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1. Introduction/Motivations

Goal: Peculiar resummations of perturbative expansions can
give approximations to some nonperturbative parameters

In a nutshell: estimate this way e.g. Fπ(mq = 0)/ΛQCD
ms

’nonperturbatively’,
Fπ ≃ 92.2MeV → Fπ(mq = 0) → Λ

nf=3

ms → αms
S (µ = mZ).

How?: start from perturbative F 2
π ≃ m2

q

∑

n,p(αS)
nfnp ln

p mq

µ

(known at present to 4-loop order for any nf )
Now mquark → m variational mass (in a well-defined way),
optimized consistently with RG properties≡ RG(OPT).
⇒ m = O(ΛQCD) ⇒ F

mq=0
π /Λ

nf=3

ms ≃ 0.25± .01 → αS(mZ) ≃ 0.1174± .001± .001

(JLK, A.Neveu, PRD88 (2013))
•applied to 〈q̄q〉 at 3,4 -loops (using spectral density of Dirac operator) gives

〈q̄q〉1/3mq=0(2GeV) ≃ −(0.84± 0.01)Λms (JLK, A.Neveu, PRD 92 (2015))
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gµ − 2 (HVP)

Concerning gµ − 2 (Hadronic vacuum polarization contribution
only):
Motivations similar to lattice: “first principle” attempt to
calculate the Hadronic Vacuum Polarisation, independently
from dispersion relations from e+e−, τ decay data:
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• worth to test our procedure on HVP, before possibly trying on Hadronic light by light
contribution: from previous cases, hope RGOPT HVP to reach ∼ 2% accuracy,

light by light contribution needs less accuracy.
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Chiral Symmetry Breaking (χSB ) Order parameters

Conventional wisdom: hopeless from standard perturbation:

1. 〈q̄q〉1/3, Fπ,.. ∼ O(ΛQCD) ≃ 300 MeV
→ αS (a priori) large → invalidates pert. expansion

2. 〈q̄q〉, Fπ,.. perturbative series ∼ (mq)d
∑

n,p αn
s lnp(mq)

vanish for mq → 0 at any pert. order (trivial chiral limit)

seems to tell that χSB parameters are intrinsically NP

•Optimized pert. (OPT): circumvents at least 1., 2.,
and may give more clues to pert./NP bridge
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2. (Variationally) Optimized Perturbation (OPT)

Trick: add and subtract a mass, consider mδ as interaction:
LQCD(g,mq) → LQCD(δ g,m(1− δ)) (αS ≡ g/(4π))

0 < δ < 1 interpolates between Lfree and massless Lint;
(quark) mass mq → m: arbitrary trial parameter

• Take any standard (renormalized) QCD pert. series,
expand in δ after:

mq → m (1− δ); g → δ g

then take δ → 1 (to recover original massless theory):

BUT a m-dependence remains at any finite δk-order:
fixed typically by optimization (OPT):

∂
∂m(physical quantity) = 0 for m = m̃opt(αS) 6= 0

Exhibit dimensional transmutation: m̃opt ∼ µe−1/(β0g)

But does this ’cheap trick’ always work? and why?
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Expected behaviour (Ideally...)

Expect flatter m-dependence at increasing δ orders...

Physical quantity

OPT 1st order

2d order

3rd order etc...

m0

Exact result
(non−perturbative)

O(Λ )

But not quite what happens.. except for φ4(D = 1) (oscillator)
Higher orders: → what about convergence?

Main pb at higher order: OPT: ∂m(...) = 0 has multi-solutions
(some complex!), how to choose right one??
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Simpler model’s support + properties

•Convergence proof of this procedure for D = 1 λφ4 oscillator
(cancels large pert. order factorial divergences!) Guida et al ’95

particular case of ’order-dependent mapping’ Seznec+Zinn-Justin ’79

(exponentially fast convergence for ground state energy
E0 = const.λ1/3; good to % level at second δ-order)

•Flexible, Renormalization-compatible, gauge-invariant:
applications also at finite temperature (many variants:
’screened pert.’, ’hard thermal loop resummation’, ...)

