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Fig. 1. Low Reynolds number swimmers: (a) a sperm cell [13], the wave moving along the
flagellum defines a direction in time and allows motion at zero Reynolds number; (b) E. coli,
an example of a pusher, the far flow circulates outwards from the head and tail and inwards
to the sides; (c) Chlamydomonas, the ‘breast-stroke’ of the flagella leads to a contractile
(puller) far flow which circulates from the sides to the front and rear; (d) Euglena metaboly,
shape changes of the body result in propulsion; (e) Paramecium, the surface is covered by
beating cilia, these synchronise, and metachronal waves in the beating pattern move across
the surface of the organism; (f) a fabricated microswimmer, driven by a rotating magnetic
field [11].

bacteria and algae, and fabricated microswimmers, swim. For such tiny entities the
governing equations are the Stokes equations, the zero Reynolds number limit of the
Navier-Stokes equations. This implies the well-known Scallop Theorem, that swim-
ming strokes must be non-invariant under time reversal to allow a net motion, ideas
introduced in Sec. 2. Then, in Sec. 3, we define two model microswimmers and show
how to calculate their swimming speeds.

A concept that we stress in this review is that biological swimmers move au-
tonomously, free from any net external force or torque. As a result the leading order
term in the multipole (far field) expansion of the Stokes equations vanishes and mi-
croswimmers generically have dipolar far flow fields. Sec. 4 is a discussion of the
multipole expansion, and its application to microswimming, and we introduce the
stresslet and rotlet. Then, in Sec 5, we describe physical examples where the dipolar
nature of the bacterial flow field has significant consequences, velocity statistics in a
dilute bacterial suspension and tracer di↵usion in a swimmer suspension. A discussion
of open questions in Sec. 6 closes the paper. As this is a tutorial review we have aimed
to cite references which can be used as entries to the literature.
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of open questions in Sec. 6 closes the paper. As this is a tutorial review we have aimed
to cite references which can be used as entries to the literature.

II. METHODOLOGY
A. Immersed Boundary-Lattice Boltzmann Method.

The swimmer and cilia reside in a fluid domain. The fluid flow
is computed using the lattice Boltzmann method,7 which is an
efficient numerical solver for the Navier−Stokes equations. The
size of the fluid domain is Lx × Ly × Lz = 60 × 40 × 60 in lattice
Boltzmann units, with periodic boundary conditions in the x
and z directions and no-slip conditions applied on the
boundaries y = 0 and y = Ly. To match the scales of recently
fabricated synthetic cilia and well-studied swimming micro-
organisms, such as the alga Chlamydomonas reinhardtii, we set
the lattice Boltzmann grid spacing Δx = 2.5 μm and the time
step Δt = 1 μs. This yields a cilium length and swimmer length
of 25 μm and biologically relevant swimmer speeds on the
order of 102−103 μm/s (see below).
In our simulation, the upper and lower walls lie 100 μm

apart. We will focus on swimmer dynamics near the lower wall,
where the cilia are located. Although the wall separation is only
4 times the swimmer length, we anticipate that our conclusions
also apply in the case that the upper wall is further away or even
absent. Notably, bacterial cell scattering experiments have
suggested that a wall has negligible hydrodynamic effect until
the swimmer collides with it, aligning with the wall and
remaining in close proximity.14 Once our model swimmer
reaches the ciliated lower wall, the upper boundary is
sufficiently far away to be inconsequential.
The flow field generated by the cilia also potentially depends

on the wall separation. Performing simulations with the wall
separation doubled, however, we found that the flow profile
within the ciliary layer was qualitatively identical. The main
difference was a reduced shear rate in the fluid above the cilia
(see Figure S1). Since for our analysis we are primarily
interested in the dynamics of swimmers that reach the ciliary
layer, the location of the upper wall is not critical, provided that
it is at least a few body lengths away from the lower wall.
The LB method is coupled to the dynamics of solid objects

