

- Introduction to Big Data
- Data Management for Big Data
- Quick Overview of iRODS
- Use Cases
- Available Infrastructures

001010101011010101011111 Big Data

Big data usually includes data sets with sizes beyond the ability of commonly used software tools to capture, curate, manage, and process the data within a tolerable elapsed time.¹

¹C. Snijders, U. Matzat & U.-D. Reips: 'Big Data': Big gaps of knowledge in the field of Internet. International Journal of Internet Science 2012, 7, 1-5.

http://www.ibmbigdatahub.com/

One of Twitter's challenges is to keep statistics of Tweets and Tweeted URLs

- Several of them are retweeted by millions of followers
- At any time, a famous person can tweets a URL to millions of followers
- 143,199 Tweets per second record (3rd of August 2013)
- Top retweeted URLs is an important feature for many users

Key technologies

- 500 millions tweets per day stored with MySQL
- Storm and Hadoop are used to proceed with unstructured and large dataset
- Cassandra is used for high velocity writes
- Vertica is used for analytics

https://blog.twitter.com/engineering

The CERN is operating the Large Hadron Collider (LHC) in Geneva, Switzerland. This accelerator produced a huge amount of data

- Over 100-megapixel camera
- 40 million frames every second => 1000 TB/s
- Equipped with 4 detectors
- 27-kilometer circular collider
- 25 PB of data per year (~3.14 x the height of Everest if all data were stored on CDs)

Key technologies

- Grid Computing
- DPM and dCache storage technologies
- SRM, RFIO and XRootD protocols

http://wlcg.web.cern.ch/

Stratton (2009) Nature

Illumina HiSeq2500

- Up to 120GB per day → 44 TB per year
- Quick access for genome alignment
- Backup
- Typically sold with servers that can store data made in a year

Microscope

- FEI Tecnai F30
- 16 million pixel camera
- 16-bit color depth
- Up to 40 frames per second
- ~ 1 Gb/s \rightarrow O(10) TB per day

IT Requirements

- High-speed network (10Gb/s)
- High capacity and high performance storage system (hybrid solution)
- Backup (disk, tape)

Different scientific fields environment

- Humanities and Social Sciences
- High Energy Physics
- Biology
- Biomedical Applications
- Astrophysics
- ___

Various constraints, various needs for data management

001010101010101010101010 Contents

- Introduction to Big Data
- Data Management for Big Data
- Quick Overview of iRODS
- Use Cases
- Available Infrastructures

Big Data Software Landscape

http://www.bigdatalandscape.com/

0010101010101010101011110 Hardware

- Data stored on sites in different locations
- Heterogeneous storage:
 - Data format: flat files, databases, data stream,...
 - Storage media, server hardware
 - Data access protocols, information systems
- Heterogeneous OS on both clients and servers side

001010101010101010101010 Contents

- Introduction to Big Data
- Data Management for Big Data
- Quick Overview of iRODS
- Use Cases
- Available Infrastructures

0010101010110101010111100 iRODS?

iRODS (iRule Oriented Data Systems) is a data grid software system providing a transparent access to data spread over different physical locations and heterogeneous storage technologies:

- Project has been started in 2006 by the DICE team (UNC, San Diego)
- Open Source
- Financed by NSF and NARA

http://www.irods.org/index.php

Virtualised storage servers in a *Zone* (administrative domain)

- One or several servers connected to a centralised Metacatalogue → logical view of the data in a given zone
- Data servers can be spread geographically within one zone
- Possibility to have different zones interconnected

Data management policies expressed with rules

- Can be triggered automatically for various actions (put, get, ...)
- Can be run manually
- Can be run in batch mode

Client interactions with iRODS

- APIs (C, Java, PHP, Python), shell commands,
- GUIs, web interfaces

Further informations:

→ http://storageconference.org/2013/Presentations/Moore.pdf

Objectives

- Ensure the long-term sustainability of iRODS
- Provide a fully tested software by using complementary process of testing, packaging, and expertise
- Provide source and binary packages
- Release iRODS as an Open Source software
- Offer training and consultancy service
- Operated by RENCI http://www.renci.org/

For more informations

→ http://irods.org/support/services/

- Introduction to Big Data
- Data Management for Big Data
- Quick Overview of iRODS
- Use Cases
- Available Infrastructures

- iRODS is a key service
- In production since 2008
- User support provided by several experts
- Used by several projects (Adonis, BaBar, biology, biomedical apps, ...)
- 8.5 PB in 2014 managed with iRODS
- Connected to tape library through HPSS driver
- Replication with Paris, Grenoble and Montpellier (CINES)
- Customised with several rules

http://irods.org/wp-content/uploads/2014/06/CC-IN2P3_iRODS-Boston-user-meeting-2014.pdf

Rule Examples: Biomedical Data

- Human and animal data (fMRI, PET, MEG, ...)
- Usually in DICOM format
- Need to anonymised human data
- Need to do metadata search on DICOM files

