Dark matter and the Sun

Capture, high-energy neutrinos and introduction to the solar abundance problem

Pat Scott

Imperial College London

With (amongst others): Matthias Danninger (UBC) Aaron Vincent (IPPP Durham) Aldo Serenelli (UAB Barcelona)

Slides available from tinyurl.com/patscott

Imperial College London $2Q$

K ロ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶

1 [Getting dark matter in and out of the Sun](#page-2-0)

2 [Neutrinos from solar dark matter](#page-33-0)

3 [Introduction to the solar abundance problem](#page-43-0)

[Neutrinos from solar dark matter](#page-33-0) [Introduction to the solar abundance problem](#page-43-0)

Outline

[Neutrinos from solar dark matter](#page-33-0) [Introduction to the solar abundance problem](#page-43-0)

Capture

Imperial College
London

[Neutrinos from solar dark matter](#page-33-0) [Introduction to the solar abundance problem](#page-43-0)

Capture

Imperial College
London

[Neutrinos from solar dark matter](#page-33-0) [Introduction to the solar abundance problem](#page-43-0)

Capture

Imperial College
London 4 ロ } 4 6 } 4 \geq } 4 \geq } $2Q$ Þ

[Neutrinos from solar dark matter](#page-33-0) [Introduction to the solar abundance problem](#page-43-0)

Capture

C: capture rate *u*: incoming DM velocity in solar frame $f_{\odot}(u)$: DM velocity distribution $Ω(*w*)$: probability of DM scattering from $$ London $w(r) \equiv \sqrt{u^2 + v_{\text{esc}}(r)^2}$ $($ ロ) $($ $($ $)$ $)$ $($ $)$ Ω

[Neutrinos from solar dark matter](#page-33-0) [Introduction to the solar abundance problem](#page-43-0)

Evaporation

Kロト K伊 K

[Neutrinos from solar dark matter](#page-33-0) [Introduction to the solar abundance problem](#page-43-0)

Evaporation

Pat Scott – June 7 – DM in Stars, Paris **[Dark matter and the Sun – capture,](#page-0-0)** *ν***s & intro to solar abuns**

Imperial College
London

 $2Q$

→ 重き → 重き

Kロト K伊 K

[Neutrinos from solar dark matter](#page-33-0) [Introduction to the solar abundance problem](#page-43-0)

Evaporation

E: evaporation rate *v*: captured DM velocity inside Sun $f_W(v)$: DM velocity distribution inside Sun $\Omega(v)$: probability of DM scattering from $v \rightarrow above$ v_{esc} **Imperial College** London イロメ イ何 メイヨメ イヨメ Ω

[Neutrinos from solar dark matter](#page-33-0) [Introduction to the solar abundance problem](#page-43-0)

Annihilation

Kロト K伊 K

[Neutrinos from solar dark matter](#page-33-0) [Introduction to the solar abundance problem](#page-43-0)

Annihilation

[Neutrinos from solar dark matter](#page-33-0) [Introduction to the solar abundance problem](#page-43-0)

Annihilation

Pat Scott – June 7 – DM in Stars, Paris **[Dark matter and the Sun – capture,](#page-0-0)** ν **s & intro to solar abuns**

Dark matter population master equation

$$
\frac{dN(t)}{dt}=C(t)-2A(t)-E(t), \qquad (5)
$$

When

- $E(t) = 0$
- *C*(*t*) constant
- $A(t)$ = constant $\times N(t)^2$

then

$$
N(t) = C(t)t_{\text{eq}} \tanh\left(\frac{t}{t_{\text{eq}}}\right) \tag{6}
$$

4 ロ) (何) (日) (日)

Imperial College London

 $2Q$

with equilibration time $t_{\rm eq} = (2 A C/N^2).$

In practice, it's usually better to just solve for *N* numerically as the star evolves.