using the immersed boundary method as follows.10 An object in
the fluid is defined by a collection of mesh nodes. At each time
step, internal forces and torques acting on each node are
computed using a constitutive model relating the stresses to
strains within the object. These forces and torques are
transferred to the fluid in accordance with local force and
torque balance. The resulting flow field is then used to advect
the object nodes, thereby satisfying a no-slip condition on the
object. An additional feature not present in traditional IBMs is
that nodes have an associated orientation, which is updated
using the fluid vorticity field.15 This is required for the elastic
filament model of the cilia (see Supporting Information text).
Although this method of advecting immersed boundaries

helps to prevent interpenetration of bodies,15 we reinforce
excluded volume effects around objects by imposing a short-
ranged repulsive force between nodes of swimmers and those of
cilia. The form of this force corresponds to the repulsive part of
a Morse potential interaction

= − − −V r D( ) (1 e )a r rMorse ( ) 20 (1)

where the maximal interaction range is r0 = 1.5Δx. The precise
details of the repulsive interaction are not expected to
qualitatively influence the outcomes of the model.
B. Swimmer Model. The swimmer that we simulate herein

is based on a theoretical model proposed by Najafi and
Golestanian.16 The body consists of three linked spherical

beads arranged along a line. The lengths of the links between
neighboring beads oscillate as illustrated in Figure 1A. The

stroke is nonreciprocal, which is a well-known prerequisite for
generating a net displacement from a cyclic sequence of body
deformations in the zero-Reynolds-number limit.17 This model
swimmer was chosen because it is one of the simplest that
captures the fundamental characteristic of self-propulsion in a
viscous fluid and is, as for many biological swimmers, attracted
to a surface in the absence of the cilia. (However, the approach
described here is sufficiently general that we can introduce
other types of swimmers, such as a flagellated organism;18 this
will be the subject of future work.)
In our three-dimensional numerical model, each bead of the

swimmer is advected with the local flow velocity. Linear elastic
forces and torques are employed to maintain a swimmer
configuration that is close to rigid and collinear. Using one
immersed boundary node for each bead gives an effective
hydrodynamic radius R = Δx. We choose the link lengths to
oscillate between Lmin

link = 4Δx and Lmax
link = 6Δx so that the

average total swimmer length is Lswim = 10Δx = 25 μm. We
investigate swimmers with two different stroke periods, Tswim =
200Δt and 1000Δt. In both cases, we determined the net
displacement after one cycle to be about 1% of the swimmer
length. This is consistent with the analytical result for the
displacement, Δ, given by Earl et al.:19

ε εΔ = + ≈R L L L7
12

[( / ) ( / ) ] 0.009max
link 2

max
link 3 swim

where ε = (Lmax
link − Lmin

link).
Converting to physical units, the average speeds of the fast

and slow swimmers are vswim = 1250 and 250 μm/s,
respectively. By comparison, experiments have found swimming
speeds up to 240 μm/s for the 10 μm long C. reinhardtii,20

while bacteria and certain fish larvae are known to reach relative
speeds of 50 body lengths per second.21 Our simulated
swimmers are therefore representative of biological examples in
terms of speed. For a fluid with the viscosity of water, the
corresponding Reynolds numbers are Refast = 0.03 and Reslow =
0.006, indicating the dominance of viscous over inertial effects.

C. Cilium Model. Each cilium is modeled as an elastic rod
of length Lcil = 10Δx = 25 μm, discretized into N = 10
segments of equal lengths. The rod segments are characterized
by position and orientation vectors. Internal mechanics of the
rod are governed by linear elastic constitutive relations

Figure 1. Simulation setup and details of the individual components.
(A) A schematic of the swimming stroke cycle for the three-linked-
sphere swimmer. The darker sphere indicates the leading end of the
swimmer. One full cycle leads to a net displacement of about 1% of the
body length. (B) The simulation domain containing nine cilia and one
swimmer. (C) A superposition of configurations of a single cilium
showing the periodic stroke induced by the external driving force. This
stroke is animated in Movie S1.

