b-tagging and **Higgs Associated Production with Top Quarks** at ATLAS and CMS

Kirill Skovpen (IPHC Strasbourg)

Seminar at LLR, Palaiseau

February 1,2016

Outline

• b-tagging

- Algorithms
- Performance
- Upgrade studies

- Higgs associated production with top quarks
 - Single top associated production
 - Top quark pair associated production
 - Search for FCNH

- ★ b-quarks are present in top quark decays, Br(t→Wb) ≈100%
- *** Br(H→bb) = 57.7%** is the dominant Higgs decay mode

b-tagging

Introduction to b-tagging

- **b-jets** = jets that arise from the process of hadronization of b-quarks
- Many physics analyses (Top, Higgs, Exotics) rely on efficient identification of b-jets
- Use B-hadron properties to identify b-jets (b-tagging):
 - Relatively large mass [5-10 GeV]
 - Long lifetime [$c\tau \approx 450 \mu m$] E = 70 GeV gives $\beta \gamma c \tau \approx 5 mm$
 - Daughter particle multiplicity
 ≈ five charged tracks per decay
 - Possible presence of semileptonic decays b→µvX [Br ≈ 11%], b→c→µvX [Br ≈ 10%]
 - Tertiary vertex
 - (B-meson decay to a charmed hadron), $c\tau \approx 120-310 \ \mu m$

Challenges in Run 2

LHC beam collisions setup during Run 2 includes:

- ▶ Higher center-of-mass energy of I3TeV (was 8TeV)
- ▶ Higher instantaneous luminosity of 1.3×10³⁴ cm⁻² s⁻¹ (was 7×10³³)
- Smaller bunch spacing of 25 ns (was 50 ns)

ATLAS and CMS detectors are facing **new challenges**:

- ► Larger number of pileup interactions Not yet in 2015 but expected to be up to ≈ 40 by LS2 Affects track and vertex reconstruction, dynamic inefficiency, increased occupancy
- Increased trigger rates
- Higher probability of boosted objects imposes requirements on tracking performance

ATLAS Phase 0 upgrade for Run 2

- A new beam pipe and addition of Insertable-B-Layer (IBL) in the PIXEL detector
- Distance to the beam pipe reduced from 5 cm to 3.3 cm
- Finer granularity of IBL (50 μ m x 250 μ m) with respect to other PIXEL layers (50 μ m x 400 μ m)
- **Improved impact parameter resolution** very important impact on b-tagging performance - 4x more light-jet rejection

စ(d₀) [μm]

2015/2012

20

p_T [GeV]

800

700

600

500

400

300

200

100

-2.5

-2

-1.5

b-jet efficiency

InDetTrackingPerformanceApprovedPlots#Run 2

5678910

2

3

Data 2012, vs = 8 TeV

Data 2015, vs = 13 TeV

ATLAS-TDR-019, ATL-PHYS-PUB-2015-022

σ(q⁰) [μm]

2015/2012

400

350

300

250

200

150E

100

50

4×10⁻¹

ATLAS Preliminary

 $0.0 < \eta < 0.2$

-0.5

0

0.5

ATLAS Preliminary

 $0.4 < p_{\tau} < 0.5$ [GeV]

Data 2012. vs = 8 TeV

Data 2015, vs = 13 TeV

1.5

2

η

Algorithms

b-tagging algorithms

Algorithm	ATLAS	CMS		
Impact parameter based	IP2D, IP3D, TrackCounting, JetProb	IP2D, IP3D, TCHP, TCHE, JP		
Secondary vertex based	SV0, SV1, SV	SSVHP, SSVHE		
Decay chain multi- vertex	JetFitter	[Part of CSVv2]		
Soft lepton	SMT, p⊤Rel	Soft Muon Tagger, p⊤Rel		
Multivariate	JetFitterCombNN, MV1c, MV2c00, MV2c20	CSV, CSVv2		
Operating points either base b-tagging or mis-tagging ef	Its either based on is-tagging efficiencies: Not an exhaustive			
b-tag: 60%, 70%, 77%, 85% mis-tag: 0.1%, 1%, 10% (C	6 (ATLAS) list of taggers MS)	for Run 2 (more updates expected later in 2016)		

