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The Universe’s history
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Accelerated expansion | light and matter are coupled separate Atoms start feeling The first stars and
of the Universe Dark matter evolves - Protons and electrons  the gravity of the galaxies form in the

independently: it starts form atoms cosmic web of dark densest knots of the

clumping and forming  Light starts travelling ~ Matter cosmic web

a web of structures freely: it will become the

Cosmic Microwave
Background (CMB)

ﬁﬂ? | Inflation generates the primordial perturbations
) (scalar & tensor)

* Tiny fluctuations:
the seeds of future
structures
» Gravitational waves?

The Hot Big-bang inflationary model
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The Universe’s history

103 seconds 1 second 100 seconds 380 000 years 300-500 million years Billions of years 13.8 billion years

Inflation Formation of Light and matter Light and matter | Dark ages First stars Galaxy evolution The present Universe
Accelerated expansion  light and matter are coupled separate Atoms start feeling The first stars and
of the Universe Dark matter evolves * Protons and electrons § the gravity of the galaxies form in the
independently: it starts form atoms cosmic web of dark densest knots of the
clumping and forming - Light starts travelling § matter cosmic web
a web of structures freely: it will become the]
Cosmic Microwave
Background (CMB)

The Epoch of Reionization (EoR) describes the period
during which the cosmic gas went from neutral to ionized
because of the first emitting sources.

Non-standard energy injections (e.g. Dark Matter
annihilation) can also contribute
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The concordance ACDM model

100 seconds 380 000 years 300-500 million years Billions of years 13.8 billion years

Quasar, 21-cm, Lyman«

Galaxy clusters
Supernovae

—

what is inflation?

what is the nature of dark matter?
what is the nature of dark energy?

how did the structure form?
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103 seconds 1 second 100 seconds 380 000 years 300-500 million years Billions of years 13.8 billion years

Inflation Formation of Light and matter Light and matter  Dark ages First stars Galaxy evolution The present Universe
Accelerated expansion | light and matter are coupled separate Atoms start feeling The first stars and
of the Universe Dark matter evolves - Protons and electrons  the gravity of the galaxies form in the

independently: it starts form atoms cosmic web of dark densest knots of the

clumping and forming . Light starts travelling ~ Matter cosmic web

a web of structures freely: it will become the

Cosmic Microwave
Background (CMB)

The CMB polarization as a powerful probe of:

e Inflation
e The epoch of reionization/structure formation
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€ The Planck 2015 release
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The CMB anisotropies

Temperature
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The CMB polarization

Polarization

CMB polarization signal: orders of magnitude weaker than temperature

B-modes

e M tic t larization field.
e Electric type polarization field, agnetic type polarization 1ie

* Can be generated only by
primordial tensor modes i.e.
primordial gravitational waves

* Generated by scalar density
perturbations.

e Contribution from lensing

",

‘4l planck

w
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Generation of the CMB polarization

A Schematic Outline of the Cosmic History

Time since the

Big Bang (years) < The Big Bang

The Universe filled
with ionized gas

~ 300 thousand < The Universe becomes
neufral and opaque

The Dark Ages start

Galaxwes and Quasars
beqgin to form
~ 500 million The Reionization starts

The Cosgfic Renaissance
The Dafk Ages end

~ 1 billion ’ <+-Reionization complete,
: the Universe becomes
transparent again

Galaxies evolve

The Solar System forms

~ 13 billion Today: Astronomers

figure it all out!

G. Djorgovski et al. & Digital Media Center, Caltech
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Light from first stars and Light can interact
galaxies breaks atoms again with electrons
apart and “reionises” 3 Polarisation

the Universe

Thomson scattering
optical depth:

Z_reio
T = f an.odn
0

Enhancement of the E&B

modes at large angular scales:
REIONIZATION BUMP
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The CMB E & B angular power spectra
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Large scale reionization bump

TI’

T X Einlﬂation

100 1000
Multipole ¢

Scientific goals
Reionization history: (C,£L atlarge angular scales to constrain T

Inflation: C,B5 at large and intermediate scales to constrain r
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The polarization at large angular scales

102§ ! L F ! L ! ! L

<20

10! =

Large scale reionization bump

T X Einlﬂation

100 1000
Multipole ¢

The major challenges

1)Polarized diffuse emission from our Galaxy: dust, synchrotron, free-free ...

2) Instrumental systematics projecting on the sky (any instability of the detectors
during the observations)
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The Planck satellite

= O frequency bands

= [woO InStruments:
LFI: 44GHz, 70GHZz
HFI: 100GHz, 143GHz, 217GHz

I'he sky as seen by Planck

Channels for CMB
characterisation

‘ planck
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Polarization at large angular scales status

e Planck detectors are sensitive to one polarization direction
Polarization reconstruction: detector combinations

e Mismatch between detectors will create spurious polarization signal
(Calibration mismatch, bandpass mismatch, etc...)