Rule Engine

- Check for anonymisation of the file: send a warning if not true
- Extract a subset of metadata (based on a list stored in iRODS) from DICOM files
- Add these metadata as user defined metadata in iRODS

Genomic Data Management at WTSI

WTSI Use Case¹

- Managing and accessing sequencing Binary Alignment/Map (BAM) files
- 500 TB SAN Storage
- Metadata on alignement are automatically added
- Data federation with other research institutes
- Integrated in the sequencing pipeline
- Fine-grained access control
- Data replication

¹G.-T. Chiang, P. Clapham, G. Qi, K. Sale & G. Coates: Implementing a genomics data management system using iRODS in the Wellcome Trust Sanger Institute. BMC Bioinformatics 2011, 12, 361.

Objectives

- Provide trustworthy and easy to use services that help students and alumni to sustain, extend, and use the information resources that compose their knowledge base over a lifetime
- Solution independent from device (laptop, desktop, mobile phones, ...)
- Serve as a link to alums who stay in touch and participate in campus activities
- Integrate a 120 PB infrastructure based on cloud services

Achievements

- Development of the iDrop (iRODS GUI)
- Infrastructure is made available through a web portail
- Distributed mass storage arrays is integrated using the iRODS middleware

For more informations

```
→ http://lifetime-library.ils.unc.edu
```

- Astrophysics: Auger supernova search
- Atmospheric science: NASA Langley Atmospheric Sciences Center
- Biology: Phylogenetics at CC IN2P3
- Climate: NOAA National Climatic Data Center
- Cognitive Science: Temporal Dynamics of Learning Center
- Computer Science: GENI experimental network
- Cosmic Ray: AMS experiment on the International Space Station
- Dark Matter Physics: Edelweiss II
- Digital Library French National Library, Texas Digital Libraries
- Earth Science: NASA Center for Climate Simulations, Vhub vulcanism
- Ecology: CEED Caveat Emptor Ecological Data
- Engineering: CIBER-U
- High Energy Physics: BaBar
- Hydrology: Institute for the Environment, UNC-CH; Hydroshare
- Genomics: Broad Institute, Wellcome Trust Sanger Institute, NGS
- Indexing: Cheshire
- Institutional repository: Carolina Digital Repository
- Medicine: Sick Kids Hospital
- Neuroscience: International Neuroinformatics Coordinating Facility
- Neutrino Physics: T2K and dChooz neutrino experiments
- Oceanography: Ocean Observatories Initiative
- Optical Astronomy: National Optical Astronomy Observatory
- Particle Physics: Indra
 iRODS: a Solution to Face Big Data Challenges
 Plant genetics: the iPlant Collaborative

001010101010101010101010 Contents

- Introduction to Big Data
- Data Management for Big Data
- Quick Overview of iRODS
- Use Cases
- Available Infrastructures

French iRODS Distributed Infrastructure

Goals

- Analysis of large data volumes
- High availability by data distribution or replication over several locations
- Physical organisation of data transparent to users
- Automatic data annotation
- Data findable by metadata search
- Fine-grained access control
- Data available from desktop, grids and cloud
- Continuous user support including tutorials, personalised advice and case studies of the user specific applications

Further informations

→ http://www.france-grilles.fr/Pour-les-chercheurs-ouingenieurs#iRODS

French iRODS Distributed Infrastructure

Collaboration

- National instance coordinated by the French NGI "France Grilles"
- Administrated collectively by three partners
- Centralised iRODS rule engine and catalogue to enforce coherent and homogeneous data management
- Resources distributed in different locations for high data availability

→ More informations in the next talk!

Resources

- DevOps and network engineers
- 20 TB data storage with redundancy (managed with iRODS)
- 10 Gb/s network
- Authentication by username/password or certificate login

Contact

- E-Mail: jerome.pansanel@iphc.cnrs.fr
- Mobile: +33 (0)6 25 19 24 43
- Institut Pluridisciplinaire Hubert Curien 23, rue du Loess 67000 STRASBOURG

- 7 partenaires : MCIA, CBiB, IB, IMB, INRA, ISM, UPPA (8 administrateurs)
- 1+ Po répartis sur 7 sites (Bordeaux + Pau)
- 300+ utilisateurs
- Projet débuté en 2013, mis en service en octobre 2015

https://redmine.mcia.univ-bordeaux.fr/projects/irods/wiki/IRODS

- DICE team
- Jean-Yves Nief (CC-IN2P3, Lyon)
- Yonnis Cardenas (CC-IN2P3, Lyon)
- Catherine Biscarat (LPSC, Grenoble)
- Pierre Gay (MCIA, Bordeaux)
- Geneviève Romier (Institut des Grilles et du Cloud, Lyon)

0010101010101010101010 The End

Questions?