GAMMA CAMERA DEVELOPMENT: PRESENT STATUS

Workshop CLaRyS Nice, 14-15 January 2016

Mattia Fontana

Gamma cameras

COLLIMATED CAMERAS

- Simple detector and reconstruction
- Limited efficiency
- 1D information
- First to be tested

COMPTON CAMERAS

- Complex detector and reconstruction algorithm
- Increased efficiency, counting rate and spatial resolution
- 3D information (LM-MLEM)
- Longer development

Gamma cameras applications

ION RANGE MONITORING

- Wide gamma energy range to be handled
- Unknown primary energy
- Compton Cameras can provide 3D images and high detection efficiency
- Relevant background

NUCLEAR MEDICINE

- Fixed and well known gamma energy
- Low energy sources
- Collimated cameras employed
- Compton Cameras promising at higher gamma energies -> new radioisotopes

Development overview

1. Prototype status

- 2. Mechanical structure
- 3. Camera simulation and data reconstruction
- 4. Counting rate estimate
- 5. Next future plan
- 6. S2C2 Nice

- Hodoscope
- Scatterer
- Absorber
- Compton camera performance simulation and reconstruction tests for hadrontherapy monitoring
- Nuclear medicine application

Hodoscope

- Small hodoscope prototype already tested on beam
- Multi-anode PMs under tests
 - "Naked" PM response characterization
 - PM response with custom mask (for fiber connection)
- Electronics
 - final version of the ASIC under test
 - second DAQ card version in production
- Mechanical support ready

PM characterization

- 8 Hamamatsu H8500 multianode PMs, 64 channels
- Characterization of the PM response with LED source
- Test-bench with remotely controlled moving table for automatic measurements
- Single channel response analysis
- New tests ongoing for response characterization with optical fiber mask

To do list: Hodoscope

- PM complete characterization
- Single read-out channel characterization and calibration (scintillating fiber + optical fiber + PM channel)
- Connection check
- Final electronics integration and characterization
- Firmware development
- Complete detector test

Scatterer

- 7 Silicon planes available
- Leakage currents measured for each strip as a function of temperature with an automatic system
- Small DSSD prototype tested
 - Measurements of energy and spatial resolution
- Final ASIC version and DAQ card tests ongoing
- Characterization tests with radioactive sources under study
- Thermic box ready

Small prototype performance

- Time and energy resolution characterization
- First ASIC version
- ²²Na source: 511 and 1275 keV gamma
- ⁵⁷Co source: 122 keV gamma
- Time resolution with time walk correction on P and N strips (511 keV photon):
 - P 13.6 ns FWHM, worse for N (~30 ns)
- Energy resolution: ⁵⁷Co source, no cooling
 - Between 10 and 22 % FWHM
 - About 15 keV on average
 - 1 keV goal for the new prototype

Piste P	Énergie	Résoluti	ons en énergie (FWHM)
	[keV]	[keV]	[%]
0	122	20	16,4
2	122	13	10,6
3	122	14	11,5
4	122	14	11,5
6	122	16	13,1
7	122	26	21,3

14-15/1/16

Fontana

Mattia

10

Silicon detectors leakage current

- Manual measurements started in 2013
- Automatic test-bench optimization and new measurements in 2015
- 5 Silicon planes characterization
- Current measured on a single strip basis
- Measurements as a function of temperature with thermic cycles in a controlled box

To do list: Scatterer

- DAQ card ASIC coupled tests
- DAQ cards production
- Detector response test with radioactive source
- Read-out channel characterization
- Thermic box arrangement (cables, detector support rails)
- Cooling system test
- Complete detector test with cooling system

Absorber

- Contribution from LPC Clermont-Ferrand
- Blocks ready and connected with the PMs
- Blocks classified in terms of PM gains
- ASM cards ready
- VME "carte blonde" ready
- BGO blocks characterization ongoing
- Mechanical support designed: realization ongoing

