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Profiling & Systematics as part of statistical analysis

)

e A HEP analysis requires close integration of ‘physics concepts
and ‘statistical concepts’

1.  Design event selection “physics”

e  Use simulated samples of signal, background to aid selection process
(cuts, BDT, NN etc)

2. Analyze (‘fit’) data in selection “statistics”

o Measurement with statistical error, limit based on statistical uncertainty

3. Make inventory of systematic uncertainties “physics”

o Generally, any effect that isn’t measured constrained from your own measurement

L1

4.  Finalize result ‘including systematics’ “statistics”

e Variety of (empirical/fundamental) approaches to do this

5. Interpretation “physics”

o Better measurement, discovery etc, find mistake/sub-optimality in procedure

e [ocus of this course: steps 3 and 4.

— Practical problem: ‘physics notion’ of systematic uncertainties does not map
1-1 to a statistical procedure. Many procedures exist, some ad-hoc, some
rigorous (from the statistical p.o.v.)
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Profiling & Systematics as part of statistical data analysis

The physicists world The statisticians world

Systematic Nuisance

uncertainties parameters
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Qutline of this course

e (Qutline of this course

1. What are systematic uncertainties?
Incorporating systematic uncertainties in probability models
Modeling shape systematics: template morphing

Tools for modelling building RooFit/RooStats and HistFactory

o &~ W

Diagnostics: Overconstraining & choices in model parametrization
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uncertainties?

Verkerke, NIKHEF



What are systematic uncertainties?

e (Concept & definitions of ‘systematic uncertainties’ originates from
physics, not from fundamental statistical methodology.

— E.g. Glen Cowans (excellent) 198pp book “statistical data analysis”
does not discuss systematic uncertainties at all

e A common definition is

— “Systematic uncertainties are all uncertainties that are
not directly due to the statistics of the data”

e But the notion of ‘the data’ is a key source of ambiguity:
— does it include control measurements?

— does it include measurements that were used to perform basic
(energy scale) calibrations?
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Systematic uncertainty as a hidden measurement

e (Consider 2 examples of measurements with systematic uncertainties

e Example 1: Measuring length of an object with a ruler

— ‘Ruler calibration uncertainty’ is systematic uncertainty on length measurement

e Example 2: Counting measurement a signal
in the presence of background

— Measurement has (Poisson) statistical uncertainty.

— Uncertainty on rate of background process introduces a systematic uncertainty
on estimate of signal rate

e |s the ‘systematic uncertainty’ just a ‘hidden measurement’?

— Ex 1: Ruler calibration could depend on temperature and uncertainty on current
temperature could be dominant component of uncertainty

— Ex 2: Background rate could be measured by a control sample
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Sources of systematic uncertainty in HEP

e Detector-simulation related uncertainty
— Callibrations (electron, jet energy scale)
— Efficiencies (particle ID, reconstruction)

— Resolutions (jet energy, muon momentum)

e Theoretical uncertainties
— Factorization/Normalization scale of MC generators

— Choice of MC generator (ME and/or PS, e.g. Herwig vs Pythia)

e Monte Carlo Statistical uncertainties

— Statistical uncertainty of simulated samples
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The simulation workflow and origin of uncertainties

Simulation of ‘soft physics’ Simulation of ATLAS LHC data
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Typical specifications of systematic uncertainties

e Detector-simulation related
“The Jet Energy scale uncertainty is 5%”
“The b-tagging efficiency uncertainty is 20% for jets with p;<40”

e Theory related

— “Vary the factorization scale by a factor 0.5 and 2.0 and consider the difference the
systematic uncertainty”

— “Evaluate the effect of using Herwig and Pythia and consider the difference the
systematic uncertainty”

e MC related

— Usually left unspecified — but quite clearly defined as a Poisson distribution with the
‘observed number of simulated events’ as mean.

— But if MC events are weighted, it gets a bit more complicated.

* Note that specifications are often phrased as a prescription to be
executed on the estimation procedure of the physics quantity of

interest (‘vary and rerun...’) or can be easily cast this way.
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Evaluating the effect of systematic uncertainties

e Often measurements are treated as a ‘black-box’
(e.g. as if it were a physical device that reports the measurement)

e |nspires a ‘naive’ approach to systematic uncertainty evaluation:
simply propagate ‘external systematic uncertainties’ into result
— Evaluate nominal measurement (through unspecified procedure)
o = 1
— Evaluate measurement at ‘+1 sigma’ of some systematic uncertainty
u,, = ((syst —up)
u,. = (syst—down)
— Calculate systematic uncertainty on measurement through numeric error
propagation
o, (syst) = [uup - udown] /2

— Repeat as needed for all systematic uncertainties,
add in quadrature for total systematic uncertainty.

w. =u *0(JES)=...
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Pros and cons of the ‘naive’ approach

e Pros
— It’'s easy to do

— It results in a seemingly easy-to-interpret table of systematics

e (Cons

— A maximum likelihood measurement is really nothing like a ‘device’

— Uncorrelated source of systematic uncertainty can have correlated effect on
measurement - Completely ignored

— Magnitude of stated systematic uncertainty may be incompatible with
measurement result - Completely ignored

— It’s not based rigorous procedures (i.e. evaluation of systematic uncertainties

is completely detached from statistical procedure used to estimate physics
quantity of interest)

¢ No calibrated probabilistic statements possible (95% C.L.)

