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C�(t) = 4π
∫ R�

0
r2
∫ ∞

0

f�(u)

u
wΩ(w) du dr . (1)

C�: capture rate
u: incoming DM velocity in solar frame
f�(u): DM velocity distribution
Ω(w): probability of DM scattering from w → below vesc

w(r) ≡
√

u2 + vesc(r)2
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E�(t) = 4π
∫ R�

0
r2
∫ ∞

0
fW (v)Ω(v) dv dr . (2)

E�: evaporation rate
v : captured DM velocity inside Sun
fW (v): DM velocity distribution inside Sun
Ω(v): probability of DM scattering from v → above vesc
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A(t) = 4π
∫ R?

0
r2a(r , t) dr , (3)

a(r , t) =
1
2
〈σav〉0nχ(r , t)2. (4)

A(t): global rate of annihilation processes
a(r , t): local rate of annihilation processes
〈σav〉0: annihilation cross-section
nχ(r , t): DM number density
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Dark matter population master equation

dN(t)
dt

= C(t)− 2A(t)− E(t), (5)

When
E(t) = 0
C(t) constant
A(t) = constant × N(t)2

then

N(t) = C(t)teq tanh
(

t
teq

)
(6)

with equilibration time teq = (2AC/N2).

In practice, it’s usually better to just solve
for N numerically as the star evolves.
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dΦ

dE
≈ A(t)

∑
f

dNν
f

dE
. (7)

Φ: ν flux
dΦ
dE : differential flux per unit energy
f : final state
dNν/dE : annihilation spectrum
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Local conductive energy transport with dark matter
Dark matter number density:

nχ(r) = nχ(0)

[
T (r)

T (0)

]3/2

exp

[
−
∫ r

0
dr ′

kBα(r ′) dT (r ′)
dr ′ + mχ

dφ(r ′)
dr ′

kBT (r ′)

]
(8)

Dark matter conductive luminosity:

Lχ(r) = 4πr 2ζ2n(r)κ(r)nχ(r)lχ(r)

[
kBT (r)

mχ

]1/2

kB
dT (r)

dr
, (9)

Corresponding energy injection rate per unit mass of stellar material:

εχ(r) =
1

4πr 2ρ(r)

dLχ(r)

dr
. (10)

φ(r): gravitational potential at height r in star
T (r): temperature at height r
ρ(r): stellar density at height r
ζ(r): v0/vT (r) or q0/[mχvT (r)] depending on cross-section
vT (r): DM thermal velocity at height r
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Mini-Summary: Observables to watch out for

DM-nucleon scattering allows DM collisions with nuclei in the
Sun

→ gravitational capture and settling the to solar core

→ 2. nuclear scattering inside the Sun
→ additional energy transport

→ modified solar structure
→ 1. observables: – sound speed

(helioseismology) – oscillation frequencies
– convective zone depth
– surface helium frac.

→ 2. different core temperature
→ observable: solar neutrino rates
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The IceCube Neutrino Observatory

86 strings
1.5–2.5 km deep in
Antarctic ice sheet
∼125 m spacing
between strings
∼70 m in DeepCore
(10× higher optical
detector density)
1 km3 instrumented
volume (1 Gton)
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Neutrino telescope likelihoods: nulike

Unbinned ν telescope likelihood =⇒ full event-level angular and energy info

Lunbin ≡ Lnum(ntot|θtot)

ntot∏
i=1

(fSLS,i + fBGLBG,i )

Strategy: precompute partial likelihoods for each event, then
reweight with the ν spectrum at Earth for each model

precompute step uses nusigma with CTEQ6-DIS PDFs
to get charged current ν − n and ν − p cross-sections as
function of x and y

like step input: neutrino spectrum at Earth (from
DarkSUSY or whatever else you want to use)

like step output: num predicted events, likelihood

→ fully model-independent = future-proof for global fits
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Neutrino telescope likelihoods: nulike
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IceCube Collab. (contacts: PS + M. Danninger) arXiv:1601.00653, JCAP 2016
nulike: model-independent unbinned limit calculator for generic BSM models
Publicly available at nulike.hepforge.org
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IceCube Collab. (contacts: PS + M. Danninger) arXiv:1601.00653, JCAP 2016
nulike: model-independent unbinned limit calculator for generic BSM models
Publicly available at nulike.hepforge.org
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A word on how (not) to interpret indirect detection in BSM models

Indirect limits always presented in terms of hard process
final states
Actual experiments do not measure those final states –
they detect one type of SM particle produced later: γs, νs,
etc
Limits as presented cannot be combined and applied to
models with mixed final states (= all non-toy models)
Proper treatment of indirect detection for BSM searches
requires full phenomenological recast abilities
→ full experimental and theoretical treatment at the same
time
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Solar abundances

