
Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules

GPUs at CC-IN2P3
February 2016



12/02/2016FJPPL 2

Introduction

● Why GPUs?

● What kind of GPUs?

● How to integrate GPUs?

● Some considerations about how to use them

● Some feedback



12/02/2016FJPPL 3

Why would we like to have GPUs?

● Because users want to try it
– Signal processing

– Simulating particles propagation

● Because users want to use it for production
– Biomolecular dynamics



12/02/2016FJPPL 4

Why would we like to have GPUs?

● It's suited for highly parallel tasks

● It's more energy-efficient
– Lower frequencies

– More ALUs than control structures



12/02/2016FJPPL 5

What kind of GPUs?

● NVIDIA and AMD have products

● Main choice to do: OpenCL or CUDA?

● Most users wanted to have CUDA available

● AMD announced CUDA support at SC15 but…
– Not yet ready

– Partial

– What about performances ?

● For us, it will be NVIDIA



12/02/2016FJPPL 6

What kind of GPUs?

● 3 categories of products:
– GeForce: gaming, but supports CUDA

– Quadro: graphics

– Tesla: GPGPU

● Dell only supports Tesla

● Tesla advantages over GeForce:
– Double precision

– ECC

– Passive cooling/board design adapted to servers

– A few more tools to manage GPUs

● Price makes a big difference



12/02/2016FJPPL 7

What kind of GPUs?

● Tesla K40 board
– 1 GPU GK110

● Tesla K80 board
– 2 GPUs GK210

– Lower frequencies

– A few less active ALUs

– Bigger caches

– OS detects 2 GPUs

● Tested with some OpenMM based simulation 



12/02/2016FJPPL 8

How do we want the host to be?

● copy between host memory and GPU memory: time 
expensive

● Several possible host/GPU interconnect schemes:

=> Single GPU vs multi-GPU choice

● Infiniband can help with multi GPU on multiple hosts



12/02/2016FJPPL 9

How do we want the batch scheduler to be?

● Univa Grid Engine integrates GPU
– allocates jobs to 1 or more GPU

– Can manage NUMA topology (topology masks)

– But currently lacks accounting



12/02/2016FJPPL 10

How to use GPUs/a few things to be aware of

● Try to spot where you can parallelize, but...

● … to write an efficient GPU code, it might take 
redesigning from scratch

● To be efficient, fill up the GPU!

● Intermediate results should never be copied to the host

● Optimize memory usage/buses usages

● Choose carefully the operations

● Use optimized operations when possible

● Be careful about the precision/check the results



12/02/2016FJPPL 11

Some feedback from other centers...

● Optimization is very GPU dependent: better to have an 
homogeneous platform

● Not more than 1 process per GPU at a time

● Intense memory utilization is what makes the GPU boil

● Be careful with variable casting, very tricky to find the 
error



12/02/2016FJPPL 12

Conclusion

● Usecases for GPUs exist in HEP

● CPUs can't compete when GPU fits the computation

● Difficult to use GPU seamlessly with existing code

● Ours users have different amounts of experience with 
GPUs

● We will provide a production cluster

● But we must keep in mind that many users first need a 
test platform

● And their needs might evolve!


	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12