ATLAS multivariate b-tagging algorithm

- MV2 outperforms the previous version MVI
- Trained with different background composition:
 - MV2c00 (100% light jets)
 - ▶ **MV2c20** (80% light and 20% c-jets)
 - Combines variables from single basic algorithms using BDT:
 - Jet p_T and η
 - IP2D, IP3D
 - SV
 - Jet Fitter

CMS multivariate b-tagging algorithm

- **CSVv2** outperforms the previous version CSV
- Now uses the Inclusive Vertex Finder algorithm
- MLP-based discriminator combines track and vertex information:
 - Track 2D and 3D IP significances
 - Track multiplicity
 - Vertex mass
 - 2D flight distance significance
 - etc.

Training is done in three SV categories

- RecoVertex
- PseudoVertex (SV from tracks with large SIP)
- NoVertex (no SV)

Calibration

Calibration of b-tagging performance

Calibration of b-tagging efficiencies in data and MC is usually done in:

- QCD multijet events with b-jets containing muons
- ttbar events with inclusive jets

Sample	ATLAS	CMS
QCD	p⊤Rel, System8	p⊤Rel/IP3D, System8, Lifetime Tag (LT)
ttbar	Tag counting, Kinematic selection, Kinematic fit, Combinatorial likelihood	Flavour tag consistency, bSample, Flavour tag matching, LT, KIN

Eventually, a **combination** of the measured data/MC b-tag SFs from different methods is performed

b-tag calibration in QCD events

- Template fit methods based on pTRel and Jet Probability (JP) discriminant (LT)
 - **p_TRel** momentum of muon transverse to muon+jet axis
 - JP compatibility of a set of tracks from a jet to originate from a primary vertex:

$$P_{tr}(S) = sign(S) \int_{|S|}^{\infty} R(x) dx$$

Resolution function built
with negative IP tracks

 Fits are done before (or for jets failing btagging) and after b-tagging requirement to measure the efficiency

b-tag calibration in ttbar events

- Kinematic fit methods exploit kinematic variables from ttbar reconstruction
 - Allows continuous calibration of b-tag weight
 - ATLAS kinematic fit and CMS bSample methods use b-enriched region
 - CMS KIN method is based on template fit to MVA kinematics discriminator

Kırıll Skovpen - Seminar at LLR

Scale factors for b-tagging

b-jet trigger in Run 2

- LI is a hardware-based trigger [output rate ≈100 kHz]
- HLT (L2+EF for ATLAS) is a software-implemented trigger executed on a multi-processor farm [output rate ≈ I kHz]
 - Many analyses that rely on b-jet identification (VBF H(bb), Z(vv)H(bb), HH(4b), etc.) suffer from very high trigger rates due to QCD multi-jet production
- Implement b-tagging selection at trigger level to significantly reduce the rate
- b-jet triggers already extensively used during Run I with several important upgrades for Run 2

b-tagging sequence at HLT in CMS

- Regional reconstruction of pixel clusters compatible with L1 calo jets
- Fast Primary Vertex (FastPV) reconstruction using only pixel information [$\sigma_z \approx 2$ mm]
- Regional pixel track reconstruction
- **Primary vertex** from pixel tracks [$\sigma \approx 100 \, \mu$ m]
- Pixel+Strips full track reconstruction using iterative tracking [σ ≈ 20-30 µm]
- Apply CSVv2 **b-tagging** algorithm

Also: L1 stage-2 trigger added in 2016 (topological selection at L1)

b-tagging performance at HLT

CMS Simulation, 2014, √s=13 TeV, Preliminary

Kirill Skovpen - Seminar at LLR

Trigger updates in ATLAS for Run 2

LI Topological triggers (LI Topo)