Latest solar photospheric abundances (Asplund, Grevesse, Sauval & PS:

AGS05, AGSS09) factor of ∼2 less than old ones (Grevesse & Sauval: GS98)

Best atomic data, highly accurate observations, new 3D
modelling, NLTE corrections, improved agreement with solar
neighbourhood =⇒ highly reliable
Z = 0.017 (GS98)→ Z = 0.013 (AGSS09)
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Helioseismology

Change Z
→ change temperature and density of interior
→ change frequencies of oscillations.
Observe central frequency of a line Doppler shifting
→ reconstruct oscillation modes
→ compare to predictions from solar models

Credit: U Birmingham

Pat Scott – June 7 – DM in Stars, Paris Dark matter and the Sun – capture, νs & intro to solar abuns



Getting dark matter in and out of the Sun
Neutrinos from solar dark matter

Introduction to the solar abundance problem

Sound speed

Modelling error
Helioseismology error
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Introduction to the solar abundance problem

Depth of the convection zone and surface helium

Derivative of temperature gradient changes abruptly at
base of convection zone
→ gives characteristic oscillation frequency signature
Surface helium has implications for initial Y and thus
overall molecular weight required to match observed L�

RCZ YS

Observed 0.713± 0.001 0.2485± 0.0034
GS98 0.712± 0.002 0.243± 0.003
AGSS09 0.723± 0.002 0.232± 0.003
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Small frequency separations

Considering frequency difference ratios cancels many
modelling systematics
Particular combinations of frequencies are especially
sensitive probes of the core

r02(n) =
νn,0 − νn−1,2

νn,1 − νn−1,1
; r13(n) =

νn,1 − νn−1,3

νn+1,0 − νn,0
, (11)

ν: oscillation frequency
n, l : radial order, angular
degree of mode

Serenelli et al. ApJ 2009
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Solar neutrinos
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Φ(7Be)∝ T 10
c

Φ(8B)∝ T 24
c

Φ(7Be) Φ(8B)
Observed 4.80(1± 0.05) 5.16(1± 0.02)
GS98 5.00(1± 0.07) 5.58(1± 0.14)
AGSS09 4.56(1± 0.07) 4.59(1± 0.14)
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Getting dark matter in and out of the Sun
Neutrinos from solar dark matter

Introduction to the solar abundance problem

AGSS09 abundances mess up inferred sound speed
profile, helium abundance, depth of convection zone and
small frequency separations
Many solutions attempted in the last decade:

Accretion of low-metallicity gas
Bulk opacity modifications
Line broadening in opacities
Attempts to discredit 3D models

. . . none successful =⇒ DM conduction?
Attempted in 2010 for constant σ by Frandsen & Sarkar,
Cumberbatch et al, Taoso et al→ no solution
Better agreement with Sun and direct detection if
σ ∝ qnvm

(Vincent, PS, Serenelli, PRL, JCAP, 2015-16→Aaron)
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Introduction to the solar abundance problem

How not to solve the solar abundance problem

Recent papers claim solar wind prefers high abundances, and
solves solar abundance problem
(Vagnozzi, Freese, Zurbuchen arXiv:1603.05960; von Steiger & Zurbuchen ApJ 2016)

Q1. Is the solar wind a good
measure of solar composition?

Nope.

Serenelli, PS, Villante, Vincent, et al, arXiv:1604.05318
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Introduction to the solar abundance problem

How not to solve the solar abundance problem

Q2. Do solar models with wind composition solve the solar
abundance problem?

No – complete nonsense.

χ2
GS98 χ2

AGSS09 χ2
vSZ16

YS 1.4 13.5 34.2
RCZ 0.15 14.8 0.60
YS + RCZ 1.6 64.8 47.3
{ci} 46.4 111.2 359.3
Φ(8B) 0.44 1.18 19.0
Φ(7Be) 0.28 0.45 15.0
Combined 65.5 186.1 489.1
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Introduction to the solar abundance problem

Conclusions

WIMPs and asymmetric DM expected to be gravitationally
captured by the Sun

annihilation ∼ generically produces high-energy neutrinos
→ strong limits on spin-dependent cross-section
→ also on particle physics models (cf. GAMBIT)
Potential impacts on energy transfer in the Sun
Solar abundance problem (helioseismology) suggests the
need for additional physics in the Sun
→ suggests/constrains the existence of certain ADM
models (→Aaron)
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