¢ No known good procedure for limit setting

‘Profiling’ = Incorporate a description of systematic uncertainties
in the likelihood function that is used in statistical procedures
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Incorporating
systematic
uncertainties in
the likelihood
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The likelihood is at the lbasis of many statistical techniques

Maximum Likelihood Parameter estimation

dnL(p)
dp

=0

Di=P;

Frequentist confidence intervals

L | 1,0 olhoou rat]
(data Mae) (likelihood-ratio intervals) Hypothesis

u that is being
tested

L(N | u)
LN @)~

‘Best-fit value’

A‘u (Nobs) =

Bayesian credible intervals

P(ulx)oc L(x|u)-w(u)
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Introduction

e All fundamental statistical inference techniques are based on the
likelihood. Thus all aspects of a measurement — including
systematic uncertainties — must be contained in the likelihood

e Wil now focus on how to express systematic uncertainties
(an experimental science concept) into a likelihood (a statistical
concept)

e This starts with an examination of what we precisely mean with a
systematic uncertainty.

— Wil discuss this based on examples taken from the different classes of
systematic uncertainty commonly encountered in HEP analyses

— For illustrational clarify will for now only focus on systematic uncertainties on
counting measurements (systematic uncertainties in measurements of
distributions will follow later)
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Modeling systematic uncertainties in the likelihood

e \What is a systematic uncertainty? It consists of
— 1: A set of one or more parameters of which the true value is unknown,

— 2: Aresponse model that describes the effect of those
parameters on the measurement,

— 3: A distribution of possible values for the parameters

— In practice these (response) models are often only formulated implicitly, but
modeling of systematic uncertainties in the likelihood requires an explicit
model

e Example of ‘typical’ systematic uncertainty prescription

“The Jet Energy Scale Uncertainty is 5%”

e Note that example does not meet definition standards above

— Specification specifies variance of the distribution unknown parameter, but not
the distribution itself (is it Gaussian, Poisson, something else)

— Response model left unspecified
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Formulating a response model

Why does the statement
“the JES uncertainty is X%”
not a formulate a response model, while an additional statement

“If the JES is off by +X%, the energy of every jet
in the event is increased by X%”

does constitute a response model?

The first statement doesn’t specify any correlation between jets with different
kinematics

— Canlow pT jets be miscalibrated by -4% and high pT jets be calibrated by +5%"7

— Or must all jets be miscalibrated by exactly the same amount?

The former interpretation would require 2 (or more) model parameters to
capture the effect of the miscalibration of the simulation, the latter only one.

Once the response model is defined, the effect of a systematic uncertainty is
deterministically described, up to an (a set of) unknown strength parameter(s).
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Formulating a response model

e Note that the construction of a response model for a systematic
uncertainty is no different from choosing a model to describe your
physics of interest

— You define a model that deterministically describes the consequences of the
underlying hypothesis, up to set of (a priori) unknown model parameter

e Wil (for now) assume that for our example measurement the
example systematic uncertainty — the Jet Energy Scale — can be
correctly described with a single parameter that coherently moves
the calibration of all jets in the event.

— The correctness of such an assumption we’ll revisit later (but note that this is a
physics argument)
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Modeling the strength parameter

e \What do we know about distribution of the corresponding
strength parameter?

— The sqrt(variance) of the distribution was specified to be 5%

e But a variance does not completely specify a distribution
— Does the JES measurement follow a Gaussian distribution?
— Does the JES measurement follow a Poisson distribution?

— Or, a ‘block-shaped’ distribution, or anything else?

e Not specified by “JES is 5%” prescription

— Often not a difficult issue as detector-related uncertainties, as these
since they are based on (calibration) measurements (and/or central limit
theorem applies) 2 Gaussian or Poisson distribution

— For theory uncertainties this can be tricky, what distribution to assume for
‘renormalization scale uncertainty’? Will come back to this later
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Formalizing systematic uncertainties

e The original systematic uncertainty prescription

“the JES uncertainty is 5%”

e The formalized prescription for use in statistical analysis

“There is a calibration parameter in the likelihood
of which the true value is unknown

The distribution of this parameter is a Gaussian
with a 5% width

The effect of changing the calibration by 1%
is that energy of all jets in the event is
coherently increased by 1% ”
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Putting it all together — a calibration uncertainty in a counting experiment

. n ,
e (Counting experiment P(’n s -+ b) — (5 ™ b) E_,.—(.erb)

/ n!

e Background ‘b’ is estimated from MC simulation with some
uncertainty

— We estimate b using Monte Carlo simulation: we conclude that we expect 5.0
background events, with a negligible MC statistical uncertainty

— But, since we use MC simulation we are sensitive to detector simulation
uncertainties and theoretical cross-section uncertainties

e Ex: how to model effect of data/MC JES miscalibration uncertainty?