- Hardware-based
- Real-time event selection based on kinematic properties of trigger objects
- Muon-jet association at LI

Fast TracKer (FTK) - Spring 2016

- Hardware-based in-between L1 and L2
- Use Pixel, SCT and IBL data
- Reconstruction of charged track candidates ($p_T > I \text{ GeV}$) with pattern recognition and primary vertex [$\sigma_z \approx 56 \mu m, \sigma \approx 20 \mu m$]
- Tracking information for the whole detector without HLT processing
- Track-jets, track-based isolation, etc. after LI

ATLAS-TDR-021

<u>FTKPublicResults</u>

New developments

Tagging of b- and anti-b jets

- b-quark hadronizes before its charge could be measured
- Previous method Q_J to tag the b-charge based on the sum of jet track charges weighted by p_T
- Useful to reduce combinatorial background

- The new method Jet Vertex Charge (JVC) MVA-based to add displaced vertices information to distinguish between b and anti-b jets
 - Several jet charge categories based on all associated, all selected, SV, TV and muon tracks

ATL-PHYS-PUB-2015-040

c-tagger

- A broad range of analyses benefit from c-jet identification (SUSY, FCNC, etc.)
- Discrimination of **charm** from light and b flavours is **challenging**:
 - Smaller decay vertex displacement for c-hadrons relative to b-hadrons, smaller impact parameters
 - b-hadrons can decay via c-hadrons
- ATLAS developed JetFitterCharm tagger
 - Improved version of JetFitterCombNN trained to select charm with an addition of:
 - Transverse displacement of secondary and tertiary vertices
 - Min and max track rapidity along jet axis
 - Calibration
 - **b-jets**: Combinatorial Likelihood in ttbar
 - **c-jets**: multijet D* mesons
 - **I-jets**: negative tag in QCD multijet

Future prospects

CMS Phase I Pixel upgrade

- The present pixel detector was designed for a luminosity of 10³⁴ cm⁻² s⁻¹ and pileup of 25 @25ns
- After LS2, luminosity to reach 2x10³⁴ and will result in the large data losses in ROCs
- The new beam pipe [R_{in} ≈ 22.5 mm] installed in LSI, full replacement of the pixel detector by the end of 2016
 - **Significant improvement in b-tagging** due to extra layers, finer granularity, decrease in the amount of material

<u>CMS-TDR-011</u> <u>CERN-LHCC-2011-006</u>

ATLAS Phase II Inner Tracker upgrade

- Several scoping scenarios are planned
- New all-silicon tracker (ITk) to replace ID

jet Inl

CMS Phase II Inner Tracker upgrade

Higgs associated production with top quarks

Motivation

- In the SM, a Higgs boson is expected to have a strong coupling to a top quark ($y_t \approx 1$)
- Production of Higgs in association with top quark pair provides a direct measurement of the top quark Yukawa coupling
- Associated production of Higgs with a single top quark allows to measure the sign of the top quark Yukawa coupling
- **Probe new physics** in the top quark-Higgs sector

Higgs production and decay

■ H→yy channel is clean *but* suffers from small Br $\approx 0.2\%$ LHCHXSWG

Search for ttH, $H \rightarrow bb$ with MEM at CMS

Eur. Phys. J. C 75 (2015) 251 CMS, 20 fb⁻¹, 8 TeV

Use MEM to suppress the combinatorial background

Search for ttH, $H \rightarrow bb$ with MEM at CMS

Eur. Phys. J. C 75 (2015) 251 CMS, 20 fb⁻¹, 8 TeV

SL = CMS DL = DL Combined = -4 Combine -4 Combine -4 Combine -4 Combine -4 Combine -4 Combin

Observed (expected) combined limit:

 $\mu < 4.2 (3.3)$

Search for ttH, $H \rightarrow all$ channels at CMS

<u>JHEP 1409 (2014) 087</u> CMS, 5+20 fb⁻¹, 7+8 TeV

ATLAS+CMS Run I combination for ttH

ATLAS-CONF-2015-044 ATLAS+CMS, 5+20 fb⁻¹, 7+8 TeV

Search for tHq

small contribution

- **Suppressed** in the SM by destructive interference: $y_t \cdot y_W < 0$!
- Single top+Higgs production is sensitive to both magnitude and sign of y_t
- BSM predictions can be tested by probing negative y_t still allowed from global fits (<u>arXiv:1303.6591</u>)
- For $y_t = -1$ there is a 15x increase in the cross section

Search for tHq, $H \rightarrow bb$ at CMS

CMS-PAS-HIG-14-015 CMS, 20 fb⁻¹, 8 TeV

Search for tHq at CMS (combination)

CMS-HIG-14-027 CMS, 20 fb⁻¹, 8 TeV

top FCNH

FCNC in tH events

$$\mathcal{L} = \sum_{q=u,c} \left[\sqrt{2} g_s \frac{\kappa_{gqt}}{\Lambda} \bar{t} \sigma^{\mu\nu} T_a (f_{Gq}^L P_L + f_{Gq}^R P_R) q G_{\mu\nu}^a \right] \\ + \frac{g}{\sqrt{2}c_W} \frac{\kappa_{zqt}}{\Lambda} \bar{t} \sigma^{\mu\nu} (f_{Zq}^L P_L + f_{Zq}^R P_R) q Z_{\mu\nu} \\ - e \frac{\kappa_{\gamma qt}}{\Lambda} \bar{t} \sigma^{\mu\nu} (f_{\gamma q}^L P_L + f_{\gamma q}^R P_R) q A_{\mu\nu} \\ + \frac{g}{\sqrt{2}} \bar{t} \kappa_{Hqt} (f_{Hq}^L P_L + f_{Hq}^R P_R) q H \right] + \text{h.c.}$$

FCNC = Flavour Changing Neutral Currents

- Forbidden in the SM by the GIM mechanism, only possible via loop-induced processes (highly suppressed)
- Observation of FCNC events would mean the new physics

but could be *highly enhanced in BSM* scenarios: SM: $Br(t \rightarrow qH) \approx 10^{-6}$ MSSM: $Br(t \rightarrow qH) \approx 10^{-2}$

Search for $t \rightarrow Hq$ in ttbar events at ATLAS

JHEP 12 (2015) 061 ATLAS, 20 fb⁻¹, 8 TeV

Kirill Skovpen - Seminar at LLR

Summary on FCNC limits

Conclusion

- Study of the *top+Higgs* sector is one of the *hot topics* at LHC
- A good performance of b-tagging is crucial for these analyses
- Presented overview of b-tagging activities and the latest top+Higgs results from ATLAS and CMS suggests *good prospects for Run II*
- A first observation of the ttH process is anticipated at 13 TeV (or, if lucky enough, a non-observation)
- Challenges and excitement ahead !

Backup slides

Commissioning of b-tagging variables

Kirill Skovpen - Seminar at LLR

Mis-tag rate measurement

- Mis-tag rate $(\epsilon_{\rm inc}^{\rm neg})$ efficiency to tag udsg as b-jets
- Due to finite resolution of the inner detector, displaced vertices from longlived particles and material interactions
- A negative tag method use jets with negative impact parameter tracks (or negative decay length significance)
- Correct for b/c-jet contamination and long-lived particles

$$\dot{\mathbf{k}}_{ll} = \epsilon_l / \epsilon_l^{neg} \qquad \dot{\mathbf{k}}_{hf} = \epsilon_l^{neg} / \epsilon_{inc}^{neg}$$
$$\epsilon_l = \epsilon_{inc}^{neg} k_{hf} k_{ll}$$

b-tag calibration in QCD events

- System 8 method is based on extracting btagging efficiency from a system of 8 nonlinear equations
- Equations constructed from different b-tag samples (n, p, pTrel) defined by the reference and complementary b-tag selections
- Numerical methods are used to find a solution