(NB our recent RG(OPT) version drastically improves well-known problems of unstable

+badly scale-dependent thermal perturbation (JLK + M.Pinto PRL 116 (2016))
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RG improved (compatible) OPT (RGOPT)

Our main additional ingredient to OPT (JLK, A. Neveu 2010):

Consider a physical quantity (i.e. perturbatively RG
invariant), e.g. pole mass M (or latter will be Fπ):
in addition to OPT Eq: ∂

∂ mM (k)(m, g, δ = 1)|m≡m̃ ≡ 0

Require (δ-modified!) series at order δk to satisfy a standard
(perturbative) Renormalization Group (RG) equation:

RG
(

M (k)(m, g, δ = 1)
)

= 0

with standard RG operator: (g = 4παS)

RG ≡ µ
d

dµ
= µ

∂

∂µ
+ β(g)

∂

∂g
− γm(g)m

∂

∂m

β(g) ≡ −2b0g
2 − 2b1g

3 + · · · , γm(g) ≡ γ0g + γ1g
2 + · · ·
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→ Combined with OPT, RG Eq. reduces to massless form:

[µ
∂

∂µ
+ β(g)

∂

∂g
]M (k)(m, g, δ = 1) = 0

Note: OPT+RG completely fix m ≡ m̃ and g ≡ g̃

• But Λms(g) satisfies by def. [µ ∂
∂µ

+ β(g) ∂
∂g
] Λms ≡ 0

consistently at a given pert. order for β(g).
Thus equivalent to:

∂

∂ m

(

Mk(m, g, δ = 1)

Λms(g)

)

= 0 ;
∂

∂ g

(

Mk(m, g, δ = 1)

Λms(g)

)

= 0 for m̃, g̃

•Sort of “virtual” (variational) fixed point (but β(g) 6= 0!)
•Optimal m̃, g̃ = 4πα̃S unphysical: true αS from Fπ

Λms
(m̃, g̃)

•Reproduces at first order exact nonpert results in simpler (e.g. Gross-Neveu) models
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OPT + RG = RGOPT main new features

•Embarrassing freedom in interpolating Lagrangian, e.g.:
m → m (1− δ)a

In most previous works: linear case a = 1 for ’simplicity’...
but generally (we showed) it spoils RG invariance...
[exceptions: Bose-Einstein Condensate Tc shift, calculated from O(2)λφ4, requires a 6= 1:

gives real solutions +related to critical exponents (Kleinert,Kastening; JLK,Neveu,Pinto ’04)

•OPT,RG Eqs: many solutions at increasing δk-orders

→ Our approach restores RG +requires OPT, RG sol. to
match standard perturbation (i.e. Asymptotic Freedom in
QCD): αS → 0,µ → ∞: g̃ = 4πα̃S ∼ 1

2b0 ln
µ
m̃
+ · · ·

→ At arbitrary order, AF-compatible RG + OPT branch,
often unique, only appear for a critical universal a:

m → m (1− δ)
γ0
2b0 ; (e.g. γ0

2b0
(QCD, nf = 3) = 4

9)

→ It removes spurious solutions incompatible with AF
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3. Application: Pion decay constantFπ/Λ

Chiral Symmetry Breaking (CSB) SU(nf )L × SU(nf )R → SU(nf )L+R

for nf massless quarks. ( nf = 2, nf = 3)
Fπ given from (nonperturbative) definition at p2 → 0:

i〈0|TAi
µ(p)A

j
ν(0)|0〉 ≡ δijgµνF

2
π +O(pµpν)

where quark axial current: Ai
µ ≡ q̄γµγ5

τi
2 q

Fπ 6= 0: main (lowest order) CSB order parameter

mq 6= 0: perturbative expansion known to 3,4 loops
(3-loop Chetyrkin et al ’95; 4-loop Maier et al ’08 ’09, +Maier, Marquard private comm.)

x x x x x x

x x x x
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(Standard) perturbative available information

F 2
π (pert)ms = Nc

m2

2π2

[

−L+ αS

4π (8L
2 + 4

3L+ 1
6)

+(αS

4π )
2[f30(nf )L

3 + f31(nf )L+ f32(nf )L+ f33(nf )] +O(α3
S)
]

L ≡ ln m
µ

, nf = 2(3)

Note: finite part (after mass + coupling renormalization) not
separately RG-inv: (i.e. F 2

π ∼ 〈0|TAµAν |0〉 mixes with m2 1

operator)

→ (extra) renormalization by subtraction of the form:
S(m,αS) = m2(s0/αS + s1 + s2αS + ...) where si fixed
requiring RG-inv order by order: s0 = 3

16π3(b0−γ0)
, s1 = ...

