

8 March 2016

Paschal Coyle Centre de Physique des Particules de Marseille

Neutrinos From MeV to PeV

Neutrino telescopes: science scope

oceanography, biology, seismology,...

Synergies with deep-sea science

ANTARES awarded "La Recherche Prize" category "Coup de Coeur"

C. Tamburini, S. Escoffier et al., PLoS ONE 8(7) 2013 Deep-sea bioluminescence blooms after dense water formation at the ocean surface

121

The CR-Gamma-Neutrino Connection

$$v_e:v_{\mu}:v_{\tau}=1:2:0$$
 source

 $v_e:v_u:v_\tau = 1:1:1$ Earth

 $E_{\gamma} \approx \frac{1}{20} E_P \approx \frac{1}{2} E_{\gamma}$

Neutrinos and Multi-Messenger Astronomy

Cosmic Rays

Subject to deflection by magnetic fields Horizon limited by GZK cutoff Large time delay w.r.t. optical signals

Photons

leptonic and hadronic processes-> confusion Absorbed at high energies and large distances

Neutrinos

<u>Unambiguous</u> signature of hadronic acceleration Not deflected by magnetic fields or absorbed by dust Horizon not limited by interaction with CMB/IR Escape from region of high matter density Time correlated with EM signals Full sky 24/24, 7/7

-> identify the cosmic ray sources

Event Topologies

Not to scale **Shower-like**

CC electron/tau and NC all flavour

80% of all nu interactions

Angular resolution 10°/1° at 100 TeV for ice/water

Energy resolution ~ 10%

No track is identified

Reducing Atmos Muon and Atmos nu Backgrounds

Atmospheric muons: Select upgoing Go deep Energy cut Spatial clustering Time clustering Coinc. with EM signals Veto outer layers Atmospheric neutrinos: Select upgoing Go deep Energy cuts Spatial clustering Time clustering Coinc. with EM signals Veto assoc. muon (outer layers) Go shallow

Current Neutrino Telescopes

ANTARES

- Completed 2008
- Depth 2475m
- 12 lines, ~70m spacing
- 25 storeys per line
- 3x10-inch PMTs per storey
- Decomissioning 2017

ANTARES

Atmospheric muon

neutrino

IceCube Diffuse Flux Signal

Background Atmospheric Muon Flux 10² 4 year HESE analysis Bkg. Atmospheric Neutrinos (π/K) Background Uncertainties **ICRC 2015** Atmospheric Neutrinos (90% CL Charm Limit) Bkg.+Signal Best-Fit Astrophysical (best-fit slope E⁻²⁵⁸) Events per 1347 Days Bkg.+Signal Best-Fit Astrophysical (fixed slope E^{-2}) 10^{1} Data 53 events 10⁰ 5.7 sigma Ethreshold: 60 TeV 10⁻¹ Best fit spectral index: -2.58 10^{2} 10^{3} 10^{4} Deposited EM-Equivalent Energy in Detector (TeV) Assuming best-fit power law: Conv. atmospheric $\nu_{\mu} + \bar{\nu}_{\mu}$ +++ Unfolding Astrophysical $\nu_{\mu} + \bar{\nu}_{\mu}$ 1.0 Unfolded upgoing muon spectrum 10^{3} IceCube Preliminary **TEVPA 2015** 10^{2} 0.8 10 Events per bin 10⁰ 6 yr data 10⁻¹ 10^{-2} 5.9 sigma neutrino energy pdf 10-3 (highest-energy event) Ethreshold: 200 TeV 0.2 10-4 10^{-5} .<u>၂</u>0.0 7.5 5.0 5.5 Best fit spectral index: -2.03+-0.13 4.5 6.0 6.5 7.0 4.0 $\log_{10}(\text{median neutrino energy} / \text{GeV})$

12

Flux Characteristics

Results of IC tracks(6yr) and IC combined not compatible at > 3.6 σ level

Indication of spectral break (different energy thresholds) ?? Indication of galactic and extra-galactic contributions (different hemispheres) ??

Origin of Astrophysical Neutrinos?

Only highest energy events are shown.

Most of these events are of astrophysical origin.

Cascade resolution 10-15° - mainly Southern hemisphere Muon resolution 0.5° - only Northern hemisphere

p=2.5% in gal. plane scan within ± 7.5° gal. latitude Indications of Galactic and extra-galactic contributions ??