Langmuir Article

dx.doi.org/10.1021/la402783x | Langmuir 2013, 29, 12770−1277612771

2 Will be inserted by the editor

Fig. 1. Low Reynolds number swimmers: (a) a sperm cell [13], the wave moving along the
flagellum defines a direction in time and allows motion at zero Reynolds number; (b) E. coli,
an example of a pusher, the far flow circulates outwards from the head and tail and inwards
to the sides; (c) Chlamydomonas, the ‘breast-stroke’ of the flagella leads to a contractile
(puller) far flow which circulates from the sides to the front and rear; (d) Euglena metaboly,
shape changes of the body result in propulsion; (e) Paramecium, the surface is covered by
beating cilia, these synchronise, and metachronal waves in the beating pattern move across
the surface of the organism; (f) a fabricated microswimmer, driven by a rotating magnetic
field [11].

bacteria and algae, and fabricated microswimmers, swim. For such tiny entities the
governing equations are the Stokes equations, the zero Reynolds number limit of the
Navier-Stokes equations. This implies the well-known Scallop Theorem, that swim-
ming strokes must be non-invariant under time reversal to allow a net motion, ideas
introduced in Sec. 2. Then, in Sec. 3, we define two model microswimmers and show
how to calculate their swimming speeds.

A concept that we stress in this review is that biological swimmers move au-
tonomously, free from any net external force or torque. As a result the leading order
term in the multipole (far field) expansion of the Stokes equations vanishes and mi-
croswimmers generically have dipolar far flow fields. Sec. 4 is a discussion of the
multipole expansion, and its application to microswimming, and we introduce the
stresslet and rotlet. Then, in Sec 5, we describe physical examples where the dipolar
nature of the bacterial flow field has significant consequences, velocity statistics in a
dilute bacterial suspension and tracer di↵usion in a swimmer suspension. A discussion
of open questions in Sec. 6 closes the paper. As this is a tutorial review we have aimed
to cite references which can be used as entries to the literature.

II. METHODOLOGY
A. Immersed Boundary-Lattice Boltzmann Method.

The swimmer and cilia reside in a fluid domain. The fluid flow
is computed using the lattice Boltzmann method,7 which is an
efficient numerical solver for the Navier−Stokes equations. The
size of the fluid domain is Lx × Ly × Lz = 60 × 40 × 60 in lattice
Boltzmann units, with periodic boundary conditions in the x
and z directions and no-slip conditions applied on the
boundaries y = 0 and y = Ly. To match the scales of recently
fabricated synthetic cilia and well-studied swimming micro-
organisms, such as the alga Chlamydomonas reinhardtii, we set
the lattice Boltzmann grid spacing Δx = 2.5 μm and the time
step Δt = 1 μs. This yields a cilium length and swimmer length
of 25 μm and biologically relevant swimmer speeds on the
order of 102−103 μm/s (see below).
In our simulation, the upper and lower walls lie 100 μm

apart. We will focus on swimmer dynamics near the lower wall,
where the cilia are located. Although the wall separation is only
4 times the swimmer length, we anticipate that our conclusions
also apply in the case that the upper wall is further away or even
absent. Notably, bacterial cell scattering experiments have
suggested that a wall has negligible hydrodynamic effect until
the swimmer collides with it, aligning with the wall and
remaining in close proximity.14 Once our model swimmer
reaches the ciliated lower wall, the upper boundary is
sufficiently far away to be inconsequential.
The flow field generated by the cilia also potentially depends

on the wall separation. Performing simulations with the wall
separation doubled, however, we found that the flow profile
within the ciliary layer was qualitatively identical. The main
difference was a reduced shear rate in the fluid above the cilia
(see Figure S1). Since for our analysis we are primarily
interested in the dynamics of swimmers that reach the ciliary
layer, the location of the upper wall is not critical, provided that
it is at least a few body lengths away from the lower wall.
The LB method is coupled to the dynamics of solid objects