Unknowns

Correlation parameters

$$n^{p_{Trel}} = \varepsilon_b^{p_{Trel}} n_b + \varepsilon_{cl}^{p_{Trel}} n_{cl}$$
$$p^{p_{Trel}} = \beta_{23} \varepsilon_b^{p_{Trel}} p_b + \alpha_{23} \varepsilon_{cl}^{p_{Trel}} p_{cl}$$

$$n^{tag,p_{Trel}} = \beta_{13}\varepsilon_b^{tag}\varepsilon_b^{p_{Trel}}n_b + \alpha_{13}\varepsilon_{cl}^{tag}\varepsilon_{cl}^{p_{Trel}}n_{cl}$$
$$p^{tag,p_{Trel}} = \beta_{123}\varepsilon_b^{tag}\varepsilon_b^{p_{Trel}}p_b + \alpha_{123}\varepsilon_{cl}^{tag}\varepsilon_{cl}^{p_{Trel}}p_{cl}$$

b-tag calibration in ttbar events

- Combinatorial likelihood method exploits kinematic correlations between jets in event via unbinned maximum likelihood fit to data
 - PDFs binned in jet flavour, p_{T} and b-tag weight
 - Done separately for two and three jet cases

b-tag calibration in ttbar events

Tag counting method / Flavour tag consistency method is a likelihood fit for the expected number of n b-tagged jets:

 F_{ijk} - fraction of events with i b, j c and k l-jets before b-tagging

i, *j*, *k* - number of pre-tag jets *i*', *j*', *k*' - number of post-tag jets

$$\langle N_n \rangle = \sum_{i,j,k} \left\{ (\sigma_{t\bar{t}} \cdot \mathrm{BF} \cdot A_{t\bar{t}} \cdot \mathcal{L} \cdot F_{ijk}^{t\bar{t}} + N_{\mathrm{bkg}} \cdot F_{ijk}^{\mathrm{bkg}}) \times \right.$$

$$\left. \sum_{i'+j'+k'=n} \binom{i}{i'} \cdot \varepsilon_b^{i'} \cdot (1-\varepsilon_b)^{i-i'} \cdot \binom{j}{j'} \cdot \varepsilon_c^{j'} \cdot (1-\varepsilon_c)^{j-j'} \cdot \binom{k}{k'} \cdot \varepsilon_l^{k'} \cdot (1-\varepsilon_l)^{k-k'} \right\}$$

- Rate systematics cancel out as fractions of events are used
- But relies on flavour composition from MC
- Simplified tag counting method is limited to the case of Njets = 2
 - No fit, calculate b-tagging efficiency as:

$$\varepsilon_b = \sqrt{\frac{F_{2tag} - F_{non2b}^{truth}}{f_{2b}}}$$

Shape correction for b-tag discriminator

- **b-tag discriminator shape** is often used in signal extraction techniques in many analyses
- Efficiency correction is needed over the whole range of discriminator values
- ATLAS does b-tag continuous (directly from the Combinatorial Likelihood method) or pseudo-continuous calibration:

$$\mathrm{SF}_{i}^{\mathrm{cont}} = \frac{\mathrm{SF}_{i+1}\varepsilon_{i+1}^{\mathrm{MC}} - \mathrm{SF}_{i}\varepsilon_{i}^{\mathrm{MC}}}{\varepsilon_{i+1}^{\mathrm{MC}} - \varepsilon_{i}^{\mathrm{MC}}}$$

CMS uses b-tag re-weighting approach with correction factors measured with Tag&Probe method