Same well-known feature for m 〈q̄q〉, related to vacuum
energy, needs an extra (additive) renormalization in
ms-scheme to be RG invariant.
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Warm-up calculation: pure RG approximation

2-loop + neglecting non-RG (non-logarithmic) terms:
F 2
π (RG-1,O(g)) = 3m2

2π2

[

−L+ αS
4π (8L

2 + 4
3L)− ( 1

8π(b0−γ0)αS
− 5

12)
]

→ F 2
π (m → m(1− δ)γ0/(2b0), αS → δαS,O(δ))|δ→1 =

3m2

2π2

[

− 102π
841αS

+ 169
348

− 5
29
L+ αS

4π
(8L2 + 4

3
L)

]

OPT+RG: ∂m(F 2
π/Λ

2
ms), ∂αS

(F 2
π/Λ

2
ms) ≡ 0: have a unique

AF-compatible real solution: L̃ ≡ ln m̃
µ
= − γ0

2b0
; α̃S = π

2

→ Fπ(m̃, α̃S) = ( 5
8π2 )

1/2m̃ ≃ 0.25Λms (for Λ1−loop
ms = µ e−1/(β0αS))

•Includes higher orders +non-RG terms: m̃opt remains
O(Λms) (rather than m ∼ 0): RG-consistent ’mass gap’,

And α̃S ≃ .5 stabilizes to more perturbative values
NB m̃, α̃S variational parameters (not directly physical)
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Exact Fπ RG+OPT solutions at 4-loops (ms)

-15 -10 -5 5 10 15

-4

-2

2

4

g

L(g)

perturbative AF
+, )(g−>0 µ >> m

=Ln(m/ µ )

All branches of RG (thick) and OPT(dashed) solutions Re[L ≡ ln m
µ
(g)] to the δ-modified

3rd order (4-loop) perturbation (g = 4παS ). Unique AF compatible sol.: black dot

•However beyond lowest order, AF-compatibility and reality
of solutions often incompatible...
But, complex solutions are artefacts of solving exactly the
RG and OPT (polynomial in L) Eqs, in ms-scheme...

– p. 15



Recovering real AF-compatible solutions

Perturbative ’deformations’ consistent with RG?:
Evidently: Renormalization scheme changes (RSC)
m → m′(1 +B1g

′ +B2g
′2 + · · · ), g → g′(1 +A1g

′ +A2g
′2 + · · · )

O(δ), ms:

4 6 8 10 12 14 16

-2.5

-2.0

-1.5

-1.0

-0.5

0.5

1.0

g

L(g)

→

8 10 12 14

-1.0

-0.5

0.5

g

L(g,B2)

→ We require contact solution (thus closest to MS):
∂
∂g

RG(g, L,Bi)
∂
∂L

OPT(g, L,Bi)−
∂
∂L

RG ∂
∂g

OPT ≡ 0

RSC affects pert. coefficients, but with property:
FMS
π (m, g; f ij) = F ′

π(m
′, g′; f ′

ij(Bi)) + gk+1remnant(Bi)

→ differences should decrease with perturbative order
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Results with theoretical uncertainties

Beside recovering real solution, RSC offer reasonably
convincing uncertainty estimates: non-unique RSC
→ we take differences between those as th. uncertainties

Table 1: Main optimized results at successive orders (nf = 3)

δk order nearest-to-ms RSC B̃i L̃′ α̃S
F0

Λ4l
(RSC uncertainties)

δ, RG-2l B̃2 = 2.38 10−4 −0.523 0.757 0.27− 0.34

δ2, RG-3l B̃3 = 3.39 10−5 −1.368 0.507 0.236− 0.255

δ3, RG-4l B̃4 = 1.51 10−5 −1.760 0.374 0.2409− 0.2546

nf = 2: F
Λ
(δ2) = 0.213− 0.269 (α̃S = 0.46− 0.64)
F
Λ
(δ3) = 0.2224− 0.2495 (α̃S = 0.35− 0.42)