— The effect of the JES calibration uncertainty is described by a single parameter that
coherently moves jet calibration for all jets by same amount

— Jet calibration group assigns a 5% Gaussian uncertainty to this parameter

— You determine that a 1% coherent shift of jet-energy scale
results in a 2% acceptance change for the background in your signal region.

‘naive approach’: vary b by +2% and propagate effect to s.

' ikell ?
How do you put that in the likelihood* Wouter Verkerke, NIKHEF



Putting it all together — a calibration uncertainty in a counting experiment

e The likelihood including systematic uncertainty L(N |s) = Poisson(N |s+b)

Nominal calibration
Signal rate (our parameter of interest) \Assum ed calibration

N

L(N,als,a)= Poisson(N |s+b(c/ ) -2)) Gauss(a | 05,0%)

Y Y \
Observed event count Uncertainty

on nominal
calibration

Nominal background
expectation from MC
(a constant), obtained
with a=a

Response function
for JES uncertainty
(@ 1% JES change
results in a 2% “Subsidiary measurement”
acceptance change)

Encodes ‘external knowledge
on JES calibration
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Putting it all together — a calibration uncertainty in a counting experiment

e Simplify expression by renormalizing “subsidiary measurement”

Signal rate (our parameter of interest)

\

L(N ls,a)= Poisson(Nls+b(1+0.1a)) - Gauss(0 | 1)

Observed event count / \
“Subsidiary measurement”

Nominal background Response function Encodes ‘external knowledge’
expectation from MC  for normalized JES on parameter that
(a constant) parameter controls JES calibration
[a unit change in a
—ad% JESchange - The scale of parameter
still results in a 10% a is now chosen such that
acceptance change] values +1 corresponds to the

nominal uncertainty
(in this example 5%)
Wouter Verkerke, NIKHEF



Putting it all together — a calibration uncertainty in a counting experiment

e Sources of information The subsidiary measurement is an implementation
of information that is given to you.

It is effectively a likelihood function that ‘measures’
the JES parameter with unit Gaussian uncertainty.

L(N,0ls,o0) = Poisson(N |s+b(1+0.1a))  Gauss(0 1l a,1)

The response function is something that you
measure in your physics analysis.

It must be implemented as a continuous function
but can be a linear interpolation, e.g. based on
two or three acceptance calculations

Y

S 1.1

I

& 1.0

(@)

o 0.9
o o +1 |9
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Names and conventions

e The full likelihood function of the form

L(N,0ls,a)= Poisson(N |ls+b(1+0.1a)) - Gauss(0la,1)

is usually referred to by physicists as a ‘profile likelihood’, and
systematics are said to be ‘profiled’ when incorporated this way

— Note: statisticians use the word profiling for something else
e Physicists often refer to the subsidiary measurement as a
‘constraint term’

— This is correct in the sense that it constrains the parameter alpha, but this
labeling commonly lead to mistaken statements (e.g. that it is a pdf for Q)

— Itis explicitly not a pdf f(al...). It is a (simplified) Likelihood that represents
calibration measurement that measures the parameter a, based on calibration

data sample that is removed in the simplification (and for which a placeholder
O value is inserted)

Gauss& 10,1) Gauss(0la,1)

Placeholder observable in subsidiary measurement is often called a ‘global observable’
Wouter Verkerke, NIKHEF



Names and conventions

e The ‘subsidiary measurement’ as simplified form of the “full
calibration measurement’ also illustrates another important point
— The full likelihood is simply a joint likelihood of a physics measurement and a

calibration measurement where both terms are treated on equal footing in the
statistical procedure

— In a perfect world, not bound by technical modelling constraints
you would use this likelihood

L(N,yls,a)= Poisson(N|s+b(1+0.1a)) L, (V| a,é)

where L 4 is the full calibration measurement as performed by the Jet
calibration group, based on a dataset y, and which may have other
parameters B specific to the calibration measurement.

e Since we are bound by technical constrains, we substitute L o
with simplified (Gaussian) form, but the statistical treatment and
interpretation remains the same

Wouter Verkerke, NIKHEF



Another example — sidebband measurements

e (Consider again the same counting measurement

_ s+0)"
P(n|s+b) = (5 +5) e~ (510)

n!

e Now b is estimated from a sideband measurement
instead of MC simulation.

— Joint likelihood of signal count and sideband count is
L(N,N_, |s,b)= Poisson(N | s+ b)- Poisson(N | T - b)

Constant factor T accounts for possible
size difference of signal/background region

— Nobody will consider the uncertainty on b in the signal region a systematic
uncertainty (since it is constrained from side-band data),
but note the similarity in the full likelihood with the ‘JES’ systematic uncertainty

L(N,0ls,c,.) = Poisson(N | s+b(1+0.1c,.,)) - Gauss(0 | a5, 1)

Wouter Verkerke, NIKHEF



Sideband measurements with systematic uncertainties

Sideband measurements can also be affected by systematic
uncertainties

L(N,N_, |s,b)= Poisson(N | s+ b)- Poisson(N | T - b)

Above model has effectively has a constant ‘response function’
implemented by the factor T, which is ratio of bkg acceptance in
SR to CR, but this ratio estimate may be affected by detector
simulation uncertainties such as JES.

