm—%z
7 7 7 7

Modified perturbation: intuitively A plays the role of m, so:

70

A—)A(l—é)%%; g — g

— OPT Eq.: Zp(g,A) =0for A = \,(g) #0

e Using - Ty = - /\Qjmz, one finds p()\) obeys RG eq.:
9, 0 0
— — A e — Tm ,A) =
[uaﬂJrﬁ(g)ag m(9) Ay = Tm(g)| plg, A) =0



RGOPT 2,3,4-loop resultsfor (Gq) (ny = 2,3)

fReaI AF-compatible solutions obtained:

173

k A ~ —(ga)/3 - i —q9 R
0%, RG order In £ ag A, () X e
5, RG 2-loop —0.45 | 0.480 0.822 2.8 0.821
62, RG 3-loop || —0.703 | 0.430 0.794 3.104 0.783
63, RG 4-loop || —0.820 | 0.391 0.796 3.446 0.773
~ ~ _ . 1/3
k b ~ —{(gq)/3 , - f —(qq);
6" order In £ as /_\—3(“) i /_\—SRGI
5, RG 2-loop —0.56 | 0.474 0.799 3.06 0.789
62, RG 3-loop || —0.788 | 0.444 0.780 3.273 0.766
63, RG 4-loop || —0.958 | 0.400 0.773 3.700 0.744

0
NB: (qg) ngr = (d4) (1) (200 )% (1+ (35 — BB) g+ )
e stability/convergence seen,;
Lalready realistic at first nontrivial (2-loop) order
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Evolution to u = 2 GeV and comparison

_ / — ~ Ge m
ﬁqqﬂu = 2GeV) = (qa)(j1) exp| [ dg22)]

(equivalently extract from (Gq) rar with as(2GeV) ~ 0.305 + 0.004)
(NB for ny = 3 account for aug (i ~ m) threshold effects)
—(9)n/=5(2GeV) = (0.833(4—100p) — 0.845(3_100p)) A2
—(9)/25(2GeV) = (0.814(4-100p) — 0.838(3-100p)) A3

eDiscrepancy between 3- and 4-loop results define our
'intrinsical’ (RGOPT) theoretical error, ~ 1 — 2%

K
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5. Application to g, — 2 (HVP contribution)

. N

Motivations similar to lattice: “first principle™ attempt to
calculate the Hadronic Vacuum Polarisation, independent
from dispersion relations from e*e~, 7 decay data:

e worth to test our procedure on HVP, before possibly trying on Hadronic light by light
contribution: from previous cases, hope RGOPT HVP to reach ~ 2% accuracy,
light by light contribution needs less accuracy.

e More challenging (technically): condensate {Gq): no p? dependence (tadpole);
Fr /A relies only on IT4 (p* = 0).

But g — 2 HVP involves 11y, (p?); crucial p? dependence.

e Could give at least some (analytical) handle on the challenging low-Q? region.



Recipe: main steps

Quite similarly to I1 4 (p? = 0, m, ag) relevant to Fr [ Amrs, We seek a RGOPT approximation
of ITy- (p2, m, &g), now if possible for “any” (at least low) p2.

More appropriate to work in Euclidean (cf Lattice):

o 51 [°
aﬁIVP _ _(;)25/ dwKE(w)HV,E(wmi)
0

Kp(w) = Vito (W— ﬁ>2

w Va4 w+Jw
Again start from purely perturbative 11y, (Q?,m, # 0, ag): exactly known to 2 loops
approximate (low or high p? = —Q? expansions) at 3-loop (even 4-loop): Chetyrkin et al

OO O
& @

Note: it is known that the simple one-loop, with constituent quark mass Mc.ons ~ 250 MeV
gives roughly right order of HVP contribution (De Rafael, Greynat JHEP2012)

Our construction gives a RG consistent, fully determined mass, at arbitrary orders



some peculiarities/subtleties

e Relevant quantity in | dw integrand is ITy (Q2) — Ty (0): but IS (0) = L, In £ T

Important, both for consistent RG properties, and for non-trivial optimized solutlon

e Indeed non-trivial (RG-consistent) OPT (0., (- - - ) = 0) solutions
2
only if terms oc m? In £ are present.

However, ITy, (Q?, m?) ~ const. + O(Q?/m?) (i.e. is dimensionless)
— Consider (and optimize) rather m?2IIy, (Q?)
Then well-defined recipe:

1) determine subtraction:

P(Q*,m?) = m*TI(Q?,m*) — m?(so(bo,v0)/g + s1(b1,71) +---)
to recover (standard) perturbative RG invariance (NB s; should be independent of Q?).