•Empirical stability/convergence exhibited, with
2b0g̃ ln(m̃/µ) ≃ 1 i.e. m̃opt ≃ µ e−1/(2b0g̃) (like first RG order)
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Final step: explicit symmetry breaking

•Need to account for explicit chiral symmetry breaking from
genuine quark masses mu,md,ms 6= 0:
This relies at this stage on other (mainly lattice) results:
Fπ

F ∼ 1.073± 0.015 [robust, nf = 2 ChPT + lattice]

Fπ

F0
∼ 1.172(3)(43) (lattice MILC collaboration ’10 using NNLO ChPT fits)

But there are different values by other collaborations

+ hint of slower convergence of nf = 3 ChPT, e.g. Bernard, Descotes-Genon, Toucan ’10

Alternative: implement explicit sym. break. within OPT
(to be less dependent of lattice/ChPT results):
m → mtrue

u,d,s +m(1− δ)γ0/(2b0): looks promising but involved
RG+OPT Eqs... (work in progress)
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Combined results with theoretical uncertainties:

Average different RSC +average δ2 and δ3 results:

Λ
nf=2
4−loop ≃ 359+38

−26|(rgopt th) ± 5|(Fπ/F ) MeV

Λ
nf=3
4−loop ≃ 317+14

−7 |(rgopt th) ± 13|(Fπ/F0) MeV

To be compared with some recent lattice results, e.g.:
•’Schrödinger functional scheme’ (ALPHA coll. Della Morte et al ’12):
Λms(nf = 2) = 310± 30 MeV
•Twisted fermions (+NP power corrections) (Blossier et al ’10):
Λms(nf = 2) = 330± 23± 22−33 MeV
•static potential (Karbstein et al ’14): Λms(nf = 2) = 331± 21 MeV
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Extrapolation to αS at high (perturbative) q2

Use only Λ
nf=3
ms result, perform standard (perturbative

4-loop) evolution

Λms ≪ mcharm ≪ mbottom...

•In ms-scheme non-trivial decoupling/matching:
standard perturbative extrapolation
(3,4-loop with mc, mb thresholds, Chetyrkin et al ’06 ):

α
nf+1

S (µ) = α
nf

S (µ)
(

1− 11
72

(αS
π

)2 + (−0.972057 + .0846515nf )(
αS
π

)3
)

→ αS(mZ) = 0.1174+.0010
−.0005(rgopt th)± .0010|(Fπ/F0) ± .0005evol

α
nf=3
S (mτ ) = 0.308+.007

−.004 ± .007± .002evol

Compare to 2013 (2015) world averages:
αS(mZ) = 0.1185± 0.0006 ( αS(mZ) = 0.1177± 0.0013)

– p. 20



4. QCD chiral condensate

Perturbative quark condensate: for nf massive quarks (nf = 2, 3)

exact result known to 3 loops (Chetyrkin et al ’94; Chetyrkin +Maier, private comm.)

x x x

x x

m 〈q̄q〉(m, g)ms = 3m4

2π2

[

1
2
− Lm + g

π2 (L
2
m − 5

6
Lm + 5

12
)

+( g
16π2 )

2[f30(nf )L
3
m + f31(nf )L

2
m + f32(nf )Lm + f33(nf )]

]

(Lm ≡ ln m
µ

, g = 4παS(µ))

NB: finite part (after mass + coupling renormalization) not separately RG-inv: (i.e. m〈q̄q〉
mixes with m4 1 operator: related to vacuum energy anomalous dimension
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Direct RGOPT of m〈q̄q〉?

RGOPT procedure directly on the (RG-invariant) m〈q̄q〉:
first order: wrong (positive) sign of (one-loop) 〈q̄q〉
Higher orders: complex ms solutions, with large imaginary
parts: no pert. RSC real solutions... no stability trend.