How can we implement the effect of JES uncertainty in the
‘transport factor’ of the background estimate from CR to SR?

C

L(N,N_,,0ls,b,c,.) = Poisson(N | s+ b)- Poisson(N_, | t(1+ Xa ) b): Gauss(0 |l a ,1)

| |
JES response model for ratio ber/bcg

Subsidiary measurement
of JES response parameter

Wouter Verkerke, NIKHEF



MC statistical uncertainties as systematic uncertainty

e |n original JES uncertainty example, the MC statistical uncertainty
was ignored (since 100Mevt were available)

e \What should you do if MC statistical uncertainties cannot be
ignored?
e [ollow same procedure again as before:

— Define response function (this is trivial for MC statistics:
it is the luminosity ratio of the MC sample and the data sample)

— Define distribution for the ‘subsidiary measurement’ — This is a Poisson
distribution — since MC simulation is also a Poisson process

— Construct full likelihood (‘profile likelihood’)
L(N,N,,-|s,b)=Poisson(N | s+ b)- Poisson(N,,. | T b)

Constant factor T = L(MC)/L(data)

e Note uncanny similarity to full likelihood of a sideband measurement!
L(N,N_, |s,b)= Poisson(N | s+ b)- Poisson(N _, | T - b)
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MC statistical uncertainties as systematic uncertainty

e [or notational convenience parameters associated with MC
statistical uncertainty are expressed as renormalized y
parameters, similar to the renormalized a parameters

L(N |s,b) = Poisson(N | s+ b)- Poisson(N,,- | T b)

l l

L(N |s,y) = Poisson(N | s+vb)- Poisson(N,,. | T-yb)

where b is now a constant expression
(nominal lumi-normalized event count)
and y is a parameter with nominal value 1

e Just for fun & completeness: the full likelihood with modeling of
both MC statistical uncertainty and JES uncertainty.

L(N ls,a,.,y) = Poisson(N | s+ (1+ Xa ., )yb) - Poisson(N ,,. | tyb)- Gauss(0 |l c.¢,1)

Wouter Verkerke, NIKHEF



Overview of common subsidiary measurement shapes

e Gaussian G(x|u,0)

— ‘Default’, motivated by Central Limit Theorem
(asymp dist for sum of random variables)

e (Rescaled) Poisson P(N|uT) > .

— Obvious choice for any subsidiary measurement
that is effectively a counting experiment

— NB: For a Poisson model the distribution in p
is a Gamma distribution (posterior of Poisson)

— Scale factor T allows to choose variance
independently of mean (e.g. to account for
side-band size ratio, data/mc lumi ratio) oL 1 Gme?

1.5¢

e LogNormal LN(x|u,0) >

— Asymptotic distribution for product g
of random variables

— Appealing property for many applications is
that it naturally truncates at x=0 og:




Specific issues with theory uncertainties

e Modeling of theoretical syst. uncertainties follows familiar pattern
— Define response
— Define distribution for the ‘subsidiary measurement’

—  Construct full likelihood

e But distribution of subsidiary theory measurement can be a thorny issue

— For detector simulation uncertainties, subsidiary measurement usually based on actual
measurement - Central Limit Theorem = convergence to Gaussian distribution when
measurement is based on many events

— This argument does not always apply to theoretical uncertainties, as there may be no
underlying measurement

e Example: (N)LO scale uncertainties in Matrix Element calculations

— Typical prescription “vary to 0.5x nominal and 2x nominal and consider the difference”
makes no statement on distribution

— Yet proper statistical treatment of such an uncertainty (i.e. modeling in the likelihood)
demands a specified distribution

— Not clear what to do. You can ask theory expert, but not clear if has a well-motivated
choice of distribution...

— Inany case if choice of distribution turns out not to matter too much, you just pick one.

Wouter Verkerke, NIKHEF



Specific issue with theory uncertainties

Worst type of ‘theory’ uncertainty are prescriptions that result in
an observable difference that cannot be ascribed to clearly
identifiable effects

Examples of such systematic prescriptions

— Evaluate measurement with CTEQ and MRST parton density functions and
take the difference as systematic uncertainty.

— Evaluate measurement with Herwig and Pythia showering Monte Carlos and
take the difference as systematic uncertainty

| call these ‘2-point systematics’.

— You have the technical means to evaluate two known different configurations,
but reasons for underlying difference are not clearly identified.

Wouter Verkerke, NIKHEF



Specific issue with theory uncertainties

It is difficult to define rigorous statistical procedures to deal with
such 2-point uncertainties. So you need to decide

If their estimated effect is small, you can pragmatically ignore
these lack of proper knowledge and ‘just do something
reasonable’ to model these effects in a likelihood

If their estimated effect is large, your leading uncertainty is related
to an effect that largely ununderstood effect. This is bad for
physics reasons!

