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What is bistability?
* Existence of two stable states

Western Valley Eastern Valley

Bistable system Monostable system



Bistability in biology
* Alternative cell fates: differentiation

 All cells in the body are result of cell fate
decisions / instructions




Alternative cell fates
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— Alternative cell fates in fly eye: cells
with different rhodopsins detect
different wavelengths

— The Drosophila eye comprises
about 800 unit eyes,
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bistable transcriptional feedback
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— How do feedback loops generate
bistability?



Constitutive regulation

* (Absence of feedback loops)

» All cells behave uniformly = their fate is
determined (Deterministic behavior in
gene expression)

(when grown in homogenous environment)

« Graded expression

TA
]
\4
Constitutive
regulation

Becskei, Séraphin & Serrano: EMBO J (2001)



Becskei, Séraphin & Serrano: Positive feedback loop, EMBO J (2001)
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» Positive feedback loop: two cell
fates.

Counterintuitive: why not only a
single high state?

« Stochastic behavior

It is impossible to predict exactly
which of the cells will switch to the
high state

But it is possible to make predictions
on the distribution of the cells:

E.g. 45% of the cells will switch to the
ON (green) state
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Constitutive gene expression: Steady-state solution
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* Protein level can changed e.qg.
by injecting additional “S” into
the cell. After some time, the
“S” would decay to the original
steady-state.
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Positive-feedback with hyperbolic production-
rate
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« pO basal transcription
* p1 transcription induced by a
transcriptional activator

» f proportion of active transcriptional
factors (e.g. phosphorylated, bound by
an inducer)
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* Protein binding to DNA is described
with the same saturation equation as
protein-ligand binding.




Saturation in protein — ligand binding:
Hyperbolic function is a “linear function” for biologists

 Equilibrium binding of ligand
(L) to protein (P)
Free protein P; , complexed
protein P,
— K: equilibrium dissociation
constant
— L+ PP,

— f: fraction of protein binding sites
occupied by ligand
» Bound protein / total protein

K LPs
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£= P :P ) PfLK T K+L
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— Equation is analogous to the
Michaelis-Menten equation and
has a hyperbolic shape

— Rectangular hyperbola is
1<::iefined by asymptotes at K and
=1.
— 50% saturation when L =K
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A prototypical binding reaction: Oxygen transport and

hemoglobin

» Oxygen transport is more
efficient due to the switch-like
(nonlinear) behavior in the
oxygen binding of
hemoglobin.

» The cooperative action of
hemoglobin subunits leads to
a higher amount of oxygen
released when oxygen
pressure decreases.
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Cooperativity - Hill function

Each subunit in a n-subunit
protein binds to a ligand

nL+ P, P,
Concerted binding:

— We assume that some interaction
among the subunits forces all the
binding sites to be either
simultaneously occupied or
simultaneously empty.

— Protein with empty binding sites
I:)0

— Protein with all sites occupied P,

— The Hill function has a sigmoidal
shape when n > 1, a sign of
cooperativity.
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ds (£8) 2
— =Po +P1 - ¥S
dt K+ (£5)?

Nonlinear sigmoidal production

rate

— The TF binds to 2 sites in the
promoter

The steady-state equation is a

cubic expression with the

possibility of three real roots.

In this case, there are two stable
and one unstable fixed points.

The two stable fixed points
correspond to two expression
levels.

Parameters:
— =0.04, p0=0.01, p1=10, K=1

Reaction rate
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Logarithmic sensitivity (derivative) characterizes biological

nonlinearities

Logarithmic sensitivity (S)
o _oInf(s)
oIn S

If S > 1, the system is ultrasensitive

S for the Hill function
m Andinthe limit of low S

Sn
aln|‘<n—{—sn_8lnsn _ﬁln(Kn‘FSn)_ S nSn_l _E nSn_l B ~ Sn . Kn
oInS oInS olnS s" 1 1K"+S" KT g Ko
limn -n
s-»0 K"4§"

At low concentration the sensitivity is equal
to the Hill number



Robustness of bistable behavior
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« Larger the cooperativity (sigmoidal nonlinearity) the more robust the bistability

« Curve with small Hill number (n=1.5) has only one triple intersection while n=4 entails six triple
intersections.

. Numr?eé of subunit only defines the maximal attainable Hill number but this is usually not
reached.

+ Realistic Hill numbers: Hemoglobin with 4 subunits has n = 2.8. For few proteins n=3 to 4.

* Most of the protein complexes are display no or little cooperativity (present survey of data).

* Production rate curves span 3 orders of magnitude (0.01 to 10). Basal activity is usually set by
incomplete control.