Problem traced to strong sensitivity to (vacuum energy)
anomalous dimensions, related to original quadratic
divergence of the condensate

NB one-loop cutoff quadratic divergence has correct
(negative) sign (success of Nambu-Jona-Lasinio model)
but sign changes in dimensional regularization +MS

→ Like with other variational methods, sensible to start from a
more suitable basic quantity to optimize: here the spectral
density of the Dirac operator, related to 〈q̄q〉
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Spectral density ρ(λ) and 〈q̄q〉

Euclidean Dirac operator: i /D un(x) = λn un(x); /D ≡ /∂ + g /A

On a lattice: ρ(λ) ≡ 1
V
〈
∑

n δ(λ− λ
[A]
n )〉

V → ∞: dense spectrum, and 〈q̄q〉V→∞ ≡ −2m
∫∞
0

dλ ρ(λ)
λ2+m2

ρ(λ): spectral density of the (euclidean) Dirac operator.
Banks-Casher relation: 〈q̄q〉(m → 0) ≡ −πρ(0)

’Washes out’ large λ problems (quadratic UV divergences)

Conversely: −ρ(λ) = 1
2π

(〈q̄q〉(iλ+ ǫ)− 〈q̄q〉(iλ− ǫ)) |ǫ→0

i.e. ρ(λ) determined by discontinuities of 〈q̄q〉(m) across
imaginary axis.

Perturbative expansion: → ln(m → iλ) discontinuities
→ no contributions from non-log terms (like anom. dim.)
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OPT and RG adapted to spectral density

Perturbative logarithmic discontinuities from

lnn
(

m
µ

)

→ 1
2iπ

[(

ln |λ|
µ
+ iπ

2

)n

−
(

ln |λ|
µ
− iπ

2

)n]

i.e.:
ln
(

m
µ

)

→ 1/2; ln2
(

m
µ

)

→ ln |λ|
µ
; ln3

(

m
µ

)

→ 3
2
ln2 |λ|

µ
− π2

8

Modified perturbation: intuitively λ plays the role of m, so:

λ → λ(1− δ)
4
3

γ0
2b0 ; g → δg

→ OPT Eq.: ∂
∂λ
ρ(g, λ) = 0 for λ = λ̃opt(g) 6= 0

• Using ∂
∂m

m
λ2+m2 = − ∂

∂λ
λ

λ2+m2 , one finds ρ(λ) obeys RG eq.:

[

µ
∂

∂µ
+ β(g)

∂

∂g
− γm(g)λ

∂

∂λ
− γm(g)

]

ρ(g, λ) = 0
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RGOPT 2,3,4-loop results for 〈q̄q〉 (nf = 2, 3)

Real AF-compatible solutions obtained:

δk, RG order ln λ̃
µ

α̃S
−〈q̄q〉1/3

Λ̄2

(µ̃) µ̃
Λ̄2

−〈q̄q〉
1/3
RGI

Λ̄2

δ, RG 2-loop −0.45 0.480 0.822 2.8 0.821

δ2, RG 3-loop −0.703 0.430 0.794 3.104 0.783

δ3, RG 4-loop −0.820 0.391 0.796 3.446 0.773

δk order ln λ̃
µ

α̃S
−〈q̄q〉1/3

Λ̄3

(µ̃) µ̃
Λ̄3

−〈q̄q〉
1/3
RGI

Λ̄3

δ, RG 2-loop −0.56 0.474 0.799 3.06 0.789

δ2, RG 3-loop −0.788 0.444 0.780 3.273 0.766

δ3, RG 4-loop −0.958 0.400 0.773 3.700 0.744

NB: 〈q̄q〉RGI = 〈q̄q〉(µ) (2b0 g)
γ0
2b0

(

1 + ( γ1
2b0

− γ0 b1
2b20

) g + · · ·
)

• stability/convergence seen;
already realistic at first nontrivial (2-loop) order
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Evolution to µ = 2 GeV and comparison

〈q̄q〉(µ′ = 2GeV) = 〈q̄q〉(µ̃) exp[
∫ g(2GeV)

g(µ̃)
dg γm(g)

β(g)
]

(equivalently extract from 〈q̄q〉RGI with αS(2GeV) ≃ 0.305± 0.004)
(NB for nf = 3 account for αS(µ ∼ mc) threshold effects)