BGO blocks measurements

- First characterization carried out in Lyon with the PET system original blocks
- Measurements at GANIL with a single BGO block with gamma from a C ion beam
- Time resolution 2-3 ns FWHM
- Energy resolution 21 % FWHM (@ 667 keV)

To do list: Absorber

- Complete block characterization in terms of time and energy
- Block characterization with collimated source
- Blocks arrangement in the mechanical support
- TDC implementation in the FPGA of the ASM cards
- Slow control realization for the ASM cards
- Firmware building for the μ-TCA
- Reconstruction algorithm improvement

Mechanical structure

- Mechanical structure needed to support the whole camera and modify its position depending on the treatment facility and on the treatment features
- Independent support for the hodoscope (slide 4)
- Support structure for the camera ready
 - 4 translation axes
 - 3D movement of the whole camera
 - Possible modification of the distance between absorber and scatterer
- LabView slow control software ready and tested (to be tested with the detector)

J. L. Ley

Simulation (i) Geometry

- PMMA homogeneous target, cylinder d = 15 cm, h = 20 cm
- Proton or carbon ion beam on y direction, centered in x = 0, z = 0
- Scatterer and Absorber reproduced, Hodoscope neglected
 - 7 silicon planes
 90x90x2 mm³, 1 cm
 distance in between –
 no strips
 - Single BGO absorber block
 380x380x30 mm³ –
 no block segmentation

Résolution (FWHM) à 1 MeV	Diffuseur Si	Absorbeur BGO	Hodoscope
spatiale [mm]	0,9	5	/
énergie [%]	2,3	17	/
temporelle [ns]	15	3	1

Simulation (ii) Beam

- 160 MeV protons, gauss distribution 10 mm FWHM, based on C230 IBA cyclotron
 - 9.42 ns (106 MHz) period for 2 ns bunch
 - 3.2 nA maximum intensity $(2 \times 10^{10} \text{ protons/s})$
 - 10⁸ protons simulated
- 305 MeV/n carbon ions, gauss distribution 3.5 mm FWHM, based on HIT Siemens synchrotron
 - 170 ns (5.9 MHz) period for 30 ns bunch (estimate for applied energy by interpolation on 200 MeV/n and 400 MeV/n measurements)
 - Maximum intensity 5 x10⁷ ions/s
 - 2×10^5 ions simulated

14-15/1/16

400 MeV/n C ion beam measured time structure

Simulation results (i) Camera performance

- TOF spectra analyzed 6 ns cut applied
- Falloff identification precision tested with reference simulated profile
- Absolute efficiency as a function of point-like source position (with respect to the camera center)

Simulation results (ii) Hadrontherapy monitoring

- Coincidence rate estimate for proton and carbon ions
- At clinical intensities, signal over background ratio unfavorable
- Reconstructed data promising for protons at reduced intensity (1 p/bunch)
- Further improvement with TOF information
- Possible application for proton beam at reduced intensity
- Not feasible for C ion beam

Reconstruction Hadrontherapy monitoring

- Data reconstruction tests for
 - 10⁸ 160 MeV protons
 - 1 ion/bunch
- Analytical reconstruction method: simple, fast, 1D information, low falloff identification accuracy
- Iterative algorithm LM-MLEM: complex, slow, 3D potential information, better falloff identification
- Tested with success for point-like and linear sources (0-10 MeV)
- Compared to analytical method for proton beam monitoring application

Nuclear medicine application (i)

- Mono-energetic gamma source 0.1x0.1x0.1 mm³ 511 keV – 3 MeV
- Angular distribution studied as a function of
 - Gamma energy
 - Electronic noise
 - Silicon and BGO spatial resolution
 - Camera geometry
- Better performance than a collimated camera for gamma energy > 300 keV
 - Better efficiency
 - Better spatial resolution
- Simulations with phantoms and with more than one camera still needed

L. Lev

Nuclear medicine application (ii)