[Neutrinos from solar dark matter](#page-33-0) [Introduction to the solar abundance problem](#page-43-0)

Indirect detection

[Neutrinos from solar dark matter](#page-33-0) [Introduction to the solar abundance problem](#page-43-0)

Indirect detection

Pat Scott – June 7 – DM in Stars, Paris **[Dark matter and the Sun – capture,](#page-0-0)** *ν***s & intro to solar abuns**

[Neutrinos from solar dark matter](#page-33-0) [Introduction to the solar abundance problem](#page-43-0)

Indirect detection

[Neutrinos from solar dark matter](#page-33-0) [Introduction to the solar abundance problem](#page-43-0)

Indirect detection

[Neutrinos from solar dark matter](#page-33-0) [Introduction to the solar abundance problem](#page-43-0)

Heat conduction

[Neutrinos from solar dark matter](#page-33-0) [Introduction to the solar abundance problem](#page-43-0)

Heat conduction

Pat Scott – June 7 – DM in Stars, Paris **[Dark matter and the Sun – capture,](#page-0-0) vs & intro to solar abuns**

Local conductive energy transport with dark matter

Dark matter number density:

$$
n_{\chi}(r) = n_{\chi}(0) \left[\frac{T(r)}{T(0)} \right]^{3/2} \exp \left[- \int_0^r \mathrm{d}r' \, \frac{k_{\mathrm{B}} \alpha(r') \frac{\mathrm{d}T(r')}{\mathrm{d}r'} + m_{\chi} \frac{\mathrm{d}\phi(r')}{\mathrm{d}r'}}{k_{\mathrm{B}} T(r')} \right] \tag{8}
$$

Dark matter conductive luminosity:

$$
L_{\chi}(r) = 4\pi r^2 \zeta^{2n}(r) \kappa(r) n_{\chi}(r) l_{\chi}(r) \left[\frac{k_{\rm B} T(r)}{m_{\chi}}\right]^{1/2} k_{\rm B} \frac{\mathrm{d} T(r)}{\mathrm{d}r}, \tag{9}
$$

Corresponding energy injection rate per unit mass of stellar material:

$$
\epsilon_{\chi}(r) = \frac{1}{4\pi r^2 \rho(r)} \frac{\mathrm{d}L_{\chi}(r)}{\mathrm{d}r}.
$$
 (10)

φ(*r*): gravitational potential at height *r* in star *T*(*r*): temperature at height *r* ρ(*r*): stellar density at height *r* $\zeta(r)$: $v_0/v_\tau(r)$ or $q_0/[m_x v_\tau(r)]$ depending on cross-section **Imperial College** London $v_T(r)$: DM thermal velocity at height *r* イロト イ押 トイヨ トイヨト $2Q$

Local conductive energy transport with dark matter

Dark matter number density:

$$
n_{\chi}(r) = n_{\chi}(0) \left[\frac{T(r)}{T(0)} \right]^{3/2} \exp \left[- \int_0^r \mathrm{d}r' \, \frac{K_{\mathrm{B}} \alpha(r') \frac{\mathrm{d}T(r')}{\mathrm{d}r'} + m_{\chi} \frac{\mathrm{d}\phi(r')}{\mathrm{d}r'}}{K_{\mathrm{B}} T(r')} \right] \tag{8}
$$

Dark matter conductive luminosity:

$$
L_{\chi}(r) = 4\pi r^2 \zeta^{2n}(r) \kappa(r) n_{\chi}(r) l_{\chi}(r) \left[\frac{k_{\rm B} T(r)}{m_{\chi}} \right]^{1/2} k_{\rm B} \frac{\mathrm{d} T(r)}{\mathrm{d} r}, \tag{9}
$$

Corresponding energy injection rate per unit mass of stellar material:

$$
\epsilon_{\chi}(r) = \frac{1}{4\pi r^2 \rho(r)} \frac{\mathrm{d}L_{\chi}(r)}{\mathrm{d}r}.
$$
 (10)

φ(*r*): gravitational potential at height *r* in star *T*(*r*): temperature at height *r* ρ(*r*): stellar density at height *r* $\zeta(r)$: $v_0/v_\tau(r)$ or $q_0/[m_x v_\tau(r)]$ depending on cross-section **Imperial College** London $v_T(r)$: DM thermal velocity at height *r* イロト イ押 トイヨ トイヨト $2Q$

Mini-Summary: Observables to watch out for

DM-nucleon scattering allows DM collisions with nuclei in the Sun

Imperial College London

Mini-Summary: Observables to watch out for

DM-nucleon scattering allows DM collisions with nuclei in the Sun

 \rightarrow gravitational capture and settling the to solar core

Pat Scott – June 7 – DM in Stars, Paris **[Dark matter and the Sun – capture,](#page-0-0)** ν **s & intro to solar abuns**

Imperial College London

 Ω

→ 唐 > → 唐 >

Mini-Summary: Observables to watch out for

DM-nucleon scattering allows DM collisions with nuclei in the Sun

- \rightarrow gravitational capture and settling the to solar core
	- \rightarrow 1. observable: high-*E* neutrinos from annihilation