−〈q̄q〉
1/3
nf=2(2GeV) = (0.833(4−loop) − 0.845(3−loop))Λ̄2

−〈q̄q〉
1/3
nf=3(2GeV) = (0.814(4−loop) − 0.838(3−loop))Λ̄3

•Discrepancy between 3- and 4-loop results define our
’intrinsical’ (RGOPT) theoretical error, ∼ 1− 2%
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5. Application to gµ − 2 (HVP contribution)

Motivations similar to lattice: “first principle” attempt to
calculate the Hadronic Vacuum Polarisation, independent
from dispersion relations from e+e−, τ decay data:
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• worth to test our procedure on HVP, before possibly trying on Hadronic light by light
contribution: from previous cases, hope RGOPT HVP to reach ∼ 2% accuracy,
light by light contribution needs less accuracy.

• More challenging (technically): condensate 〈q̄q〉: no p2 dependence (tadpole);
Fπ/Λms: relies only on ΠA(p2 = 0).

But g − 2 HVP involves ΠV (p2); crucial p2 dependence.

• Could give at least some (analytical) handle on the challenging low-Q2 region.
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Recipe: main steps

Quite similarly to ΠA(p2 = 0,m, αS) relevant to Fπ/Λms, we seek a RGOPT approximation

of Π̃V (p2, m̃, α̃S), now if possible for “any” (at least low) p2.

More appropriate to work in Euclidean (cf Lattice):

aHV P
µ = −(

α

π
)2

1

2

∫ ∞

0
dωKE(ω)ΠV,E(ωm2

µ)

KE(ω) =

√

ω
4+ω

ω

(
√
4 + ω −√

ω√
4 + ω +

√
ω

)2

Again start from purely perturbative ΠV (Q2,mq 6= 0, αS): exactly known to 2 loops
approximate (low or high p2 = −Q2 expansions) at 3-loop (even 4-loop): Chetyrkin et al

x x x x x x

x x x x

Note: it is known that the simple one-loop, with constituent quark mass Mcons ∼ 250 MeV
gives roughly right order of HVP contribution (De Rafael, Greynat JHEP2012)

Our construction gives a RG consistent, fully determined mass, at arbitrary orders
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some peculiarities/subtleties

• Relevant quantity in
∫

dω integrand is ΠV (Q2)−ΠV (0): but Πms
V (0) = 1

4π2
ln µ2

m2

important, both for consistent RG properties, and for non-trivial optimized solution.

• Indeed non-trivial (RG-consistent) OPT (∂m(· · · ) = 0) solutions

only if terms ∝ m2 ln µ2

m2
are present.

However, ΠV (Q2,m2) ≃ const.+O(Q2/m2) (i.e. is dimensionless)

→ Consider (and optimize) rather m2ΠV (Q2)

Then well-defined recipe:

1) determine subtraction:
P (Q2,m2) = m2Π(Q2,m2)−m2(s0(b0, γ0)/g + s1(b1, γ1) + · · · )
to recover (standard) perturbative RG invariance (NB si should be independent of Q2).

2) Apply OPT: P (Q2,m2(1− δ)γ0b0, δg), expand to O(δk), then put δ → 1.
→ asymptotic freedom consistently for RG solution: g(Q2 ≫ µ2) ∼ 1

b0 ln Q2

µ2

Determine optimal m̃2(g,Q2) from ∂m2P (Q2,m2) = 0, put in
P (Q2, m̃2)/m̃2 ≡ Π̃(Q2, m̃2).

NB Q2 plays the role of ’external’ parameter (with respect to RG properties),

m̃(Q2) “running” mass.
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Results at one-loop (preliminary!)

16π2

3
Π̃(1)(Q2, m̃2) = 8m̃2

Q2

(

1 + 2m̃2

Q2
√

1+4m̃2/Q2
ln[1 + Q2

2m̃2
(1−

√

1 + 4m̃2/Q2)]

)

− 4/3

• not very different from standard one-loop expression, BUT “non-perturbative” m̃(g,Q2)

with highly non-trivial Q2 dependence:

m̃(Q2 ∼ 0) ∼ Λms e−
1

2 exp[− 3
280

e2( Q2

Λ2

ms
)2]

m̃2(Q2 → ∞) ∼ Λ2
ms e

5

3

Λ2

ms
Q2
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Λ2

e−1/2

• The g = 4παS dependence only enters in m̃(Λms ≡ µe−1/(2b0g)).
→ No free parameters: fully determined in terms of Λms, as previously.