J. L. Ley

- Mono-energetic gamma source 0.1x0.1x0.1 mm³ 511 keV – 3 MeV
- Angular distribution studied as a function of
 - Gamma energy
 - Electronic noise
 - Silicon and BGO spatial resolution
 - Camera geometry
- Better performance than a collimated camera for gamma energy > 300 keV
 - Better efficiency
 - Better spatial resolution
- Simulations with phantoms and with more than one camera still needed

Counting rate Compton Camera

 Counting rate estimation based on MC simulation as a function of the beam intensity

	Intensité	clinique	Intensité réduite		
	Protons	Ions carbone	Protons	Ions carbone	
Intensité [ions/s]	2×10^{10}	5×10^{7}	1×10^{8}	5×10^{8}	
Taux de coïncidences	9×10^{-4}	8×10^{-4}	9×10^{-4}	8×10^{-4}	
par ion incident					
Taux de coïncidences	$1,8 \times 10^{7}$	4×10^{4}	9×10^{4}	4×10^{3}	
[Hz]					
Taux de singles BGO	$7,8 \times 10^{7}$	$1,4 \times 10^{6}$	$3,9 \times 10^{5}$	$1,4 \times 10^{5}$	
96 blocs [Hz]					
Taux de singles BGO	$4,9 \times 10^{6}$	$8,7 \times 10^{4}$	$2,4 \times 10^{4}$	$8,7 \times 10^{3}$	
1 carte ASM [Hz]					
Taux de singles BGO	$8,1 \times 10^{5}$	$1,5 \times 10^{4}$	4×10^{3}	$1,5 \times 10^{3}$	
1 bloc [Hz]					

 Counting rate extracted from the small prototype tests at GANIL

Voie détecteur	Taux de comptage coups.ions carbone ⁻¹	Simulation coups.ions carbone ⁻¹
OU pistes N	$4,1 \times 10^{-6}$	·/
OU pistes P	$1,6 \times 10^{-6}$	1
OU silicium	$4,7 \times 10^{-6}$	$5,8 \times 10^{-6}$
Absorbeur	$8,5 \times 10^{-5}$	$7,6 \times 10^{-5}$
Coïncidences	$3,9 \times 10^{-9}$	$3,8 \times 10^{-10}$

Counting rate Collimated Camera

- Different camera geometries analyzed, with different:
 - Slit width
 - Slab width
 - Collimator thickness
 - Distance collimator-beam axis
 - Distance detector-beam-axis

Photons Neutron-related events						
B000 6000 4000 2000 -50 0 50 100 150 200 250 Longitudinal position (mm)	Congitudinal position (mm)					
$ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	(d) (d) (e) (d) (d) (e) (d) (e) (e) (e) (e) (e) (e) (e) (e) (e) (e					

Case	Precision fall-off	Precision entrance	Precision profile length	FOV	Slit	Slab	Thickness	Distance axis- collimator	Distance axis- detector
1	0.59(0.06)	0.66(0.09)	0.88(0.11)	23.6	5.4	2.6	180.2	303.7	485.3
2 3	0.70(0.08)	0.87(0.12)	1.12(0.14)	-same 13.1	as cas 3.0	2.1	190.9	322.3	516.5

Expected counting rate

- based on the camera geometry n. 3
 - ~1.25 x 10⁻⁶ hit/ion/block
- With the S2C2 beam time structure : ~ 16 ns period
 - \sim 1.56 x 10⁶ hit/s during extraction

S2C2 Nice

- S2C2 superconducting synchrocyclotron IBA
- Accelerator main parameters:
 - Extracted beam current : ~ 400 nA
 - Extraction time : ~ 20 μs
 - Repetition rate : 1 kHz
 - RF: 92-62 MHz

Next future plan

- Final tests on silicon detectors DAQ cards: start production foreseen for the beginning of March 2016
- BGO blocks characterization
- Hodoscope PMs complete characterization with optical fiber mask
- Possible beam time at GANIL in July : C ion beam
 - Absorber test? Collimated camera ready?

... towards clinical tests

Thanks for your attention