ANTARES Diffuse flux

No Point Source Found (yet)

Cascade resolution <4° 30% improvement adding cascades

ANTARES: Some Galactic Searches

Exclude more than 2 HESE events for index=2.5

GW150914 follow-up -- I

Laser Interferometer

About Learn More News Gallery Educational Resou

Detection Papers

Scientific paper describing the detection published in PRL 116, 061102 (2016).

Companion Papers

"Unmodeled Searches Used for First LIGO Gravitational Wave Detection"

"A Search for Gravitational Waves from Compact Binary Coalescences in 16 Days of Advanced LIGO Data associated with GW150914"

"GW150914: A Merging Binary Black Hole at Redshift ~0.1"

GO

"Constraints on the Rate of Binary Black-hole Coalescences from 16 Days of Advanced LIGO Observations"

"Astrophyiscal Implications of the Binary Black-hole GW150914 Detected by LIGO"

"GW150914: A Black-hole Binary Coalescence as Predicted by General Relativity"

"The Stochastic Gravitational-wave Background from Black Hole Binaries: The implications of GW150914"

"Calibration Uncertainty of the Detectors in Early Advanced LIGO"

"Characterization of Transient Noise in the Advanced LIGO Interferometers Relevant to Gravitational Wave Signal GW150914"

"Localization and Broadband Follow-up of the Gravitational-wave Candidate G184098"

"High-energy Neutrino Follow-up Search of the First Advanced LIGO Gravitational Wave Event with IceCube and ANTARES"

"The Advanced LIGO Detectors in the Era of First Discoveries"

arXiv:1602.05411 - submitted to PRD

GW150914 follow-up -- II

=> (best)Limits on the neutrino spectral fluence (E-2 spectrum)

 \Rightarrow Limits from ANTARES dominates below O(100 TeV) (white line)

→ Integrating emission between [100 GeV; 100 PeV] and [100 GeV; 100 TeV]:

$${\rm E}_{\nu,{\rm tot}}^{\rm ul} \sim 10^{52} {\rm -} 10^{54} \left(\frac{D_{\rm gw}}{410\,{\rm Mpc}}\right)^2 \,{\rm erg}$$

Size of GW160914 : 590 deg² ANTARES resolution: <0.5 deg² A rapid observation of counterpart would help a better locatization for further follow-up

Indirect Searches for Dark Matter

KM3NeT

KM3NeT is a distributed research infrastructure with 3 main science topics:

- The origin of cosmic neutrinos (high energy)
- Measurement of fundamental neutrino properties (low energy)
- Deep Sea Observatory Oceanography, bioacoustics, bioluminescence, seismology

Single Collaboration Single Technology

ARCA- Astroparticle Research with Cosmics in the Abyss ORCA- Oscillation Research with Cosmics in the Abyss

KM3NeT Collaboration

12 Countries42 Institutes225 Scientists

APC

Calibration Unit base PMT studies

CPPM

seafloor infrastructure base and anchor string integration+deployment shore station

IPHC+Mulhouse DOM integration

Nantes, Clermont Ferrand, Grenoble, CEA, ... in discussion

KM3NeT Timeline

KM3NeT Technical Design Report[¶]

Figure 10-1: Overall time schedule of the KM3NeT project.

[¶] Deliverable of EU-funded Design Study.

KM3NeT Building Block (115 strings)

Phased Implementation

Phase	Blocks	Primary deliverables
1	0.2	Proof of feasibility and first science results (6 ORCA strings/ 24 ARCA strings)
2.0	2 ARCA	Study of neutrino signal reported by IceCube; All flavor neutrino astronomy
	1 ORCA	Neutrino mass hierarchy
3	1+6	Neutrino astronomy including Galactic sources