Major systematics in polarization at large angular scales:

Intensity to Polarization leakage

LFI: negligible residuals with respect to noise, LFI 70GHz released
HFl has higher sensitivity, lower noise: residuals systematics

HFI 100GHz, 143GHz, 217GHz NOT used for the 2015 low-| analysis

L—> Preliminary results (pre-release 2016)

‘ planck
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Reionization optical depth from large scales 2015
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The Planck Coll. XI, 2015

v WMAP and Planck LFI-70GHz yield consistent estimates
v The T signal disappears in the null map
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Planck 2015: reionization optical depth summary
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The Planck Coll. XIII, 2015

... Planck results seems to point to lower T.
This has an implication also for the large scales B-modes detection

‘ planck
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Planck 2015: Tensor-to-scalar ratio

large scales polarization from Planck
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From large scales 70GHz: still far. T

But significant improvement on :
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The challenge

= Data quality
Control of systematics, in particular HFl 100GHz,143GHz,217GHz
Accurate foreground subtraction/modeling

= Data analysis
Statistical method(s) optimized to CMB analysis @ large angular scales

So far (WMAP, Planck 2013, 2015): Gaussian likelihood in map space

= oni2 M]1/2 3

e

- 50 '[LK 150 10— — 0.0 uK L e— — 100 K

I I : . : .
L exp (-—m ) [M= CMB signal+noise covariance matrix]

Problem: noise covariance matrix reconstruction accuracy

- Can compromise parameter reconstruction in particular for the high
sensitivity of HFI channels
- Difficult handling of noise bias/residual systematics
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Cross-spectra likelihood at large scales

[Mangilli, Plaszczynski, Tristram (MNRAS 2015) ]

Use cross-spectra likelihood at large scales

Noise bias removed. Exploit cross dataset informations
Better handling of residual systematics/foregrounds

Two solutions to solve for the non-Gaussianity of the estimator
distributions at low multipoles

1. Analytic approximation of the estimators: works for single-field and small mask

2. Modified Hamimeche&Lewis (2008) likelihood for cross-spectra (oHL)

Full temperature and polarization analysis
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Cross-spectra likelihood at large scales

[Mangilli, Plaszczynski, Tristram (MNRAS 2015) ]

2. Modified likelihood for cross-spectra (oHL)

“2nZ(CACTT) = > 10X 1T 1M 1w 10X, 1o
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Full temperature and polarization analysis
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Cross-spectra oHL: T estimation

[Mangilli, Plaszczynskil, Tristram

(MNRAS 2015) ]

T posterior from realistic MC simulations, different noise levels, |=[2,20]
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Cross-spectra oHL: T estimation

[Mangilli, Plaszczynski, Tristram (MNRAS 2015) ]

T posterior from realistic MC simulations, different noise levels, 1=[2,20]
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Cross-spectra oHL: T-r estimation

[Mangilli, Plaszczynski, Tristram (MNRAS 2015) ]

1=[2,20], full temperature and polarization oHL likelihood
MC simulations Planck 100x143 with correlated noise
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Planck preliminary HFI results

e All dominant sources of residual systematics for HFIl low-I data now identified
e Biggest systematic: ADC-Non-Linearity. Now reduced by a factor almost 10

e Results on E2E Monte-Carlo simulations including systematic residuals:

error bars increased due to systematics uncertainties

e Further data improvement ongoing at map-making level for end 2016

fk\m\\kw

‘ planck
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New preliminary Planck-HFI results

- Large scale Polarization 1=[4,20]
- E-modes, B-modes 100GHzx143GHz cross spectra
- Sky fraction: 50%

- Polarization foreground cleaning

Planck frequencies corrected for polarization leakage:
- 30GHz for polarized synchrotron
- 353GHz for polarized dust

+ Cross-spectra based likelihood analysis OHL (Mangi11i et al. MNrRas 2015)

‘ planck
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New preliminary Planck-HFI results
Preliminary Planck 100GHzx143GHz E-modes at low-I:

+ Example of results from combination of low-| HFI with:

1. +Planck TT CMB spectrum (2015)
2. +Very High-l ground-based experiments (ACT & SPT)

3. +lensing Planck 2015

wm\}\\“\w

' ‘ planck
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Better agreement with astrophysical data
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Improved and lower T: impact on parameters
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Planck low-ell polarization take away message

A significantly lower value for the reionization optical depth as
suggested by preliminary Planck HFI results would:

be consistent with a fully reionized Universe at z ~ 6
be In better agreement with recent astrophysical constraints
- disfavor high-z reionization tail and complicated reionization

histories in general (e.g. 2 steps, asymmetric ...)
make the quest of B-modes at low-| more challenging

* Improved T constraint: tighter constraints on cosmological
parameters As, Ns, O, 2My

The Planck collaboration incl. A. Mangilli: “Improved large angular scale
polarization data and the reionization optical depth”, to be submitted ARA 2016

The Planck collaboration incl. A. Mangilli: “Reionization history constraints from
Planck”, to be submitted A&A 2016

‘ planck
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Future prospects: E-modes

018 The T history

0,135
T
0,09

0,045

0

WMAP WMAP3 WMAPS WMAP/ Planck2015 Planck2016(7)

