Doing physics with gravitational waves

Tests of General Relativity

Gravitational wave astrophysics

Testing General Relativity (GR)

Two neutron stars Period 2 hours Distance ~10⁶ km

PSR J0737-3039 most relativistic binary pulsar known today: orbital velocity v/c ~ 2 x 10⁻³

 $\frac{GW150914 \ and \ GW151226}{\text{large velocity, highly dynamical, strong field regime of gravity}} \\ v/c \sim 0.5$

Two black holes "Period" ~ 0.01 s "Distance" ~100 km

Testing GR: check waveform consistency

Check residuals after subtraction of best-fit waveform \rightarrow GR-violations in GW150914 < 4%

Testing GR: estimate bound on graviton mass

graviton mass $\neq 0 \rightarrow$ space-time is dispersive for gravitational waves

Testing GR: search for GR deviations

Binary system \rightarrow Newton case + post-newtonian corrections

Fit waveform letting free the post-newtonian correction factors

 \rightarrow No evidence for deviation from General Relativity in waveform

Astrophysical implications: intermediate mass black holes

Low metallicity environment

Astrophysical implications: formation of binary black holes

Isolated star binaries?

Probably aligned-spins

Dynamical capture in dense star clusters?

Probably not aligned-spins

GW discoveries → Binary black holes form in nature

not enough spin information to choose between both formation scenario yet

Astrophysical implications: rate of binary black hole mergers

BBH merge within the age of the Universe at detectable rate

Electromagnetic observations + population modelling: R ~ 0.1 to 300 Gpc⁻³.yr⁻¹

LIGO-Virgo rate upper limits in 2011 $R < 140 \text{ Gpc}^{-3}$.yr⁻¹ for GW150914 parameters

Counting signals in experiments \rightarrow very low statistics

Other searches, and more data to come

4 months of O1 data under analysis A lot of different searches on-going... Second observation run to start next Fall

Binary neutron stars Neutron star-black hole binaries Intermediate mass black holes

GW's from GRBs...

Generic transients Cosmic strings

Rotating non axisymmetric neutron stars

Stochastic GW background

A lot of gravitational fun in front of us!

The first direct detection of gravitational waves (GW)

14 Sept 2015, 9h50m45s UTC

Seen in 2 LIGO detectors with arrival time delay of 7 ms

Signal seen from 30 Hz: duration ~200 ms number of cycles ~10

Peak GW strain: 1×10^{-21} frequency 150 Hz ($\lambda \sim 2000$ km)

Signal-to-noise ratio: 24 False alarm rate: <1 in 200,000 years

GW150914

First observation of a binary black hole (ВН) merger

GW150914

Distance ~1.3x10⁹ light-years (z~0.1)

Initial black holes (total mass ~65 $\rm M_{\odot})$ ~36 $\rm M_{\odot}$ and 29 $\rm M_{\odot}$ peak speed of BH's: ~0.6 c

Remnant black hole mass ~62 M_☉ spin ~70% of maximum horizon ~ 180 km

Energy radiated into GW (in 200 ms): 3 M_{\odot}

observed by	LIGO L1, H1	duration from 30 Hz	~ 200 ms
source type	black hole (BH) binary	# cycles from 30 Hz	~10
date	14 Sept 2015	peak GW strain	1 x 10 ⁻²¹
time	09:50:45 UTC	peak displacement of	
likely distance	0.75 to 1.9 Gly 230 to 570 Mpc 0.054 to 0.136	interferometers arms frequency/wavelength at peak GW strain	150 Hz, 2000 km
	0.034 to 0.130	peak speed of BHs	~ 0.6 c
false alarm prob.	24 less than 1 in 5 million	peak GW luminosity	3.6 x 10 ⁵⁶ erg s ⁻¹ 2.5-3.5 M⊙
false alarm rate	1 in 200,000 yr	rudiated err energy	
Source Masses Mo		remnant ringdown freq. ~ 250 Hz	
total mass	65	remnant damping time ~ 4 ms	
chirpmass	28	remnant size, area	180 km, 3.5 x 10 ⁵ km ²
primary BH	32 to 41	consistent with	passes all tests
secondary BH	25 to 33	general relativity?	performed
remnant BH	62	graviton mass bound	< 1.2 x 10 ⁻²² eV
mass ratio	0.6 to 1	coalescence rate	2 to 400 Gpc ⁻³ yr ⁻¹
primary BH spin secondary BH spin	< 0.7 < 0.9	online trigger latency # offline analysis pipeli	~ 3 min nes 5
remnant BH spin	0.7	~ 50 million (=20,000 PCs run for 100 days	~ 50 million (=20,000
signal arrival time delav	arrived in L1 7 ms		PCs run for 100 days)
likely sky position	Southern Hemisphere	papers on Feb 11, 2016 13	
likely orientation resolved to	face-on/off ~600 sq. deg.	# researchers	~1000, 80 institutions in 15 countries

Detector noise introduces errors in measurement. Parameters with a range (e.g. distance) are 90% credible bounds; fractional error on parameters without a range is less than 10%. Acronyms: L1=LIGO

observed by	LIGO L1, H1	duration from 35 Hz	~1 s	
source type	black hole (BH) binary	# cycles from 35 Hz	~55	
date	26 Dec 2015	signal arrival time delay	arrived in H1 1 ms after L1	
time	03:38:53 UTC			
distance	250 to 620 Mpc	peak GW strain	~ 3.4 x 10 ⁻²²	
redshift	0.05 to 0.13	peak displacement of	~ ±0.7 am	
signal-to-noise ratio	13	interferometers arms		
false alarm prob.	~ 1 in 10 million	frequency/wavelength at peak GW strain	420 Hz, 710 km	
Source Masses Mo				
total mass	20 to 28	peak speed of BHs	~ 0.6 c	
primary BH	11 to 23	peak GW luminosity	2 to 4 x 10 ⁵⁶ erg s ⁻¹	
secondary BH	5 to 10	radiated GW energy	0.8-1.1 M⊙	
-0.94 -0.90	-0.86 (template)9 to 27 ^{0.48}	_{-0.4} remnant ringdown fre	q. ~ 750 Hz	
Numerical relation	tivity > 0.28	remnant damping time	e 0.00 ~ 1.3 .ms .	
spin of one of the	> 0.2	remnant size, area	60 km, 3.5 x 104 km²	
black holes remnant BH spin	0.7 to 0.8	online trigger latency	~ 67 s	
resolved to	~850 sq. deg.	# offline analysis pipelin	es 2	

Parameter ranges correspond to 90% credible bounds. Acronyms: L1/H1=LIGO Livingston/Hanford; Mpc=mega parsec=3.2 million lightyear, am=attometer= 10^{-18} m, $M \odot = 1$ solar mass= 2×10^{30} kg