— You should go back to the drawing board and design a new measurement
that is less sensitive to these issues.

— Hypothetical example:
*You measure an inclusive cross-section.
* But Pythia-Herwig effect is largest uncertainty, originates from the visible-to-
inclusive acceptance factor.
* Does it make to publish the inclusive cross-section, or is it better to publish
visible cross-section in some well-defined fiducial range?
* Your measurement can then contribute to further discussion and validation

of various showering MC packages. Wouter Verkerks, NIKHEF



Specific issues with theory uncertainties

e Pragmatic solutions to likelihood modeling of ‘2-point systematics’

¢ Final solution will need to follow usual pattern
L(N |s,a)= Poisson(N ls+b- f(a)): SomePdf (0| a)

e Since underlying concept of systematic uncertainty not defined,
the only option is to define its meaning terms in terms of response in the

physics measurement

e Example o b
. . . . . © Pythia
— Estimate of bkg with Herwig = 8, with Pythia = 12 o)
-
— In the likelihood choose b=8 and then define 3
fla) = |1+4*a|, so that f(0) results in ‘Herwig (b.f=8)’ )
and f(+1) results in ‘Pythia (b.f=12) f% Herwig
m

— For lack of a better word you could call a now the
‘Herwigness of fragmentation w.r.t its effect on my Nuisance parameter Oge,
background estimate’ °

e A thorny question remains: What is the subsidiary measurement for a?

— This should reflect you current knowledge on a.
Wouter Verkerke, NIKHEF



Specific issues with theory uncertainties

e Subsidiary measurement of a theoretical 2-point uncertainty
effectively quantifies the ‘knowledge’ on these models

e Formally staying in concepts of frequentist statistics here: likelinood of subsidiary measurement L(x|a) is strictly P(data|theory),
but you ‘data’ here is not really data but something that quantifies your belief since you have no data on this problem.

e | realize this sounds very much like “you have no idea what you’re doing”, but to some extent this is precisely the problem
with 2-point systematics — you really don’t know (or decided not to care about) the underlying physics issues.

e Some options and their effects

Box with ,
Gaussian Gaussian wings Delta fuctions
;:).0257 §.025~ 5.025: \
0.020— gu.oz f%o.ozz \$©
0.015— 0.015 0,015? @i\&(\
i R\
0.01— 0.01 0.01f >Q\Q
E qd°
0.005— 0.005 0.005} ©<Q
c F O
Pythia Herwig Pythia Pythia Herwig Pythia Pythia Herwig Pythia
Prefers Herwig at 10 ﬁll prgdmhgnps t?gtweenll Only ‘pure’ Herwig
erwig and Fythia equally and Pythia exist
probable
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Modeling multiple systematic uncertainties

¢ |ntroduction of multiple systematic uncertainties presents no
special issues

e Example JES uncertainty plus generator ISR uncertainty

L(N,01s,0,,0t,0) = P(N | s+ b(1+0.1a . +0.050t,5,)) GOl €t 1) - G(O L, 1)

Y Y Y

Joint response function

, One subsidiary
for both systematics

measurement for each
source of uncertainty

e A brief note on correlations

— Word “correlations” often used sloppily — proper way is to think of correlations
of parameter estimators. Likelihood defines parameters a g, Qigp.

The (ML) estimates of these are denoted &, 4,

— The ML estimators of @, using the Likelihood of the subsidiary
measurements are uncorrelated (since the product factorize in this example)

— The ML estimators of &, using the full Likelihood may be correlated.
This is due to physics modeling effects encoded in the joint response function
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Modeling systematic uncertainties in multiple channels

e Systematic effects that affect multiple measurements should be
modeled coherently.

— Example — Likelihood of two Poisson counting measurements

LN, .Ny 15,050) = P(N, Vs f, +B,(1+0.1ct,5)) P(Ny 15 f + by (1-0.301,))- G(O L et 5.1):
Y Y Y

JES response JES response JES
function for function for  subsidiary
channel A channel B measurement

— Effect of changing JES parameter q g coherently affects both measurement.

— Magnitude and sign effect does not need to be same, this is dictated by the
physics of the measurement

Wouter Verkerke, NIKHEF



Summary on likelihood modeling of systematic uncertainties

e [0 describe a systematic uncertainty in a likelihood model you need

— A response model that deterministically describes the effect underlying the
uncertainty (e.g. a change in calibration). Such a model has one or more
parameters that control the strength of the effect

— The ‘external knowledge’ on the strength of the effect is modeled as Likelihood
representing the ‘subsidiary measurement’ through which this knowledge was
obtained

e Conceptually this is identical to including the likelihood of the actual calibration
measurement in the likelihood of the physics analysis

¢ |n practice a simplified form of the measurement is included, but you must choose an explicit
distribution that best represents the original measurement. For systematic uncertainties that related to

external measurements (calibrations), this is often a Gaussian or Poisson distribution

e Modeling prescription can easily be repeated to extend describe
effect of multiple uncertainties in multiple simultaneous measurement