4 0 8

Imperial College London

 Ω

 $\mathbb{B} \rightarrow \mathbb{R} \oplus \mathbb{R}$

Mini-Summary: Observables to watch out for

DM-nucleon scattering allows DM collisions with nuclei in the Sun

- \rightarrow gravitational capture and settling the to solar core
	- \rightarrow 1. observable: high-*E* neutrinos from annihilation
	- \rightarrow 2. nuclear scattering inside the Sun

Mini-Summary: Observables to watch out for

DM-nucleon scattering allows DM collisions with nuclei in the Sun

- \rightarrow gravitational capture and settling the to solar core
	- \rightarrow 1. observable: high-*E* neutrinos from annihilation
	- \rightarrow 2. nuclear scattering inside the Sun
		- \rightarrow additional energy transport

Mini-Summary: Observables to watch out for

DM-nucleon scattering allows DM collisions with nuclei in the Sun

- \rightarrow gravitational capture and settling the to solar core
	- \rightarrow 1. observable: high-*E* neutrinos from annihilation
	- \rightarrow 2. nuclear scattering inside the Sun
		- \rightarrow additional energy transport
			- \rightarrow modified solar structure

DM-nucleon scattering allows DM collisions with nuclei in the Sun

- \rightarrow gravitational capture and settling the to solar core
	- \rightarrow 1. observable: high-*E* neutrinos from annihilation
	- \rightarrow 2. nuclear scattering inside the Sun
		- \rightarrow additional energy transport
			- \rightarrow modified solar structure
				- \rightarrow 1. observables: \rightarrow sound speed
					-
-

- (helioseismology) oscillation frequencies
	- convective zone depth

Imperial College Ω

– surface helium frac.

DM-nucleon scattering allows DM collisions with nuclei in the Sun

- \rightarrow gravitational capture and settling the to solar core
	- \rightarrow 1. observable: high-*E* neutrinos from annihilation
	- \rightarrow 2. nuclear scattering inside the Sun
		- \rightarrow additional energy transport
			- \rightarrow modified solar structure
				- \rightarrow 1. observables: \rightarrow sound speed
					-
					- (helioseismology) oscillation frequencies
- - convective zone depth

 $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$

Imperial College

 Ω

– surface helium frac.

 \rightarrow 2. different core temperature

DM-nucleon scattering allows DM collisions with nuclei in the Sun

- \rightarrow gravitational capture and settling the to solar core
	- \rightarrow 1. observable: high-*E* neutrinos from annihilation
	- \rightarrow 2. nuclear scattering inside the Sun
		- \rightarrow additional energy transport
			- \rightarrow modified solar structure
				- \rightarrow 1. observables: \rightarrow sound speed
					-
					-
					- (helioseismology) oscillation frequencies
						- convective zone depth

イロメ イ何 メイヨメ イヨメ

Imperial College Londor

 Ω

- surface helium frac.
- \rightarrow 2. different core temperature
	- \rightarrow observable: solar neutrino rates

DM-nucleon scattering allows DM collisions with nuclei in the Sun

- \rightarrow gravitational capture and settling the to solar core
	- \rightarrow 1. observable: high-*E* neutrinos from annihilation
	- \rightarrow 2. nuclear scattering inside the Sun
		- \rightarrow additional energy transport
			- \rightarrow modified solar structure
				- \rightarrow 1. observables: \rightarrow sound speed
					-
					-
					- (helioseismology) oscillation frequencies
						- convective zone depth

イロト イ押 トイヨ トイヨト

Imperial College London

 Ω

- surface helium frac.
- \rightarrow 2. different core temperature
	- \rightarrow observable: solar neutrino rates

WIMPS

 $\langle \sigma v \rangle \neq 0$ $\sigma_{\text{nuc}}\neq 0$

DM-nucleon scattering allows DM collisions with nuclei in the Sun

- \rightarrow gravitational capture and settling the to solar core
	- \rightarrow 1. observable: high- E neutrinos from annihilation
	- \rightarrow 2. nuclear scattering inside the Sun
		- \rightarrow additional energy transport
			- \rightarrow modified solar structure
				- \rightarrow 1. observables: \rightarrow sound speed
					-
					- (helioseismology) oscillation frequencies
- - convective zone depth

4 ロ) (何) (日) (日)

Imperial College London

 Ω

- surface helium frac.
- \rightarrow 2. different core temperature
	- \rightarrow observable: solar neutrino rates