KM3NeT 2.0: Letter of Intent

KM3NeT

KM3NeT 2.0

Letter of Intent for ARCA and ORCA

- Astroparticle & Oscillation Research with Cosmics in the Abyss -

27th January 2016

http://arxiv.org/abs/1601.07459

Contact: spokesperson@km3net.de

The main objectives of the KM3NeT Collaboration are i) the discovery and subsequent observation of high-energy neutrino sources in the Universe and ii) the determination of the mass hierarchy of neutrinos. These objectives are strongly motivated by two recent important discoveries, namely: 1) The high-energy astrophysical neutrino signal reported by IceCube and 2) the sizable contribution of electron neutrinos to the third neutrino mass eigenstate as reported by Daya Bay, Reno and others. To meet these objectives, the KM3NeT Collaboration plans to build a new Research Infrastructure consisting of a network of deep-sea neutrino telescopes in the Mediterranean Sea. A phased and distributed implementation is pursued which maximises the access to regional funds, the availability of human resources and the synergetic opportunities for the earth and sea sciences community. Three suitable deepsea sites are identified, namely off-shore Toulon (France), Capo Passero (Italy) and Pylos (Greece). The infrastructure will consist of three so-called building blocks. A building block comprises 115 strings, each string comprises 18 optical modules and each optical module comprises 31 photo-multiplier tubes. Each building block thus constitutes a 3-dimensional array of photo sensors that can be used to detect the Cherenkov light produced by relativistic particles emerging from neutrino interactions. Two building blocks will be configured to fully explore the IceCube signal with different methodology, improved resolution and complementary field of view, including the Galactic plane. One building block will be configured to precisely measure atmospheric neutrino oscillations.

KM3NeT Design

KM3NeT Digital Optical Module

- 31 x 3" PMTs
- Reflective rings around PMTs (+27% light detection, JINST 8 (2013) T03006)
- PMTs supported by plastic structure produced by 3D-printing
- Electronics components attached to cooling mushroom
- One single penetrator for connection to vertical cable
- Optical fibre data transmission
 - DWDM with 80 wavelengths
 - Gb/s readout
- FPGA readout
 - 1 ns time stamp
 - Time over threshold
- Modified White Rabbit time synchronisation
- Calibration: piezo-acoustic sensor, compass + tiltmeter, nano-LED beacon
- Low power (7W per DOM)

KM3NeT Prototypes

1) Optical Module deployed at Antares, April 2013 (2500 m)

Eur. Phys. J. C (2014) 74:3056

2) Mini string deployed at Capo Passero, May 2014 (3500 m)

arXiv:1510.01561 Accepted by Eur. Phys. J. C

The first KM3NeT String: construction

The first KM3NeT String: deployment

KM3NeT string connection (3rd Dec 2015)

The first KM3NeT String

KM3NeT

K40 Inter-PMT Calibration

Fitted parameters: ٠

Inter-DOM calibration

180,

Atmos Muon Reconstruction

KM3NET: Diffuse Flux

KRA Model

radially dependent diffusion coefficient for

IC Diffuse flux

	muon	cascade
Angular resolution	0.1°	2°
Energy resolution	300%	5%

KM3NET: Point Sources

Oscillation of massive neutrinos

 $\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \cdot \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{\rm CP}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{\rm CP}} & 0 & c_{13} \end{pmatrix} \cdot \begin{pmatrix} c_{21} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} e^{i\eta_{1}} & 0 & 0 \\ 0 & e^{i\eta_{2}} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix}$ Atmospheric Solar Majorana Reactor θ₁₃~9° θ**^~45°** θ_°~30° $m_1^2 < m_2^2$ CP violating phase δ_{CP} $m_2^2 - m_1^2 \ll |m_3^2 - m_{1,2}^2|$ IceCube 2014 [NH] T2K 2014 [NH] $\Delta m_{22}^{2} | 10^{-3} (eV^{2})$ 3.8 MINOS w/atm [NH] SK IV [NH] x^{3.6} arXiv:1410.7227 90% CLi cantéurs 3.4 3.2 3.0 2.8 All parameters 2.6 m_2^2 2.4 measured to fair m_1^2 8 2.2 > 2.0 precision except: 0.35 040 045 0.65 0 70 8 0.50 ο. n 60 v...04 mass ordering 0.0035 octant of θ_{23} |∆m²₁| MeV² 0.0013 CP phase 0.002 $-m_{3}^{2}$ **Inverted Hierarchy** 0.0015L 0.4 0.6 0.8 sin² θ_{23}

39

The neutrino mass hierarchy

- Prime discriminator for theory models ٠
- Origin of neutrino mass and flavour •
- Help measuring the CP phase ٠
- Absolute mass scale ٠
- Nature (Dirac vs Majorana) •
- **Core-Collapse Supernovae Physics** ٠