▶ b-jet in ttbar dileptonic events

▶I-jet in Z+jets

Also a shape correction via interpolation between the measured SFs is used

b-jet trigger performance at CMS

2016/02/01

Kirill Skovpen - Seminar at LLR

b-jet trigger performance at ATLAS

Kirill Skovpen - Seminar at LLR

b-tagging in boosted topologies

- More boosted objects with the increase of total energy, increased sensitivity to high energy search regions (ttbar resonances, new heavy quark decays)
- b-quarks could be present in decays of boosted particles
- Decay products *clustered in a single fat (large-R) jet*
- Use jet substructure techniques to reconstruct sub-jets and apply b-tagging
 - Resolve b-jets from top quark and Higgs decays, gluon splitting
 - Different signatures define several methods:

Double-b-tagging

▶ Dedicated tagger to tag X→bb events

- Improve discrimination against $g \rightarrow bb$
- Trained on G*→hh→4b vs QCD

Top-tagging

2016/02/01

Kirill Skovpen - Seminar at LLR

LHC roadmap

LHC / HL-LHC Plan

http://hilumilhc.web.cern.ch

LHC roadmap

https://lhc-commissioning.web.cern.ch

Systematics in b-tag efficiency measurement

- Several uncertainties affect the measurement of b-tagging efficiency
 - ☑ Gluon splitting
 - ☑ b/c-quark fragmentation
 - ☑ Muon p⊤
 - ☑ Away-jet tagger
 - ☑ c/l ratio
 - ✓ Selection on p⊤Rel
 - Difference between inclusive and muon jets
 - Generator uncertainties (PDF, parton shower, ISR/FSR, underlying event, B decay, etc.)
 - 🗹 Pileup

Treatment of correlations in b-tagging uncertainties between ATLAS and CMS: <u>https://twiki.cern.ch/twiki/bin/view/LHCPhysics/BTaggingSystematics</u>

source	size at ATLAS	size at CMS
b/c prod.	low pT: 0.1% - 0.2%, high pT for b-prod.: 1.2% - 2.0%	low pT: 0.1% - 0.3%, high pT: 0.5% - 1.3%
mu pT	first pT bin: 2.5%, 0.2% - 0.9% elsewhere	low pT: 0.1% - 1.1%, high pT: 0.1 - 0.9%
c/l ratio	<0.1% - 0.2%	<0.1% - 0.2%
b-frag	0.2% - 2.7%	0.2% - 0.8%
PS	0.1% - 1.5%	0.3% - 0.6%
IFSR	0.3% - 1.4%	0.3% - 0.6%

Current FCNH limits and future

Direct search at the LHC

Process	Br Limit	Search	Data set	
$t \rightarrow qH$	$7.9 imes10^{-3}$	ATLAS $t \to t \to Wb + qH \to \ell\nu b + \gamma\gamma q$	$4.7,20 \text{ fb}^{-1} @ 7,8 \text{ TeV}$	red
$t \to c H$	$5.1 imes 10^{-3}$	ATLAS $t \to t \to Wb + qH \to \ell\nu b + \gamma\gamma q$	$4.7,20 \text{ fb}^{-1} @ 7,8 \text{ TeV}$	3511
$t \to c H$	$5.6 imes10^{-3}$	CMS $t\bar{t} \rightarrow Wb + qH \rightarrow \ell\nu b + \ell\ell qX$	$19.5 \text{ fb}^{-1} @ 8 \text{ TeV}$	
$t \rightarrow qH$	$5 imes 10^{-4}$	LHC $t\bar{t} \rightarrow Wb + qH \rightarrow \ell\nu b + \gamma\gamma q$	$300 {\rm ~fb^{-1}} @ 14 {\rm ~TeV}$	red
$t \rightarrow qH$	$2 imes 10^{-4}$	LHC $t\bar{t} \rightarrow Wb + qH \rightarrow \ell\nu b + \gamma\gamma q$	$3000 { m ~fb^{-1}} @ 14 { m ~TeV}$	iect
t ightarrow qH	$2 imes 10^{-3}$	LHC $t\bar{t} \rightarrow Wb + qH \rightarrow \ell\nu b + \ell\ell qX$	$300 { m ~fb^{-1}} @ 14 { m ~TeV}$	
$t \to q H$	$5 imes 10^{-4}$	LHC $t\bar{t} \rightarrow Wb + qH \rightarrow \ell\nu b + \ell\ell qX$	$3000 {\rm ~fb^{-1}} @ 14 {\rm ~TeV}$	