The lower the T value, the more difficult also for o

future experiments to detect features in the E- oom0|
modes reionization bump to constrain e.g.
evolution of reionization/non-standard energy o
injections
More precision on T, improved constraints on
cosmological parameters (As, 2my, ...)
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LiteBIRD: Lite (Light) Satellite for the Studies of B-
mode Polarization and Inflation from Cosmic
Background Radiation Detection

Joint JAXA-NASA proposal: passed first selection in 2015 (now phase-A)
Possible ESA collaboration

Proposed launch year: 2022

—ull-sky, 2<1<300

E-modes & B-modes: T & r at large-intermediate scales

Planck expertise: dedicated group involved in LiteBIRD WG

+CoRE++, PIXIE
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Future prospects: E-modes
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F
! b
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lau

o(t) ~ 0.0035
Further improvements: combination of different cross-spectra and datasets
Significant improvement with respect to current constraint
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Future prospects

Beyond CMB: 21-cm signal 3-D tomography
S AR z=30

Evolution of the reionization and structure formation process
Powerful probe of dark matter, neutrinos
Accurate astrophysical modeling needed for cosmological predictions
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Future prospects: B-modes

Future proposed CMB experiment as LiteBIRD
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Model BB r=0.001

variance LITEBIird noise levels
100GHzx140GHz, fsky=0.8 (r=0)

10 100
/

Anna Mangilli (IAS&LAL) - LPNHE - February 22nd 2016

1000



400[ T T

=[2,300]

300"
200

100

o . . -

Fit: r=8.75470e-06 +/- 0.000498531

)

Not de-lensed

-0.02

Maoﬁt

r

0.01 0.02

=[30,300] ™

80
60
40

20

ol

L L
Fit: r=-0.000566526 +/- 0.00314477

MC sims without
primordial signal (r=0)
100GHzx140GHz
LiteBIRD cross-spectrum
realistic noise levels
80% sky

oHL Likelihood (Mangilli
et al. MNRAS 2015)

Not de-lensed

-0.02

T IR
-0.01

T T T N R S ST N NN
0.00

0.01

0.02

Including B-modes at large angular scales:
improved constraints of the tensor-to-scalar ratio r!
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Caveat: correct modelling of the foreground will be crucial

Realistic forecasts must include precise description of the
polarised dust contribution

In preparation:

Montier, Aumont, Boulanger, Mangqilli et al. 2016 to be submitted A&A
(under revision process as Planck paper)

Mangilli, Aumont, Tristram, Grain, Boulanger et al. in prep 2016

 MC simulations with polarized dust (turbulent component included)
* full likelihood analysis including large scales (oHL likelihood)
* Cross-spectra based analysis for ditfferent combinations of datasets
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Conclusions

Improved large scales polarization results from Planck out soon!
Cross-spectra based likelihood integrated in Planck analysis

E-modes & reionization history (1):

New preliminary Planck constraints point to significantly lower value of the
reionization optical depth parameter 1

Better agreement with astrophysical data
Measurements from B-modes at large angular scales more challenging
Significant improvement expected from future space missions

B-modes & primordial tensor modes (r):

Current best constraints Planck (all data)+Bicep/Keck: r < 0.07 95%CL

For the moment preliminary HFI results at large scales: good indications
that major systematics are under control

Including the large scales greatly improve the constraints (not from ground:
need the full sky)

Caveat: correct modelling of the dust polarization must be precisely
included to have realistic forecasts and correct interpretation
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What’s next

e Future proposed CMB experiments like LiteBIRD, CoRE++, PIXIE...
(space), and planned AdvACT, CLASS, Bicep3/Keck, QUBIC, SPTPoal...
(ground) will allow to greatly improve current constraints on T & r

e Not only primordial B-modes: the lensing signal! Accurate measurement
of the total neutrino mass.

Beyond CMB:

e [uture galaxy survey as LSST & Euclid: mapping of the Universe at low
redshift in combination of CMB (high redshift) to trace evolution of

structures

e 3-D mapping 21-cm signal to trace the structure formation process, Dark
Matter properties, neutrinos etc (future radio telescope e.g. SKA)
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Thank you!

Selection of relevant bibliography:

A. Mangqilli et al. “Large-scale CMB temperature and polarization
cross-spectra likelihoods”, MNRAS 483 2015

- 2015 Planck papers: The Planck collaboration incl. A. Mangilli (A&A 2015)

“Constraints on cosmological parameters”
“Power spectra and likelihood”
“‘Bicep2 and Planck joint analysis”

The Planck collaboration incl. A. Mangilli: “Improved large angular scale polarization
data and the reionization optical depth”, to be submitted A&A 2016

The Planck collaboration incl. A. Mangilli: “Reionization history constraints from
Planck”, to be submitted A&A 2016

L. Montier, J. Aumont, F. Boulanger, A. Mangilli et al. “The impact of the dust
modeling for future CMB experiments |: B-modes measurements”, in prep. 2016

A. Mangilli, J. Aumont, M. Tristram et al. “The impact of the dust modeling for future
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