Kostiantyn Shpak (LLR)

Square-event:

Reason: Big energy deposition at the sensor boundary due to capacitive coupling of silicon sensor guard ring with peripheral pixels.

Result: Many boundary pixels are fired via the cross-talk through the guard ring

Recent square events studies:

LCWS2013 V.Balagura slides:

https://agenda.linearcollider.org/event/6000/session/38/contribution/122/material/slides/0.pdf

LCWS2015 Kyushu slides:

https://agenda.linearcollider.org/event/6853/session/6/contribution/41/material/slides/0.pdf

"Square" event

Guard ring at silicon sensor edges ensures HV stability and low dark currents. Potential is not fixed (for cost reasons, connection is technologically difficult), but left floating \rightarrow electrical cross talk between guard ring and peripheral pixels due to capacitive coupling.

High signal at the boundary may trigger all peripheral pixels: "square events" seen in physics prototype.

Based on extensive simulation (electrical, analytical, TCAD, PhD and several CALICE notes) and measurements with electrical injection to Hamamatsu sensors, a segmentation of the guard ring was proposed to reduce cross talks. Sensors with several guard ring designs have been produced. First measurements with laser started (this talk).

VBalagura LCWS 2013

- For square event search I took <u>100GeV electron run 211</u> with beam in the prototype centre: all 4 sensors of every DIF are reachable
- I did simple calculation of #boundary & #inner hits per sensor for every event, currently I'm testing some other criteria
- Number of square events is low for "traditional" detector usage
- Every DIF has square-events

Beam shape DIF1, plane events are not fully cut

Example of normal event

DIF0 run211

4 square events detected new variable acqbx=acq*10^4+bx

DIF1 run211

11 square events detected acqbx=acq*10^4+bx

DIF2 run211

10 square events detected acqbx=acq*10^4+bx

Χ

Square-event:

New idea: Lets use **turned detector configuration** to increase #square events

Run information: run 472, 150 GeV pi+

Result: Now particle which goes through the detector has higher probability to cross the guard-ring, in some rare cases it can cross the guard ring four times or even pass significant distance inside the guard-ring

DIF1 run472

Huge amount of square events~170 (next slide) with at least 1 traditional single square event Also we see:

- double square events
- partially square events (half or quarter)

DIF0 run472

just 4 square events acq=13023,14457,19347,21218 beam in DIF1

DIF2 run472

just 5 square events, acq=13438,15035,16039,19351,21363 beam in DIF1

To be done with square events:

- optimisation of search procedure
- percent of affected particle detections (exclude all plane events and other noises to get correct number of detected particles)
- cross-talk study