http://arxiv.org/pdf/1508.07579.pdf

Indirect searches

 $D^{0}-\overline{D}^{0}$ mixing: Br < (5.3-7.4) · 10⁻⁴

 $Z \rightarrow c\overline{c}$: Br < 2.1 · 10⁻³

neutron EDM: Br < **6.6** · **10**⁻⁷

Kirill Skovpen - Seminar at LLR

Search for tHq, $H \rightarrow$ photons at CMS

CMS-PAS-HIG-14-001 CMS, 20 fb⁻¹, 8 TeV

No events observed in

data after final selection

Background estimated from the sidebands

Observed limit (95% CL): $\sigma/\sigma[y_t=-1] < 4.1$

Search for tHq, $H \rightarrow$ leptons at CMS

Same-sign dilepton and trilepton signatures

overlap with ttH

Main hadronaud.		Total	$\mu\mu$ (ttH)	eμ (tŧH)	$3\ell(t\bar{t}H)$	
Main background:	Total		39	51	62	
Non-prompt leptons.	μμ (tHq)	66	19	0	0	
	eμ (tHq)	117	0	39	0	
ttW/Z	3ℓ(tHq)	42	0	0	14	

Search for ttH, $H \rightarrow all$ channels at CMS

H→**hadrons**

Background: **ttbar+jets**

Signature: **lepton**+jets, **dilepton**+jets

H**→photons**

Background: **ttbar+jets**, **photon misID**

Signature: (hadronic) diphoton+jets

(leptonic) diphoton+lepton+jets

H→**leptons**

Background: **fake leptons, ttW, ttZ** Signature: **2SS, 3, 4 leptons+jets**

Final discriminant: BDT

Search for ttH, $H \rightarrow all$ channels at CMS

<u>JHEP 1409 (2014) 087</u> CMS, 5+20 fb⁻¹, 7+8 TeV

Kirill Skovpen - Seminar at LLR

Search for $t \rightarrow Hq$ in ttbar events at CMS

Event signature: two photons, one b-jet, 3 jets (*hadronic* channel) or one isolated lepton, missing E_T and one b-jet and one additional jet (*leptonic* channel)

Main background: yy+jets, W+jets, ttbar

Non-resonant yy+jets background estimated from the fit to data

CMS-PAS-TOP-14-019

CMS, 20 fb⁻¹, 8 TeV

Search for ttH, $H \rightarrow$ leptons at ATLAS

Physics Letters B 749 (2015) 519-541 ATLAS, 20 fb⁻¹, 8 TeV

Kirill Skovpen - Seminar at LLR

Search for tHq, $H \rightarrow$ photons at ATLAS

Physics Letters B 740 (2015) 222-242 ATLAS, 5+20 fb⁻¹, 7+8 TeV

Analysis is done in the context of **ttH search**

To probe the new physics, measure the scale factor $\kappa_t = y_t / y_t^{SM}$

Look for *m(yy)* resonance

Matrix Element Method (MEM)

MEM feasibility pheno studies in Phys. Rev. Lett. 111 (2013) 091802

Search for FCNH

Interference with SM tHq production in higher orders (tH+jets FCNH)