Maximal bistable range of a parameter is related to Sensitivity

« Conditions of bifurcation (C):

C(w;a)=f(w.a)-w=0,

; de, , dC detJ .
C(2)(w’a):5f(CO,a)_1:0’ :—J 1 — _ kJ.
ol de, “ de, detJ
2 .
C(3)(a);06)=w:0-

» General result: the maximum of with respect to two reaction parameters
defines the extremum of the bistable range of a third parameter.
oS, oS!
© =0 and —==0.
oo, oa,

Maijer et al (2015) Physical Biology
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An example: feedback by two activators

........ Locus of cusp points
------ Fold bifurcation (F. b.)

« The broadest bistable range in beta F.b. with extremal cusp point
(basal transcription rate) is attained when oty Double maximum
the affinities of activator binding to DNA . - : Uy, kol
(kappa) are equal. Bl
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Experimental detection

— Dependence of the
steady-state behavior
on the initial condition

 cellular memory
Varying a system
parameter (e.g.
affinity) reveals if
hysteresis, a
hallmark of bistability,
exists.

of bistability
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Systematic variation of reactions

with sigmoidal dose-response Monomeric protein
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Robust bistability (cellular memory) by the joint effect of protein

dimerization and cooperativity

initial condition (I.C.)

Hysteresis experiments Positive feedback loops Low
Non-cooperative Cooperative
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Negative feedback loop weakens bistability
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Positive feedback extended
with negative feedback:
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Sigmoidal effect due to dimerization arises only at low
concentration

Quadratic
(nonlinear) relation
at low
concentrations

Linear relation at
high
concentrations

Promoter Response
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Reduction of protein synthesis (translation) by RNA stem-
loops

 We weakened the
stem structure by
shortening the stem
length and by
increasing the
proportion of A-T
base pairs.

 We obtained a
variety of stem-
loops that can tune
the translation rate
over two orders of
magnitude
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RNA
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RNA

Hsu et al (2016) Cell Reports



Bistability is a deterministic concept.

Initial condition

uniquely determines

which equilibrium state

Is reached

— Deterministic
description

BUT: Concentrations

fluctuate in cells

— Noise makes the
system switch from
one state to the other.
There is no true
equilibrium (in the
deterministic sense).

Transition rate

depends on

— Depth of potential well
(deterministic)

— Noise intensity
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There are stochastic transitions between the two states

« Hysteresis shrinks over time
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Where is noise coming from?

Cell count

Small number effect

000 0

2000 | — __ | G @ Q
- n=—
1000 ] H
% 200 400 600 Noise = Number of
molecules

Single cell fluorescence

« Poisson’s law of small numbers (1837): fluctuations are large
when few molecules are present in a cell (few events occur).

« mMRNAs are the least abundant molecular species:

— 75% of yeast mMRNAs have less than 1 copy / cell, particularly mRNAs of
transcriptional factors.

25



Noise (stochastic process) versus unknown
How to predict noise induced transitions?

How to identify the deterministic bistability
/ potential wells?

Open-loop function is the total response of all
the reaction steps in the loop, without the need
to resolve any of them individually.

« Biology is the kingdom of missing
parameters

— Even if they are available they
scatter broadly (especially, the
binding constants)

— Hidden reactions

Dimeric protein
0 <00
.O+ ﬁ’ f
M Stem loop

Cooperative promoter

Feedback

Feedback
l opening
Input

Open-loop
construct

=

Output

When input = output, then the feedback
has a steady-state



Monostable
feedback loop
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Prediction of transitions by ! rtTA PRE2
combining deterministic 2 ooy " Nosemoser |
stability and noise § o4l ® simpie (Poisson) |
Cooperative — dimeric circuit 0.2 0.04
e 0

0 4 8 1216 20 24

ol
N
A
(o2}
[o4]

MEASUREMENT ' > 012!
g 0.03f
Transition L >
Kinet 0.08;
an rate énneo:gz lj&—’ 0.02
E t 0.01} 0.04¢
> .
Stochastic model 0
0 4 E 0 45 90 @ 135 004 8 12 16 20 54
% Deterministic RNA (molecule/cell) RNA (molecule/cell)
— model
GZ) Monostable Bistable _ " S, (dox)= 1.1
Open-loop function & equivalence plane : <3
£ ”’ —— Open-to-closed
MEASUREMENT e SRR XX P \
- 102 ’:; \”’ \Q?':’" loop mapping
Open loop Z ‘ \‘ m’:’
= 10’ 4’ Q 74 \, )'
5 AN W7 G0Ta%
S 1o \‘"‘3’2“0‘0‘*“9“2‘33@‘3‘%
© e o



"BIOZENTRUM

Comparison of predicted and measured transition rates

» Measured (stronger than Poisson) noise explains faster
transitions

» Good agreement of measured and predicted noise

Prediction with model

Observed transition rate extended to fit

(feedback loop)
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Feedback (closed) loop
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