TABLE I. WIXIng Angles for Models with Lepton Flavor Symmetry.								
Reference		Hierarchy	$\sin^2 2\theta_{23}$	$ an^2 heta_{12}$	$\sin^2 heta_{13}$			
Anarchy	M	odel:						
dGM	[18]	Either			≥ 0.011 @ 2σ			
$L_e - L_{\mu}$	$-\mathbf{L}_{\tau}$	Models:						
BM	[35]	Inverted			0.00029			
BCM	[36]	Inverted			0.00063			
GMN1	[37]	Inverted		≥ 0.52	≤ 0.01			
GL	[38]	Inverted			0			
\mathbf{PR}	[39]	Inverted		≤ 0.58	≥ 0.007			
S ₃ and S	54 N	fodels:						
CFM	[40]	Normal			0.00006 - 0.001			
HLM	[41]	Normal	1.0	0.43	0.0044			
	-	Normal	1.0	0.44	0.0034			
KMM	[42]	Inverted	1.0		0.000012			
MN	[43]	Normal			0.0024			
MNY	[44]	Normal			0.000004 - 0.000036			
MPR	[45]	Normal			0.006 - 0.01			
RS	[46]	Inverted	$\theta_{23} \ge 45^{\circ}$		≤ 0.02			
		Normal	$ heta_{23} \leq 45^{\circ}$		0			
TY	[47]	Inverted	0.93	0.43	0.0025			
т	[48]	Normal			0.0016 - 0.0036			
A ₄ Tetrahedral Models:								
ABGMP	[49]	Normal	0.997 - 1.0	0.365 - 0.438	0.00069 - 0.0037			
AKKL	[50]	Normal			0.006 - 0.04			
\mathbf{Ma}	[51]	Normal	1.0	0.45	0			
SO(3) M	lode	ls:						
м	[52]	Normal	0.87 - 1.0	0.46	0.00005			
Texture	Zer	o Models:						
CPP	[53]	Normal			0.007 - 0.008			
		Inverted			≥ 0.00005			
		Inverted			≥ 0.032			
WY	[54]	Either			0.0006 - 0.003			
		Either			0.002 - 0.02			
		Either			0.02 - 0.15			
			1	1				

Walter Winter Neutrino 2014

Measuring the neutrino mass hierarchy with atmospheric neutrinos

- a « free beam » of known composition (v_e , v_{μ})
- wide range of baselines (50 → 12800 km) and energies (GeV → PeV)
- oscillation pattern distorted by Earth matter effects (hierarchy-dependent):

maximum difference IH \leftrightarrow NH at θ =130° (7645 km) and E_v = 7 GeV

- opposite effect on anti-neutrinos: $IH(v) \approx NH(anti-v)$ BUT differences in flux and cross-section: $\Phi_{atm}(v) \approx 1.3 \times \Phi_{atm}(anti-v)$ $\sigma(v) \approx 2\sigma(anti-v)$ at low energies
- measure zenith angle and energy of upgoing atmospheric GeV-scale neutrinos, identify and count muon and electron channel events
- feasible now that θ_{13} is measured to be large

Akmedov, Razzaque & Smirnov, JHEP 02 (2013) 082

Experimental signature

Both muon- and electron-channels contribute to net hierarchy asymmetry electron channel more robust against detector resolution effects:

The ORCA benchmark design

115 lines, 20m spaced, 18 DOMs/line 9m spaced

Instrumented volume ~6.5 Mt, 2070 OM Optical background: 10kHz/PMT & 500Hz coincidence

Angular Resolutions

cascade track KM3NeT/ORCA Preliminary Median directional resolution [deg] KM3NeT preliminary $\theta_{v,reco}$ (v_e CC) vertical spacing: θereco – 6m Median zenith res (°) $\theta_{v,reco}$ (∇_e CC) θ_{e,reco} 🛨 12m θ_{v.e} - 15m æ • • ş ģ Neutrino Energy (GeV) 25 5 10 15 20 30 Neutrino energy [GeV]

> Excellent angular resolution Dominated by kinematics Largely independent of vertical spacing

Energy Resolutions

Energy resolution better than 25% in relevant range – close to Gaussian

Cascade/track identification

Classified as track (9m Spacing)

Classified as shower (9m Spacing)