ADM

 $\langle \sigma$ *v* \rangle ∼ 0 $\sigma_{\text{nuc}}\neq 0$

- 2 [Neutrinos from solar dark matter](#page-33-0)
-
- [Introduction to the solar abundance problem](#page-43-0)

The IceCube Neutrino Observatory

- 86 strings
- \bullet 1.5–2.5 km deep in Antarctic ice sheet
- $\bullet \sim$ 125 m spacing between strings
- ∼70 m in DeepCore $(10 \times$ higher optical detector density)
- 1 km³ instrumented volume (1 Gton)

- 4 周) 4 周

Pat Scott – June 7 – DM in Stars, Paris [Dark matter and the Sun – capture,](#page-0-0) νs & intro to solar abuns

lege

Neutrino telescope likelihoods: nulike

Unbinned ν telescope likelihood \implies full event-level angular and energy info

$$
\mathcal{L}_{unbin} \equiv \mathcal{L}_{num} (n_{tot} | \theta_{tot}) \prod_{i=1}^{n_{tot}} \left(f_S \mathcal{L}_{S,i} + f_{BG} \mathcal{L}_{BG,i} \right)
$$

Strategy: precompute partial likelihoods for each event, then reweight with the ν spectrum at Earth for each model

- **•** precompute step uses nusigma with CTEQ6-DIS PDFs to get charged current $\nu - n$ and $\nu - p$ cross-sections as function of *x* and *y*
- like step input: neutrino spectrum at Earth (from DarkSUSY or whatever else you want to use)
- like step output: num predicted events, likelihood
- $\bullet \rightarrow$ fully model-independent = future-proof for global fits

イロメ イ何 メイヨメ イヨメ

Imperial College London

 290

Neutrino telescope likelihoods: nulike

IceCube Collab. (contacts: PS + M. Danninger) arXiv:1601.00653, *JCAP* 2016 nulike: model-independent unbinned limit calculator for generic BSM models Publicly available at nulike.hepforge.org \triangleright \rightarrow \exists \rightarrow

Imperial College London $2Q$

Pat Scott – June 7 – DM in Stars, Paris **[Dark matter and the Sun – capture,](#page-0-0)** ν **s & intro to solar abuns**

Neutrino telescope likelihoods: nulike

IceCube Collab. (contacts: PS + M. Danninger) arXiv:1601.00653, *JCAP* 2016 nulike: model-independent unbinned limit calculator for generic BSM models Publicly available at nulike.hepforge.org \triangleright \rightarrow \exists \rightarrow 4 0 8

Imperial College London Ω

Pat Scott – June 7 – DM in Stars, Paris **[Dark matter and the Sun – capture,](#page-0-0)** ν **s & intro to solar abuns**

Neutrino telescope likelihoods: nulike

IceCube Collab. (contacts: PS + M. Danninger) arXiv:1601.00653, *JCAP* 2016 nulike: model-independent unbinned limit calculator for generic BSM models Publicly available at nulike.hepforge.org → 重

Imperial College London 290

Pat Scott – June 7 – DM in Stars, Paris [Dark matter and the Sun – capture,](#page-0-0) νs & intro to solar abuns

Neutrino telescope likelihoods: nulike

IceCube Collab. (contacts: PS + M. Danninger) arXiv:1601.00653, *JCAP* 2016 nulike: model-independent unbinned limit calculator for generic BSM models Publicly available at nulike.hepforge.org **←ロ ▶ ←何 ▶** - 4 周 8 3 8 周 8

Imperial College London 290

Pat Scott – June 7 – DM in Stars, Paris **[Dark matter and the Sun – capture,](#page-0-0)** ν **s & intro to solar abuns**

A word on how (not) to interpret indirect detection in BSM models

- Indirect limits always presented in terms of hard process final states
- Actual experiments do not measure those final states they detect one type of SM particle produced later: γs , νs , etc
- Limits as presented cannot be combined and applied to models with mixed final states $(= all non-toy models)$
- Proper treatment of indirect detection for BSM searches requires full phenomenological recast abilities \rightarrow full experimental *and* theoretical treatment at the same time

イロメ イ何 メイヨメ イヨメ

Imperial College

 Ω

GAMBIT: The Global And Modular BSM Inference Tool

gambit.hepforge.org

- Fast definition of new datasets and theoretical models
- Plug and play scanning, physics and likelihood packages
- \bullet Extensive model database $-$ not just SUSY
- $\bullet\,$ Extensive observable/data libraries