using the immersed boundary method as follows.10 An object in
the fluid is defined by a collection of mesh nodes. At each time
step, internal forces and torques acting on each node are
computed using a constitutive model relating the stresses to
strains within the object. These forces and torques are
transferred to the fluid in accordance with local force and
torque balance. The resulting flow field is then used to advect
the object nodes, thereby satisfying a no-slip condition on the
object. An additional feature not present in traditional IBMs is
that nodes have an associated orientation, which is updated
using the fluid vorticity field.15 This is required for the elastic
filament model of the cilia (see Supporting Information text).
Although this method of advecting immersed boundaries

helps to prevent interpenetration of bodies,15 we reinforce
excluded volume effects around objects by imposing a short-
ranged repulsive force between nodes of swimmers and those of
cilia. The form of this force corresponds to the repulsive part of
a Morse potential interaction

= − − −V r D( ) (1 e )a r rMorse ( ) 20 (1)

where the maximal interaction range is r0 = 1.5Δx. The precise
details of the repulsive interaction are not expected to
qualitatively influence the outcomes of the model.
B. Swimmer Model. The swimmer that we simulate herein

is based on a theoretical model proposed by Najafi and
Golestanian.16 The body consists of three linked spherical

beads arranged along a line. The lengths of the links between
neighboring beads oscillate as illustrated in Figure 1A. The

stroke is nonreciprocal, which is a well-known prerequisite for
generating a net displacement from a cyclic sequence of body
deformations in the zero-Reynolds-number limit.17 This model
swimmer was chosen because it is one of the simplest that
captures the fundamental characteristic of self-propulsion in a
viscous fluid and is, as for many biological swimmers, attracted
to a surface in the absence of the cilia. (However, the approach
described here is sufficiently general that we can introduce
other types of swimmers, such as a flagellated organism;18 this
will be the subject of future work.)
In our three-dimensional numerical model, each bead of the

swimmer is advected with the local flow velocity. Linear elastic
forces and torques are employed to maintain a swimmer
configuration that is close to rigid and collinear. Using one
immersed boundary node for each bead gives an effective
hydrodynamic radius R = Δx. We choose the link lengths to
oscillate between Lmin

link = 4Δx and Lmax
link = 6Δx so that the

average total swimmer length is Lswim = 10Δx = 25 μm. We
investigate swimmers with two different stroke periods, Tswim =
200Δt and 1000Δt. In both cases, we determined the net
displacement after one cycle to be about 1% of the swimmer
length. This is consistent with the analytical result for the
displacement, Δ, given by Earl et al.:19

ε εΔ = + ≈R L L L7
12

[( / ) ( / ) ] 0.009max
link 2

max
link 3 swim

where ε = (Lmax
link − Lmin

link).
Converting to physical units, the average speeds of the fast

and slow swimmers are vswim = 1250 and 250 μm/s,
respectively. By comparison, experiments have found swimming
speeds up to 240 μm/s for the 10 μm long C. reinhardtii,20

while bacteria and certain fish larvae are known to reach relative
speeds of 50 body lengths per second.21 Our simulated
swimmers are therefore representative of biological examples in
terms of speed. For a fluid with the viscosity of water, the
corresponding Reynolds numbers are Refast = 0.03 and Reslow =
0.006, indicating the dominance of viscous over inertial effects.

C. Cilium Model. Each cilium is modeled as an elastic rod
of length Lcil = 10Δx = 25 μm, discretized into N = 10
segments of equal lengths. The rod segments are characterized
by position and orientation vectors. Internal mechanics of the
rod are governed by linear elastic constitutive relations

Figure 1. Simulation setup and details of the individual components.
(A) A schematic of the swimming stroke cycle for the three-linked-
sphere swimmer. The darker sphere indicates the leading end of the
swimmer. One full cycle leads to a net displacement of about 1% of the
body length. (B) The simulation domain containing nine cilia and one
swimmer. (C) A superposition of configurations of a single cilium
showing the periodic stroke induced by the external driving force. This
stroke is animated in Movie S1.