2) Apply OPT: P(Q?,m?(1 — §)70bg, §g), expand to O(5%), then put § — 1.

— asymptotic freedom consistently for RG solution: g(Q? > p?) ~ 1 52

On_

Determine optimal m2(g, Q?) from 9, 2> P(Q?,m?) = 0, putin
P(Q?,m?)/m? = 11(Q?,m?).

NB Q2 plays the role of 'external’ parameter (with respect to RG properties),
m(Q?) “running” mass.



Results at one-loop (preliminary!)

1672 13 ~ 2\ _ 8m? 2712 Q> =
(@2, m?) = 4y (1 oy L+ g (1= VT 4m2/Q2)]> —4/3

e not very different from standard one-loop expression, BUT “non-perturbative” m.(g, Q?)
with highly non-trivial Q2 dependence:

_ 1 2
m(Q2 ~ O) ~ Amisez 2 eXp[—%GEQ(A%S)Q]
~ 202 o 3 A% S
m=(Q* — o0) NAm—S€3 02

miA
=Y,

%
1m A2

e The g = 4ra s dependence only enters in m(Ampg = pe =1/ (2009)),

— No free parameters: fully determined in terms of A=, as previously.

It gives affVF (1 — loop) ~ 510 1010 (crude, taking constant m = e~ /2 Are);
affVF (1 — loop) ~ 815 10~ 10 (more correctly accounting for m.(Q?));

(respectively ~ 20% too low (high) compared with latest a//V' ¥ ~ (692 £ 4) 10~ 17)



Beyond one-loop: perspectives (very sketchy...)

From the behaviour of previous RGOPT results (Fr, (@), - - - ), expect no drastic changes,
but smooth ’incorporation of higher non-trivial a5, Q2 dependence.

11y (Q?,m?) exactly known at two-loops, but will give very involved optimized mass:

m? = f(Li2(Q?/m?), Lig(Q*/m?), - -)
— Better attack first with simpler low Q2 expansions (kown to high Q2 /m? order).

No concrete results yet, but roughly expect
~ ~ 2
[=toop 5 TE=100P (14 g fo to0p(L7) + O(a2))

Crucial point: both optimized mass m?(Q?, ag) and optimized &g will be fully determined

(pure numbers), like for Fr, (g): no adjustable parameters (except Amg)-

-



Summary and Outlook

foOPT gives a simple procedure to resum perturbative
expansions, using only perturbative information.

eOur RGOPT version includes 2 major differences w.r.t.
most previous OPT approaches:

OPT+ RG optimization fix m and g = 4rcag

Requiring RG invariance or AF-compatible solutions after

interpolation uniquely fixes the latter 1 — m(1 — §)70/(2bo):
discards spurious solutions and accelerates convergence.

(O(10%) accuracy at 1-2-loops, expect ~ 2% accuracy +
stability at 3-loop)

g — 2 HVP contributions: technically more challenging

(highly non trivial Q? dependence): one-loop results look
Lencouraging (~ 20% overestimate).



Backup: Pre-QCD guidance: Gross-Neveu model

hD = 2 O(2N) GN model shares many properties with QCDT
(asymptotic freedom, (discrete) chiral sym., mass gap,..)

Loy = Ui JU+ L (3 T0)? (massless)

Standard mass-gap (massless, large N approx.):
consider V,;¢(c), obtained from [ dWUdWetten:

8Ve§£(0) — 0 — O'(N <\Ij\1j>) = M = Me_% = Am_s

eMass gap also known exactly for any IV:
Me:cact(N) . (46)ﬁ

Ams T[1-5<

2N —2
(From D = 2 integrability: Bethe Ansatz) Forgacs et al '91
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Link to massive GN mode

fNow consider massive case (still large N): T
M(m, g) =m(1+ gln-)~': Resummed mass (g/(27) — ¢)

=m(l —gn ™ + g*(In 2t + In ")+ ---) (pert. re-expanded)
M = Ams never seen In standard pert.: M., (m — 0) = 0

e Only fully summed M (m, g) gives right result, upon:

-identify Ams = pe 19, — M(m, g) = =20 = ——;
glnAt In —/—— g —
ms ms
-take reciprocal: m(F =In4) = Fel” A ~ FA for 1/ — 0;
— M(m — 0) ~ m/AﬁZb(W) = Ams

eBut (RG)OPT gives M = Ams at first (and any) d-order
(at any order, OPT sol.: In 7} = —é, RGsol.: g = 1)

L‘At 52-order (2-loop), RGOPT ~ 1 — 2% from M_,,q.:(anyN) J
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