- Discrimination of track-like ($\nu_{\mu}^{\text{ CC}}$) and cascade-like (ν^{NC} , $\nu_{e}^{\text{ CC}}$) events
- Classification uses "Random Decision Forest"
- At 10 GeV:
 - 90% correct identification of v_e^{CC} and anti –mu
 - 70% correct identification of v^{CC}_u

Effective Mass

- Instrumented volume reached at ~30 GeV
- 50% Efficiency at 5-10 GeV depending on vertical spacing
- Solid : nu–Dashed: anti-nu

Effective mass averaged over upgoing events (flat distribution in $cos(\theta)$)

Atmospheric muon rejection

- Simulation based on MUPAGE (Astropart. Phys. 25 (2006) 1) at depth 2475 m
- ν_{μ} reconstruction: cut on the reconstructed pseudo-vertex and quality parameters + BDT

KM3NeT/ORCA Preliminary

KM3NeT/ORCA Preliminary

Instrumental veto not mandatory

Tunable few % contamination achievable without too strong signal loss

KM3NeT/ORCA Preliminary

200

Sensitivity Studies

Various systematic effects taken into account:

- Oscillation parameters
 - Δm^2 , θ_{12} fixed; θ_{13} fitted within its error
 - ΔM^2 , θ_{23} , $\delta_{CP} \rightarrow$ fitted unconstrained
- Flux, cross section, detector related

(average fluctuation w.r.t. nominal)

- Overall normalisation (2.0%)
- v/v ratio (4.0%)
- e/µ ratio (1.2%)
- NC scaling (11.0%)
- Energy slope (0.5%)
- Energy scale
- → Fitted unconstrained

Sensitivity to mass hierarchy

Sensitivity to PMNS parameters

3 year sensitivity to the atmospheric parameters ORCA: red ellipses (solid/dashed=with/wo Ev scale) 1 σ contour: 3% in ΔM^2 , 4-10% in sin² θ_{23}

ORCA, MINOS, T2K, NovA 2020

Sensitivity to CP phase ?

6 years, no systematics NH true, δ CP=0, three test points, 1/2/3 sigma

Additional ORCA physics topics

- Indirect Search for Dark Matter
- Earth tomography and composition

Gonzales-Garcia et al., Phys. Rev. Lett. 100:061802, 2008,

Agarwalla et al., arXiv:1212.2238v1

Test NSI and other exotic physics

Ohlsson et al, Phys. Rev. D 88 (2013) 013001
 Gonzales-Garcia et al., Phys.Rev. D71 (2005) 093010

- Supernovae monitoring (takes advantage of new DOM features)
- Low Energy Neutrino Astrophysics
 - Gamma-ray bursts, Colliding Wind Binaries

🛄 J. Becker Tjus, arXiv:1405.0471 ...

A Neutrino beam from to ORCA (NMH and CP phase)

Lujan-Peschard et al, Eur. Phys. J. C (2013) 73:2439

Tang & Winter, JHEP 1202 (2012) 028

📖 J. Brunner, AHEP, Volume 2013 (2013), Article ID 782538.

ORCA Construction

Phase 1 (funded- 11M€) : deploy a 6-7 string array In the ORCA configuration to demonstrate detection method in the GeV range.

Phase 2 (+40 M€): deploy 1 building block 115 strings in French KM3NeT site Completion in 2020 Funds: 9M€ (France)+5M€(Netherlands)+...

ORCA string: june 2016

Summary and perspectives (I)

- Diffuse flux of cosmics neutrinos observed
- higher level of hadronic activity in the non-thermal universe than previously thought → Exciting times ahead !
- Sources remain to be identified
- ANTARES: first undersea Cherenkov detector
 - Excellent angular resolution, view of Southern sky
 - Competitive sensitivities (Galactic neutrino component, Dark matter searches)
 - Improvements still to come: include showers in all analyses
 - Taking data until superseded by KM3NeT circa end of 2016
- KM3NeT: phased approach to next-generation neutrino telescope
 - Capo Passero (KM3NeT-It) → ARCA for HE neutrino astronomy (tracks & showers)
 - − Toulon (KM3NeT-Fr) → ORCA for measurement of NMH
 - First string performing well
 - Letter of Intent published
 - Selected for new ESFRI roadmap

Summary and perspectives (II)