Search for $t \rightarrow Hq$ in ttbar events at ATLAS

JHEP 1406 (2014) 008 ATLAS, 5+20 fb⁻¹, 7+8 TeV

Data

Signal, B = 5%

SHERPA γγj, norm. to data

m(top)

channel

in hadronic

400

Kirill Skovpen - Seminar at LLR

450 500

m_{iii} [GeV]

Search for $t \rightarrow Hq$ in ttbar events at CMS

CMS-PAS-TOP-13-017 CMS, 20 fb⁻¹, 8 TeV

H→WW/ZZ/ττ channel

Event signature: three or two same-sign leptons, one b-jet, missing E_T , ≥ 2 jets

Events / bin Fake and charge misID lepton CMS Charge MisID Main background: WZ+jets, ttbar+V Preliminary Non-prompt 10 backgrounds estimated from data WZ→3lv (tri-lepton), fake leptons, charge mis-ID Rare — t→ Hc (BR = 3%) (8 TeV) 220 Events / bin (same-sign dilepton) Data CMS AIC 200 6 BG uncertainty Preliminar Non-prompt 180 WZ→3lv 160 Rare CMS Preliminary 300 same-sign $t \rightarrow Hc (BR = 3\%)$ 140 2 Data di-lepton 120 250 BG uncertainty 100 0 ²⁰⁰ [GeV/c²] ^{II} 0 2 8 10 6 80 N_{jets} 60 tri-lepton 40 $\kappa_{qHt} < 0.18$ 20 0 100 2 4 6 0 8 10 $BR(t \rightarrow qH) < 0.93 \% (obs)$ $t \rightarrow Hc$ AIC=WW/ZZ/Z+jets N_{iets} Вε Data 50 50 100 150 200 250 300 50 100 150 200 250 300 50 100 150 200 250 300 0.89 % (exp) M_{II} [GeV/c²]

Search for $t \rightarrow Hq$ in ttbar events at CMS

Based on a combination of two analyses performed in multilepton (H \rightarrow WW/ZZ/ $\tau\tau$) and H \rightarrow yy channels

Multi-lepton analysis is done in the framework of the SUSY search for natural Higgsino, slepton, etc.

Several SUSY scenarios are probed, also possible to **set limits on FCNH** in this inclusive search:

Higgs boson decay mode		Upper limits on $\mathcal{B}(t \to cH)$			
		Obs.	Exp.	1σ range	
$\mathcal{B}(H \rightarrow WW^*) = 23$.1%	1.6 %	1.6%	(1.0–2.2)%	
$\mathcal{B}(\mathrm{H} \to \tau \tau) = 6.2$	2%	7.01%	5.0 %	(3.5–7.7)%	
$\mathcal{B}(H \to ZZ^*) = 2.9$	9%	5.3%	4.11%	(2.9–6.5)%	
Combined		1.3%	1.2%	(0.9–1.7)%	

MadGraph @LO is used for FCNH generation

Phys. Rev. D 90	CMS-PAS-
032006 (2014)	HIG-13-025
CMS, 20 fb ⁻¹ , 8 TeV	CMS, 20 fb ⁻¹ , 8 TeV

Di-photon analysis developed for the search for 2HDM H→H_{SM}H_{SM} and A→ZH_{SM}

Higgs Decay Mode	observed	expected	1σ range
$H \rightarrow WW^*$ ($\mathcal{B} = 23.1\%$)	1.58 %	1.57 %	(1.02–2.22) %
$H \rightarrow \tau \tau$ (B = 6.15%)	7.01 %	4.99 %	(3.53–7.74) %
$H \rightarrow ZZ^*$ (B = 2.89%)	5.31 %	4.11 %	(2.85-6.45) %
combined multileptons (WW*, $\tau\tau$, ZZ*)	1.28 %	1.17 %	(0.85–1.73) %
$H \rightarrow \gamma \gamma$ ($B = 0.23\%$)	0.69%	0.81 %	(0.60–1.17) %
combined multileptons + diphotons	0.56%	0.65 %	(0.46–0.94) %

Combination of results