- F. Kahlhoefer, A. Krislock, A. Kvellestad, M. Pato. F. Mahmoudi, J. McKav, A. Raklev, R. Ruiz, P. Scott.
-
- R. Trotta, C. Weniger, M. White
- Many statistical and scanning options (Bayesian & frequentist)
- \bullet *Fast* LHC likelihood calculator
- Massively parallel
- Fully open-source

27 Members, 9 Experiments, 4 major theory codes, 10 countries

G $\frac{1}{2}$ $\frac{1}{2}$

Pat Scott – June 7 – DM in Stars, Paris **[Dark matter and the Sun – capture,](#page-0-0)** ν **s & intro to solar abuns**

 4 ロ } 4 6 } 4 \geq } 4 \geq }

Outline

[Neutrinos from solar dark matter](#page-33-0)

3 [Introduction to the solar abundance problem](#page-43-0)

Solar abundances

- Latest solar photospheric abundances (Asplund, Grevesse, Sauval & PS: AGS05, AGSS09) factor of ∼2 less than old ones (Grevesse & Sauval: GS98)
- Best atomic data, highly accurate observations, new 3D modelling, NLTE corrections, improved agreement with solar $neighborhood \implies$ highly reliable
- \bullet *Z* = 0.017 (GS98) \rightarrow *Z* = 0.013 (AGSS09)

Helioseismology

- Change *Z*
	- \rightarrow change temperature and density of interior
	- \rightarrow change frequencies of oscillations.
- Observe central frequency of a line Doppler shifting
	- \rightarrow reconstruct oscillation modes
	- \rightarrow compare to predictions from solar models

[C](#page-44-0)re[dit:](#page-46-0) [U](#page-44-0) [Bir](#page-45-0)[m](#page-46-0)[in](#page-32-0)[gh](#page-33-0)[a](#page-42-0)[m](#page-43-0) (□) (@) (□)

Sound speed

Pat Scott – June 7 – DM in Stars, Paris [Dark matter and the Sun – capture,](#page-0-0) νs & intro to solar abuns

 4 ロ } 4 6 } 4 \geq } 4 \geq }

Imperial College
London

ă

Depth of the convection zone and surface helium

- Derivative of temperature gradient changes abruptly at base of convection zone
	- \rightarrow gives characteristic oscillation frequency signature
- Surface helium has implications for initial *Y* and thus overall molecular weight required to match observed *L*

イロト イ押 トイヨ トイヨト

Imperial College London

Small frequency separations

- Considering frequency difference ratios cancels many modelling systematics
- Particular combinations of frequencies are especially sensitive probes of the core

$$
r_{02}(n) = \frac{\nu_{n,0} - \nu_{n-1,2}}{\nu_{n,1} - \nu_{n-1,1}}; \quad r_{13}(n) = \frac{\nu_{n,1} - \nu_{n-1,3}}{\nu_{n+1,0} - \nu_{n,0}},
$$
(11)

Pat Scott – June 7 – DM in Stars, Paris **[Dark matter and the Sun – capture,](#page-0-0)** ν **s & intro to solar abuns**

Solar neutrinos

p + e– + p ! 2H + ν^e

- AGSS09 abundances mess up inferred sound speed profile, helium abundance, depth of convection zone and small frequency separations
- Many solutions attempted in the last decade:
	- Accretion of low-metallicity gas
	- Bulk opacity modifications
	- Line broadening in opacities
	- Attempts to discredit 3D models

イロト イ押 トイヨ トイヨト

Imperial College London

- AGSS09 abundances mess up inferred sound speed profile, helium abundance, depth of convection zone and small frequency separations
- Many solutions attempted in the last decade:
	- Accretion of low-metallicity gas
	- Bulk opacity modifications
	- Line broadening in opacities
	- Attempts to discredit 3D models
- \bullet ... none successful \implies DM conduction?

イロト イ押 トイヨ トイヨト

Imperial College London

- AGSS09 abundances mess up inferred sound speed profile, helium abundance, depth of convection zone and small frequency separations
- Many solutions attempted in the last decade:
	- Accretion of low-metallicity gas
	- Bulk opacity modifications
	- Line broadening in opacities
	- Attempts to discredit 3D models
- \bullet ... none successful \implies DM conduction?
- Attempted in 2010 for constant σ by Frandsen & Sarkar, Cumberbatch et al. Taoso et al \rightarrow no solution