- Atmospheric Neutrinos still have a major role to play for precision measurements and determination of unknown parameters such as the mass hierarchy and the search for exotic phenomena
- Low energy (GeV) extensions of Neutrino Low energy (GeV) extensions of Neutrino Telescopes faster and cheaper than other alternatives...
- carefully controlled
- Preliminary ORCA sensitivities are very promising and expected to improve

Sensitivity studies

Global Fit Approach

The performance of ORCA for the determination of the NMH is assessed by means of a likelihood ratio test:

$$\Delta \log(L^{\max}) = \sum_{\text{bins}} \log P(\text{data}|\hat{\theta}^{\text{NH}}, \text{NH}) - \log P(\text{data}|\hat{\theta}^{\text{IH}}, \text{IH})$$

 $\hat{\theta}^{\rm H} =$

Maximum likelihood estimates for Δm^{2} 's and angles.

1) fit mixing parameters assuming NH 2) fit mixing parameters assuming IH 3) compute $\Delta \log L = \log(L(NH)/L(IH))$

ORCA/PINGU: Neutrino Mass Hierarchy Determination

3 sigma determination of neutrino mass hierarchy in 3/4 years

Water vs Ice: OM-hit probability

Probability to have at least one detected photon (KM3NeT OM)

The KRA_r model: Radial dependency of CR transport

This is a phenomenological model built to reproduce over the entire sky the diffuse γ -ray emission spectrum of the Galaxy as measured by Fermi-LAT.

Differently from the Fermi benchmark model (FB) based on GALPROP under the hypothesis of uniform cosmic ray (CR) diffusion, the KRA_Y model adopts a radial dependent diffusion coefficient $(\delta(R) = A * R + B)$ which turns into a spectral hardening toward the GC region. This is implemented with the DRAGON code.

This allows to correct the discrepancy between high energy Fermi data and the FB model in the inner Galactic plane region without spoiling the local cosmic-ray quantities (spectra, B/C, antiprotons...)

Neutrinos from CR interaction in the Galactic Ridge?

Neronov et al. arXiv:1412.1690, 4 Dec 2014

Gaggero et al. arXiv:1504.00227

The KRA γ model adopts a radial dependent diffusion coefficient which turns into a spectral hardening toward the GC region.

Shower reconstruction (v_e)

- 1. Vertex fit:
 - maximum likelihood method based on time residuals
 - two fits: first robust prefit then more precise fit
- 2. Energy + direction fit:
 - PDF for number of expected photons depending on: E_v, Bjorken y, emission angle, OM orientation, distance(OM,vertex)

Res. (σ): 0.5-1 m

 maximum likelihood method based probability that hits have been created by certain shower hypothesis (E_v, Bjorken y, direction)

Cost of ORCA (115 Strings)

Factor 4 cost reduction cf ANTARES

item	quantity unit	cost (k€) tota	l cost (k€)
MEOC	2	1800	3600
nodes +deployment	6	700	4200
string+IL+deployment	115	320	36800
readout			500
			45100
but with phase 1 we have 1 MEOC, 1 node, 6 strings	MEC	0C	-1800
reuse ANTARES MEOC cabl	e		
(400k to relocate)	ant r	neoc	-1400
	1 no	de	-700
	6 strings		-1920
			39280

Shore station (incl. computing)

Deep-sea cable network

Deployments

Strings (without PMTs)

PMTs (incl. base and lens)

Based on actual Phase-1 costs

Anticipate 20% reduction in PMT costs and benefit from economy of scale

Many ideas for further cost reduction:

PowerSea connectors, 20 DOMs in string, 5 nodes,

Point-source search with cascades

- Results are "rather preliminary"
- Important:
 Provides
 cascade event
 sample for
 source
 candidates
- Closes visibility gap

DOM Prototype on ANTARES

April 2013: First DOM installed on ANTARES instrumented line (KM3NeT-Fr)

⁴⁰K decay provides:

- intra-DOM time calibration
- absolute PMT efficiencies

(coincidence rate ~5 Hz on neighbouring PMTs)

KM3NeT mini-line @ Capo Passero

Smooth operation and data taking since May 2014

KM3NeT

ICECUBE-GEN2 Deployment Schedule

This schedule is premised on the drill being in the critical path. Instrumentation development is not explicitly listed here but assumed available when holes are delivered.

Note: this schedule is achievable but is optimistic.