Langmuir Article

dx.doi.org/10.1021/la402783x | Langmuir 2013, 29, 12770−1277612771



Ac#ve	turbulence	

Dense suspension of  
microswimmers                   

 

 

−0.01 0.00 0.01      −0.01Vorticity field 



Ac#ve	turbulence	of	cells	



Nematics and their equations of motion 
 
Active flow 
 
Continuum equations for active nematics 
 
The physics of active turbulence 
 
Microtubulues and molecular motors 
 
 
Cell colonies: 
 
Cell division is a sources of activity 
 
Growing cellular colonies and active anchoring 
 
Cell extrusion at topological defects 
 
 



Liquid	crystals	

nema#c	symmetry	
	
nema#c	order	parameter	n	
tensor	order	parameter	Q	

n	

Qij = hninj �
�ij
3

i

v(r) =
f

8⇡µ
·
✓
I

r
+

rr

r3

◆

vi(r) =
fj
8⇡µ

✓
�ij
r

+

rirj
r3

◆
⌘ Gij(r)fj

Gij(r) =
1

8⇡µ

✓
�ij
r

+

rirj
r3

◆

vi(r) =

Z
Gij(r� ⇠)fj(⇠) d⇠

Gij(r� ⇠) =
1

8⇡µ

✓
�ij

| r� ⇠ | +
(r� ⇠)i(r� ⇠)j

| r� ⇠ |3

◆
.

vi(r) =

Z ⇢
Gij(r)�

@Gij

@⇠k
(r)⇠k +

1

2

@2Gij

@⇠k@⇠l
(r)⇠k⇠l . . .

�
fj(⇠) d⇠

= Gij(r)

Z
fj(⇠) d⇠ �

@Gij

@⇠k
(r)

Z
⇠kfj(⇠) d⇠

+

1

2

@2Gij

@⇠k@⇠l
(r)

Z
⇠k⇠lfj(⇠) d⇠ + . . .

⌘ Gij(r)Fj +
@Gij

@⇠k
(r)Djk +

1

2

@2Gij

@⇠k@⇠l
(r)Qjkl + . . .

1



Bend Splay 

2

m =
1

2π

∫

dS

dθ (1)

m = +
1

2
(2)

m = −
1

2
(3)

First we describe the equations of motion, those corresponding to an active nematic, that

we use to model the active suspension. These are the standard equations of liquid crystal

hydrodynamics, written in terms of a tensor order parameter Q, together with an active

term which means that any gradient in Q will produce a flow field. Evolution of Q along

with the momentum ρu is given by [25, 26],

(∂t + uk∂k)Qij − Sij = ΓHij, (4)

ρ(∂t + uk∂k)ui = ∂jΠij. (5)

Here the generalised advection term

Sij =(λEik + Ωik)(Qkj + δkj/3) + (Qik + δik/3)(λEkj − Ωkj)

− 2λ(Qij + δij/3)(Qkl∂kul)

Here, the strain rate tensor, Eij = (∂iuj + ∂jui)/2

and the vorticity tensor, Ωij = (∂jui − ∂iuj)/2

describe where λ is the alignment parameter. We choose λ = 0.7 corresponding to tumbling

rods [8]. Rotational diffusivity is denoted by Γ and the molecular field
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. Here K is the elastic constant, A,B and C are material constants. The total stress

generating the hydrodynamics has 3 parts;

1. the viscous stress, Πviscous
ij = 2µEij
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Defects move with fluid velocity

we can use the scaling argument given above to write

v ∼ ζℓvelQ/µ.

At steady state, the rate of creation and rate of destruction of a pair of defects are equal.