— Conceptually it is not more complicated, but technically it can get tedious. We
have good tools for this = will discuss these later

Wouter Verkerke, NIKHEF



Summary on likelihood modeling of systematic uncertainties

e (ften the process of modeling uncertainties in the likelihood
requires information that is traditionally not provided as part of a
systematic uncertainty prescription

e This is good thing — your evaluation of these uncertainties
otherwise relies on tacit assumptions on these. Discuss modeling
assumptions you make with the prescription ‘provider’

e You may also learn that your measurement is strongly affect by
something you don’t know (e.g. distribution of a theory
uncertainty). This is also a good thing. This is a genuine physics
problem, that you might have otherwise overlooked

e Theory uncertainty modeling can pose difficult questions

— Usually discovered 3 days before approval deadline, tendency is to ‘be
conservative’ and not think much about problem. ‘Conservative’ solution

tend to be ‘naive error propagation’ = problem gets hidden behind
unspecified assumptions of that method.

Wouter Verkerke, NIKHEF



Dealing with nuisance parameters — The profile likelihood ratio

e (Once we introduced systematic uncertainties as ‘nuisance

parameters’, we need to account for them in the statistical
inference

e [or frequentist confidence intervals with LR test statistic,
incorporate ‘new’ parameters 6 as follows:

Likelihood for given p Maximum Likelihood for given

A= By =2

Maximum Likelihood Maximum Likelihood

e NB: value profile likelihood ratio does not depend on 6

Wouter Verkerke, NIKHEF, 42



Profiling illustration with one nuisance parameter
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Link between MINOS errors and profile likelihood

Parameter of interest

sg2

Note that MINOS
algorithm in MINUIT
gives same uncertainties

as interval on
Profile Likelihood Ratio

N N Tl dg il
34 36 38 4 42 44 45 48 5

sg2

—  MINOS errors is bounding box
around A(s) contour

— Profile Likelihood = Likelihood
minimized w.r.t. all nuisance

parameters A
L(u,0(w)) _

ghnnnlannallinnalannnlhanellnannlannnllnnnflaa:
0 01 02 03 04 05 06 0.7 0.8
. = frac

w
T

Projectign of nll
w0

N H
T TT T T[T T 7T

Au) = 2
() L(2.6)

01 02 03 04 05 06 0.7 08 09
frac
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Modeling
shape systematics:
template morphing



Introducing response functions for shape uncertainties

e Modeling of systematic uncertainties in Likelihoods describing
distributions follows the same procedure as for counting models

— Example: Likelihood modeling
distribution in a di-lepton invariant
mass. POl is the signal strength p

n
[=]

Events/(0.5)

100

Ly 1p0) = n[“ -Gauss(m,’,91,1)+(1 - u)- Uniform(mz(zi))]

e (Consider a lepton energy scale
systematic uncertainty that affects this measurement

— The LES has been measured with a 1% precision
— The effect of LES on m; has been determined to a 2% shift for 1% LES change
L(m, | u,a, ) = H[u -Gauss(m,’,91-(1+2a, ., 1)+ (1 = u)- Uniform(m,(l”)] -Gauss(0 | o, ¢, 1)
i \_'_I | T J

Response function Subsidiary measurement

Wouter Verkerke, NIKHEF



Analytical versus non-parametric shapes

e At hadron colliders (including), analytical distributions for signal
and background shapes are usually not available

e |nstead rely on MC simulation chain to obtain distribution -

knowledge of distribution is a histogram of expected yields in bins
of a discriminating observable

Events/(0.5)
o
o

—_
o
o

L(N| u) = HPoisson(Nl. lus; +b,)

P 2} [o5]
o o o
T[T T T[T T[T 1T

n
o
T T T

%OI I I8|2‘ I I8I4I I I8I(SI I I88 ‘ |90' I I92I I I94' I96I ' I98I I I1)(00
e Modeling of a rate systematic uncertainty is straightforward:

L(]V lu,a) = HPoisson(Nl. lus,-(1+3.75a) + b,) -|Gauss(0 I a,l).
i Y |
Response function  Subsidiary measurement

What about a systematic effect that shifts the mean? Wouter Verkerke, NKHER




Modeling of shape systematics in the likelihood

e [Effect of any systematic uncertainty that affects the shape of a
distribution can in principle be obtained from MC simulation chain

— Obtain histogram templates for distributions at ‘+10’ and ‘-1¢’
settings of systematic effect

1 J 1 H )
-10 nominal
c 2 E
goor- Aoo— 3 [
2 [ S r o L
= [ S [ ool
> M 5 L
S8 o8- § T
Q [ o " ‘6 [
'% L L .%80—
o n L E L
60— 60— C
i i 60—
40— a0 L
- - 40—
20— 20— 20—
'E N NS NS RN R s N _|||I|||I|||I||| [ N P W W Ll [ N ' T S e
80 82 84 86 86 90 02 94 96 98 100 %0 82 84 86 88 90 92 94 96 98 100 @6 82 84 86 86 90 92 94 96 88 100
X X X

e Now construct a response function based on the shape of these
three templates.