Of course money (== flights) could be spent to accelerate the shipping delays.

One Drill Scenario

9/19

Ship MHWD2

to McMurdo

9/18

Ship MHWD1

to McMurdo

11/20 - 12/20

MHWD2 Traverse

One unique example to note is the IceCube-Gen2/PINGU proposal (discussed in Box 2.4). Although the Committee acknowledges that this project has the potential to lead to exciting new scientific advances, we were cognizant of the fact that construction of the original IceCube facilities had major impacts on the USAP logistical system, and we had concerns that high demands on USAP logistical support likely required for the IceCube-Gen2 construction would be incompatible with our recommendations to expand logistical support for activities for West Antarctic research.

Earth and Sea Sciences

Deep Ocean Cabled Observatories Workshophttps://indico.cern.ch/conferenceDisplay.py?ovw=True&confld=165389

Connected 30 Oct 2010

Japan earthquake 2011 March 11 at Antares site

Event rate in ORCA (9m)

- Events per year per GeV
- No resolutions, no PID
- One example bin in $\cos\theta$ (width 0.1 at 45°)

For all angles: $v_{\mu} CC 24,800$ $v_{e} CC 17,300$ $v_{\tau} CC 3,100$ NC 5,300

28

Comparison with other projects

- ORCA
- Per year v_{μ} CC : 24,800 & v_{e} CC : 17,300
- NOVA (2x 1.8 10²¹ p.o.t.)
 - per year ~70 v_{μ} and 15-25 v_{e} (less with anti-nu)
 - 6 years running planned (shared nu/anti-nu)
- T2K (7.8 10²¹ p.o.t.)
 - Until 2020 : 1400 v_{μ} and 240 v_{e}
- DUNE (34kt)
 - Per year 150 v_e

RESEAU DE CAPTEURS 2500 m de profondeur

PRINCIPE DE DÉTECTION D'UN NEUTRINO COSMIQUE 5

75

IceCube-Gen2

Vision for a Next Generation IceCube: Increase energy threshold allows larger string spacing

Focus on high energies.

Larger spacing of strings: ~10 km^3 instrumented Volume. Cost comparable to IceCube.

Air shower veto array

Artist conception Here: 120 strings at 300 m spacing

KM3NeT Picture Gallery

KM3NeT-Italy

KM3NeT-France

- Direction resolution (track/cascade)
- Energy resolution (track/cascade)
- Cascade versus track separation
- Atmospheric muon background rejection
- Neutral current backgrounds
- Effective volume
- Geometry optimisation
- Trigger efficiency and rates

(atms mu@36Hz, K40@19Hz)

• Systematic uncertainties

KM3NeT cost breakdown

- Shore station (incl. computing)
- Deep-sea cable network
- Deployments
- Strings (without PMTs)
- PMTs (incl. base and lens)

Figure 111: Breakdown of costs amongst the major items.

Phase 1 (funded) : 31 M€ Phase 2 + 95 M€

Flavour Ratios

Multi-Messenger Program

GRBs? Fermi-LAT Blazars?

Upperlimits on diffuse flux contribution assuming parameterization in ApJ 720:435 (2010)

The ANT091501A alert

E=~50-100 TeV Error box:18 arcmin Sent in 10s to Swift (X) & Master (Opt) Swift obs: +9h Master obs: +10h

- Swift: uncatalogued x- ray source within 8 arcmin from the neutrino direction
- **Optical:** Bright star in Swift source location
- Multiwavelength observations: Star correlated with x-ray flare

AGNs close to Ernie and Bert?

TANAMI collaboration reported observations of 6 bright blazars locally compatible with 2 first PeV IceCube events IC14 and IC20.

🛄 Krauß, F. et al. 2014, A&A, 566, L7

Source	N _{sig}	р	Limit
	, i i		$10^{-8} \text{ GeV}^{-1} \text{ cm}^{-2} \text{ s}^{-1}$
0235-618	0	1	1.3
0302-623	0	1	1.3
0308-611	0	1	1.3
1653-329	1.1	0.10	2.9
1714-336	0.9	0.04	3.5
1759-396	0	1	1.4

ANTARES inferred limits

→ Relevant constraints on spectral index of potential source

Antares, A&A 576, L8 (2015) <u>Highlighted in the Nature vol 520, April 2015</u>

84

IceCube