Hence

If defect velocity ∼ fluid velocity, α ζ
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giving ℓ ∼ 1/n2K. Therefore the relevant length scale characterising the velocity field

is indeed independent of the activity. Moreover the dependence of ℓ on n and K gives the

data collapse demonstrated in Fig. 4.
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to reproduce the observed velocity correlations and many features of the measured
defect dynamics. Friction is provided by momentum transfer to the surrounding
fluid (above and below the active layer) but up to now the role of the surrounding
fluid as a momentum sink has not been considered. However experiments are now
progressing in the group of Francesc Sagues, University of Barcelona to see how the
viscosity of the surrounding fluid layer will affect the active turbulence. Unpublished
reports from this group have shown that an increase in viscosity of the fluid on either
side of the active layer (ie an increase in friction) increases the defect density and
decreases the velocity, as in our Fig 2(d). [reinstate refs when we have agreed on
text]

• Another important example is the dynamics of cellular monolayers on a substrate,
which has been the subject of several experiments on tissue growth and wound
healing assays [2–4]. The active material is confined on a thin film but supported
on a substrate and thus experiences a frictional force. Another referee suggested
that we look at contractile nematics. Again we found a vortex lattice, where the
flow patterns are very similar to recent experiments on dividing endothelial cells on
a substrate (see Fig. 1).

• A third example is provided by microswimmers confined between parallel plates so
they swim in a plane, with friction due to the plates.

Therefore, 2D active nematics with friction are not just a theoretical curiosity, but rather
the usual experimental case, and we have made this more explicit in the manuscript now.

a                                b                                c                                d                                e

D.I
D.II

D.III

Experiment                              Simulation

f                                             g

Figure 1: Emergence of vortex-lattice for contractile, disk type particles with increasing

friction. a-e, Velocity field coloured by the magnitude of the vorticity. The hydrodynamic screening

length is Lsc = 11.5, 8.57, 6.82, 4.28, 2.09 for (a), (b), (c), (d) and (e), respectively. f,g, Comparison of

the vortex structure found in the experimental measurements of [2] on dividing endothelial cells and our

numerical simulations.

2

Flow field around dividing epithelial cells 
 
(Contractile + friction)   Lene Oddeschede 



time 

The	ac#ve	interface	

Interface instability is asymmetric 
 
+1/2 topological defects originate from the interface 
and move into the bulk 



force due to gradient in direction of order parameter 
force due to gradient in magnitude of order parameter  

we employ a continuum approach based on the hydrodynamic
equations of active nematics

(∂t +uk∂k)Qi j �Si j = GHi j, (1)

∂tr +∂i(rui) = 0, (2)

r(∂t +uk∂k)ui = ∂ jPi j, (3)

where Qi j = 2q(nin j �di j/2) is the two-dimensional nematic order
tensor with director n and magnitude q.

The nematic theory is a proper model to predict the flow fields pro-
duced by the cells even if their shape is spherical and the emergence
of nematic order has been shown in cultures of amoeboid cells? ? .
Here, the nematic order characterises the orientation of cytoskeletal
filaments of the cells which are driven by motor proteins. In ac-
cordance with continuum hypothesis, we assume that the smallest
length scale in our model is much larger than the cell dimensions.

I DON’T THINK THIS PART IS RIGHT YET – IT’S MAKING
LOTS OF DIFFERENT POINTS WHICH DON’T FIT TOGETHER:
1. YOU ONLY NEED DIPOLAR HYDRODYNAMICS FOR THESE
TO BE THE RIGHT EQUATIONS OF MOTION
2. BUT CAN GET NEMATIC ORDER OF CELLS
3. BY NEMATIC WE ARE TALKING ABOUT THE CYTOSKELETON
ORDERING, NOT THE CELL ORDERING, (BUT THEN WHY IS 2
RELEVANT)
WHY DOES THE LENGTH SCALE HAVE TO BE MUCH LARGER
THAN THE CELLS IF WE ARE MODELLING THE CYTOSKELE-
TON AS THE NEMATIC?