Wouter Verkerke, NIKHEF



Projection of hsig_plus

Need to interpolate between template models

e Need to define ‘morphing’ algorithm to define

distribution s(x) for each value of a S(X) | gzt
'§|oo_—
S(X)la=0
Hoof- :
/ s(x,a=+1)
S(X) [ a=-1 :

,\ouuazu ‘84”‘86”‘88‘ I90”|92“94|”96”|g!3”‘ —O
/ X S(XIG_ )

y T celvaaleg ' NS NN R N
0 @ 54 8 6 9 62 94 % 95 100 S(X,G='1)
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Projection of hsig_min

Piecewise linear interpolation

e Simplest solution is piece-wise linear interpolation for each bin

P 2] o] (=]
o (=] o (=]
T LI T

n
o

%0 82 84 86 88 90 92 94 96 98 100

X

60

Piecewise linear

interpolation %
response model 0
for a one bin
30
20
10
3

Projection of hsig
S D © o
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n
o
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Visualization of bin-by-bin linear interpolation of distribution
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Limitations of piece-wise linear interpolation

¢ Bin-by-bin interpolation looks spectacularly easy and simple,
but be aware of its limitations

— Same example, but with larger ‘mean shift’ between templates

Note double peak structure around |a|=0.5

(U1 5 T s
< - C
s [
©
od .47
8 ] 0.5[
Q.27 *
w0 1 :
[aV] — s @ N
™ 1: o
@6 : -0.5— ;
8. : i
] _1—_ EEEIE A =§E§
0_ _1 5_ | | 1 11 | 1 |- | L1 1 | 1 | | | Ig EE
1% ’ 84 86 88 90 92 94 96
2,
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Limitations of piece-wise linear interpolation

e Also be aware of extrapolation effects

— Nuisance parameters associated to systematic uncertainties can be pulled
well beyond ‘10’, especially in high-significance hypothesis testing

— Original example (with modest shift), but now visualized up to |a|=5

NP P

Events / (0.325 x 0.1)

MC statistical fluctuations
amplified by extrapolation

Wourter Verkerke, NIKHEF



Non-linear interpolation options

e Piece-wise linear interpolation leads to kink in response functions that
may result in pathological likelihood functions

A RooPlot of "alpha"

sy sy
N s

IIIIIIIIIIIIIIIIIIIIIIIII[

Projection of Profile of nliWithCons

\
\
\
\
\
\
\
\
\
\
\
\

0.2

=)
N TT
'
N
o
L

L(a>0) predicts a<0 L (a<0) predicts a>0

e A variety of other interpolation options exist that improve this
— Parabolic interpolation/linear extrapolation (but causes shift of minimum)

— Polynomial interpolation [orders 1,2,4,6]/linear extrapolation (order 1 term allows

for asymmetric modeling of templates)
Wouter Verkerke, NIKHEF



Non-linear interpolation options
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terpolation for >1 nuisance parameter

N

1ISEe

W

iece-

F)

linear interpolation can be trivially extended

f >1 nuisance parameter.

ise
ing o

W

lece-

Concept of pi

to apply to morph

ffect on full distribution, but easy to understand concept

lize e

isua
idual bin level

It to v

ICU

Di
at the

v

d
One-parameter interpolation

N

[

B84 86 B8 90 52,0 9 8 100

o L L B

(\ "
L

Wouter Veerkerke, NIKHEF

=0

|
T

N Extrapolation to |a[51

Kink at a:

Visualization of 2D interpolation
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Other morphing strategies — ‘horizontal morphing’

e (Other template morphing strategies exist that are less
prone to unintended side effects
¢ A ‘horizontal morphing’ strategy was invented by Alex read.
— Interpolates the cumulative distribution function instead of the distribution
— Especially suitable for shifting distributions
— Here shown on a continuous distribution, but also works on histograms
— Drawback: computationally expensive, algorithm only worked out for 1 NP
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Yet another morphing strategy — ‘Moment morphing’

M. Baak & S. Gadatsch
e (Given two template model f (x) and f,(x) the strategy of moment

morphing considers first two moment of template models
(mean and variance)

po= [ x- f(x)dx
V.= [(r-p) - f(0dx

u=fx filadx
V, = [(r=p, ) f,(x)dx

e The goal of moment morphing is/to construct an interpolated function
that has linearly interpolated moments
u(a)=au_+(I-au, 1
Vie)=aV_+(-a)V, ]
e |t constructs this morphed function as combination of linearly
transformed input models
fx,a)—=af (ax+b)+(1-a)f (cx—-d)

— Where constants a,b,c,d are chosen such so that f(x,q) satisfies conditions [1]

Wouter Verkerke, NIKHEF



Comparison of morphing algorithms

Vertical Horizontal Moment
Morphing Morphing Morphing
Gaussian Suf
varying
width F
Gaussian (N3
varying 3
mean
Gaussian : :—
to o i
Uniform o 3
this s %
conceptually ambigous!) k.. e . A . oEr

" orphing? v/ X v/

Wouter Verkerke, NIKHEF, 59



Shape, rate or no systematic”

e Be judicious with modeling of systematic with little or no significant
change in shape (w.r.t MC template statistics)

— Example morphing of a very subtle change in the background model

— Is this a meaningful new degree of freedom in the likelihood model?