イロト イ押 トイヨ トイヨト

Imperial College London

- AGSS09 abundances mess up inferred sound speed profile, helium abundance, depth of convection zone and small frequency separations
- Many solutions attempted in the last decade:
	- Accretion of low-metallicity gas
	- Bulk opacity modifications
	- Line broadening in opacities
	- Attempts to discredit 3D models
- \bullet ... none successful \implies DM conduction?
- Attempted in 2010 for constant σ by Frandsen & Sarkar, Cumberbatch et al, Taoso et al \rightarrow no solution
- Better agreement with Sun and direct detection if $\sigma \varpropto q^{n}$ *V^m* (Vincent, PS, Serenelli, *PRL, JCAP*, 2015-16 \rightarrow Aaron)

Imperial College London

 $2Q$

K ロ ▶ K 伊 ▶ K ヨ ▶ K ヨ ▶

How not to solve the solar abundance problem

Recent papers claim solar wind prefers high abundances, and solves solar abundance problem

(Vagnozzi, Freese, Zurbuchen arXiv:1603.05960; von Steiger & Zurbuchen *ApJ* 2016)

Imperial College London

Recent papers claim solar wind prefers high abundances, and solves solar abundance problem

(Vagnozzi, Freese, Zurbuchen arXiv:1603.05960; von Steiger & Zurbuchen *ApJ* 2016)

Q1. Is the solar wind a good measure of solar composition?

Serenelli, PS, Villante, Vincent, et al, arXiv:1604.05318

Pat Scott – June 7 – DM in Stars, Paris **[Dark matter and the Sun – capture,](#page-0-0)** ν **s & intro to solar abuns**

Recent papers claim solar wind prefers high abundances, and solves solar abundance problem

(Vagnozzi, Freese, Zurbuchen arXiv:1603.05960; von Steiger & Zurbuchen *ApJ* 2016)

Q1. Is the solar wind a good measure of solar composition? Nope.

Serenelli, PS, Villante, Vincent, et al, arXiv:1604.05318

Pat Scott – June 7 – DM in Stars, Paris **[Dark matter and the Sun – capture,](#page-0-0)** ν **s & intro to solar abuns**

Q2. Do solar models with wind composition solve the solar abundance problem?

Imperial College London $2Q$

→ 重 → → 重 →

Q2. Do solar models with wind composition solve the solar abundance problem?

No – complete nonsense.

Imperial College London

 $2Q$

イロメ イ何 メイヨメ イヨメ

Conclusions

WIMPs and asymmetric DM expected to be gravitationally captured by the Sun

 $(1 + 4)$ $(1 + 4)$

Imperial College London

Conclusions

- WIMPs and asymmetric DM expected to be gravitationally captured by the Sun
- \bullet annihilation \sim generically produces high-energy neutrinos

イロト イ押 トイヨ トイヨト

Imperial College London

Conclusions

- WIMPs and asymmetric DM expected to be gravitationally captured by the Sun
- annihilation \sim generically produces high-energy neutrinos
- $\bullet \rightarrow$ strong limits on spin-dependent cross-section
	- \rightarrow also on particle physics models (cf. GAMBIT)

イロト イ押 トイヨ トイヨト

Imperial College London

Conclusions

- WIMPs and asymmetric DM expected to be gravitationally captured by the Sun
- annihilation \sim generically produces high-energy neutrinos
- $\bullet \rightarrow$ strong limits on spin-dependent cross-section
	- \rightarrow also on particle physics models (cf. GAMBIT)
- Potential impacts on energy transfer in the Sun

イロト イ押 トイヨ トイヨト

Imperial College London

Conclusions

- WIMPs and asymmetric DM expected to be gravitationally captured by the Sun
- annihilation \sim generically produces high-energy neutrinos
- $\bullet \rightarrow$ strong limits on spin-dependent cross-section
	- \rightarrow also on particle physics models (cf. GAMBIT)
- Potential impacts on energy transfer in the Sun
- Solar abundance problem (helioseismology) suggests the need for additional physics in the Sun

イロト イ押 トイヨ トイヨト

Imperial College London

Conclusions

- WIMPs and asymmetric DM expected to be gravitationally captured by the Sun
- annihilation \sim generically produces high-energy neutrinos
- $\bullet \rightarrow$ strong limits on spin-dependent cross-section
	- \rightarrow also on particle physics models (cf. GAMBIT)
- Potential impacts on energy transfer in the Sun
- Solar abundance problem (helioseismology) suggests the need for additional physics in the Sun
- $\bullet \rightarrow$ suggests/constrains the existence of certain ADM models (→Aaron)

イロト イ押 トイヨ トイヨト

Imperial College London