The total density r obeys the continuity equation (2) and the
velocity u is evolved according to the Navier�Stokes equations
(3). The co-rotational derivative

Si j =(lEik +wik)(Qk j +dk j/3)+(Qik +dik/3)(lEk j �wk j)

�2l (Qi j +di j/3)(Qkl∂kul), (4)

in eqn. (1) accounts for the rotation of the nematic due to veloc-
ity gradients characterised by the strain rate, Ei j = (∂iu j +∂ jui)/2,
and vorticity, wi j = (∂ jui �∂iu j)/2 of the flow. The alignment pa-
rameter, l , controls whether the director tumbles or aligns under
a shear flow. The rotational diffusivity of the director field is de-
noted by G. We assume an underlying equilibrium free energy
and the relaxation of the nematic order to the equilibrium is then
driven by the molecular potential

Hi j =�AQi j

⇣
q2c�

�
Qi jQ ji

�
/2
⌘
+K(∂ 2

k Qi j), (5)

where A and K are material constants. The former characterises
the coupling between the nematic order, Q, and the concentration
of cells, c, while the latter is Frank’s elastic coefficient assumed to
be the same for bend and splay deformations. OMIT? SEEMS A
BIT OUT OF PLACE AND I THINK IT WAS ONLY ME THAT LIKED IT
It is noteworthy that the fluid described by eqn (1)–(3) is viscoelas-
tic.

The stress term, Pi j, in eqn (3) includes contributions from the

viscous stress

Pviscous
i j = 2hEi j, (6)

with h the viscosity, elastic stresses

Pelastic
i j =�Pdi j +QikHk j �HikQk j �K∂iQkl∂ jQkl

+l
⇥
2(Qi j +

di j

3
)(QklHlk)�Hik(Qk j +

dk j

3
)

� (Qik +
dik

3
)Hk j

⇤
, (7)

with P the pressure, and the active stress due to cell motility

Pactive
i j =�z Qi j, (8)

with z the activity coefficient. The active forces are generated by
gradients of the nematic order and it can be shown that the flow
field is of dipolar form? . For contractile (extensile) cells the force
dipole compresses (extends) the cell along the orientation of its
director and the activity coefficient is positive (negative).

The concentration of cells evolves as

∂t c+∂i(uic) = k—2c+ac, (9)

where k is the thermal diffusivity of the cells and a represents the
proliferation rate due to the growth of cells. We will show that
any increase in concentration results in the generation of active
stresses, which drive the flow of cells.

Eqns. (1)–(3),(9) have proved successful in modeling the be-
haviour of active nematics such as dense suspensions of mi-
croswimmers and active suspensions of microtubules driven by
molecular motors. The new feature here is the source term, ac,
in eqn (9), modeling cell division. The equations are solved using
a hybrid lattice Boltzmann method? ? . Unless otherwise stated,
the parameters used in the simulations are GQ = 0.1, k = 0.1,
KQ = 0.05, a = 0.0001, l = 0.3, and µ = 2/3, in lattice units.
Simulations were performed in a two-dimensional domain of size
200⇥200 and discrete space and time steps were chosen as unity.

2.2 Experiments

OMIT OR MOVE TO SI – NEEDS A BIT OF MINOR RE-WORDING
WHICH I WILL DO IF IT’S STAYING IN

Madin-Darby canine kidney (MDCK WT) strain II cells were cul-
tured in low glucose DMEM medium (Invitrogen), with 100 µg/ml
penicillin, 100 µg/ml streptomycin (Invitrogen) and 10% FBS (In-
vitrogen). Experiments for cell division flow field measurement
(DFF) were done with cells incubated in Leibovitz’s L�15 (Invit-
rogen), with 100 µg/ml penicillin, 100 µg/ml streptomycin (In-
vitrogen) and 10% FBS (Invitrogen). 10 µM blebbistatin (Cay-
man Chemical Company) drug was added and left in the medium
throughout the experiment. Fingering experiment (FE) used cul-
ture medium without drug.

For DFF, MDCK cells were confined on a 500 µm diameter
square pattern by microcontact printing technique? . Fibronectin
(FN - 25 µg/ml Atto dye conjugated FN and 100 µg/ml pure FN,
Sigma and Roche) was incubated on polydimethylsiloxane PDMS
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Consequence of the active stress 
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ACTIVE NEMATICS 
 
Cell division is a source of activity 
 
Cellular colonies show active anchoring 
 
Cell extrusion occurs preferentially at topological defects 
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