It gives aHV P
µ (1− loop) ≃ 510 10−10 (crude, taking constant m̃ = e−1/2Λms);
aHV P
µ (1− loop) ≃ 815 10−10 (more correctly accounting for m̃(Q2));

(respectively ∼ 20% too low (high) compared with latest aHV P
µ ≃ (692± 4) 10−10)

– p. 30



Beyond one-loop: perspectives (very sketchy...)

From the behaviour of previous RGOPT results (Fπ , 〈q̄〉, · · · ), expect no drastic changes,
but smooth ’incorporation of higher non-trivial αS , Q

2 dependence.

ΠV (Q2,m2) exactly known at two-loops, but will give very involved optimized mass:
m̃2 = f(Li2(Q2/m̃2), Li3(Q2/m̃2), · · · )

→ Better attack first with simpler low Q2 expansions (kown to high Q2/m2 order).

No concrete results yet, but roughly expect

Π̃1−loop → Π̃1−loop
(

1 + α̃S f2−loop(
Q2

m2
) +O(α2

S)
)

Crucial point: both optimized mass m̃2(Q2, αS) and optimized α̃S will be fully determined
(pure numbers), like for Fπ , 〈q̄〉: no adjustable parameters (except Λms).
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Summary and Outlook

•OPT gives a simple procedure to resum perturbative
expansions, using only perturbative information.

•Our RGOPT version includes 2 major differences w.r.t.
most previous OPT approaches:

OPT+ RG optimization fix m̃ and g̃ = 4πα̃S

Requiring RG invariance or AF-compatible solutions after
interpolation uniquely fixes the latter m → m(1− δ)γ0/(2b0):
discards spurious solutions and accelerates convergence.

(O(10%) accuracy at 1-2-loops, expect ∼ 2% accuracy +
stability at 3-loop)

g − 2 HVP contributions: technically more challenging
(highly non trivial Q2 dependence): one-loop results look
encouraging (∼ 20% overestimate).
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Backup: Pre-QCD guidance: Gross-Neveu model

•D = 2 O(2N) GN model shares many properties with QCD
(asymptotic freedom, (discrete) chiral sym., mass gap,..)

LGN = Ψ̄i 6∂Ψ+ g0
2N (

∑N
1 Ψ̄Ψ)2 (massless)

Standard mass-gap (massless, large N approx.):
consider Veff (σ), obtained from

∫

dΨ̄dΨeiLGN :

∂Veff (σ)
∂σ = 0 → σ(∼ 〈Ψ̄Ψ〉) ≡ M = µe−

2π
g(µ) ≡ Λms

•Mass gap also known exactly for any N :
Mexact(N)

Λms
= (4e)

1
2N−2

Γ[1− 1
2N−2

]

(From D = 2 integrability: Bethe Ansatz) Forgacs et al ’91
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Link to massive GN model

Now consider massive case (still large N ):
M(m, g) ≡ m(1 + g ln M

µ )−1: Resummed mass (g/(2π) → g)

= m(1− g ln m
µ + g2(ln m

µ + ln2 m
µ ) + · · · ) (pert. re-expanded)

M ≡ Λms never seen in standard pert.: Mpert(m → 0) → 0

• Only fully summed M(m, g) gives right result, upon:
-identify Λms ≡ µe−1/g; → M(m, g) = m

g ln M
Λms

≡ m̂
ln M

Λms

;

-take reciprocal: m̂(F ≡ ln M
Λ ) = F eF Λ ∼ FΛ for m̂ → 0;

→ M(m̂ → 0) ∼ m̂
m̂/Λ+O(m̂2) = Λms

•But (RG)OPT gives M = Λms at first (and any) δ-order
(at any order, OPT sol.: ln m

µ = −1
g , RG sol.: g = 1 )

•At δ2-order (2-loop), RGOPT ∼ 1− 2% from Mexact(anyN)
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