5x0.1)
o on
NI 4

Eyeqts / (0.32
o R I RN N

AN D |
— A X2 or KS test between o il \||| I I n|u||||||‘

nominal and alternate g J | & HH H|
template can help to decide e ‘ 1l
' U
— Most systematic uncertainties
affect both rate and shape, but can make

if a shape uncertainty is meaningul
independent decision on modeling rate (which less likely to affect fit stability)

Wouter Verkerke, NIKHEF



Fit stability due to insignificant shape systematics

e Shape of profile likelihood in NP a clearly raises two points

400 —

9

o o Eyents/(0.325x0,1)
& i\)'b'mm_i\:'&q"mm

Projection of Profile of -log(likelihood)

o
o
o IIIIIIIIIIIIIIIIIIIII]IIIIIII]IIII

1.
alpha

e 1) Numerical minimization process will be ‘interesting’

e 2) MC statistical effects induce strongly defined minima that are fake

— Because for this example all three templates were sampled from the same parent
distribution (a uniform distribution)

Wouter Verkerke, NIKHEF



Recap on shape systematics & template morphing

e |mplementation of shape systematic in
likelihoods modeling distributions conceptually *
no different that rate systematics in counting T +
experiments oo oic s |

L(m, | u,a, ) = H[u -Gauss(m,’,91-(1+2a, ., 1)+ (1 - u)- Umform(m,”)] Gauss(0 1 a, 1)

e For template modes obtained from MC simulation template
provides a technical solution to implement response function

— Simplest strategy piecewise linear interpolation,
but only works well for small changes

— Moment morphing better adapted to modeling :
of shifting distributions : H

— Both algorithms extend to n-dimensional
interpolation to model multiple systematic NPs
in response function

Eonts 4 0325 x8.03)
bbb A A

— Be judicious in modeling ‘weak’ systematics: -
MC systematic uncertainties will dominate likelihood Wouter Verkerke, NIKHER



Nuisance parameters for template statistics

e Template morphing implements response function
for shape systematic NPs.

e How do we model uncertainty in template due to finite MC statistics?

— Again same concept: introduce response model in template and add subsidiary
measurement to quantify MC statistical uncertainty. Conceptually straightforward
for histograms: all bins are independent

~ .~ Binned likelihood
L(N) = HP(Ni I5:+0) with rigid template

bins @

L(N15.b) = [P(N, 15, +b)[ [ PG, 1) [ P, 1)

bins bins . bins
|
Response function ~ Subsidiary measurements

w.rt. s, b as parameters  of s,b from s~,b~

Projectian of model
2 e

3

0.04

I LN 7.7, = ] [Py 5+, 00] | PGy 80] | P 1y, 0)

bins bins bins

Normalized NP model (nominal value of all y is 1)



Nuisance parameters for template statistics

e Solution of one NP per template bin conceptually straightforward,
but can lead to a very large number of NPs in even the simplest
models (e.g. 100 bins - 200 NPs for a signal+background model!)

e |s this a problem? And if yes, can we do something about this?

— It is mostly a problem because it makes numerical minimization of the likelihood
tedious (many gradients to calculate, huge covariance matrix)

e Roger Barlow and Christine Beeston realized that for parameter
estimation of template yields in ‘sum of template models’ (‘signal
and background’) the minimization of each y parameter can be
factorized and solved with a set of n independent equations

Computer Physics Communications 77 (1993) 219-228 CompUIer PhYSiCS The t,— are given by eq. (13). If di iS Zero then
North-Holla " I . .
Rortiotand Communications t; is 1: if not then
d L4
i
1 —¢ =fi=zijji=Zl+p.t . (15)

Fitting using finite Monte Carlo samples i j j it

Roger Barlow and Christine Beeston If these n equations are satisfied, with eq. (14)

Department of Physics, Manchester University, Manchester M3 9PL, UK used to define the Aji’ then all the m X n equa-

Received 27 March 1993 tiOnS (1 1) arc Satlsﬁed

Wouter Verkerke, NIKHEF



Merits of the Beeston-Barlow approach

e Beeston-Barlow method implemented in ROOT class TFractionFitter

— Works great, effectively a minimization prescription, not a likelihood modeling
prescription

— Corresponding likelihood is full likelihood model shown earlier

LN1S.b)=[ [PV s+ B)[ [ PG 1) [P 1)

bins bins bins

e [Effective computational efficiency gain also not completely clear

— Solution of BB equation takes comparable amount of calculation
compared to a numeric gradient calculation in one y parameter, so do not
expect a large gain in minimization phase of MINUT

di D4
1—t,._f"_2j:’p’ ji_;'l+pjt,' (15)

— Some work on this still ongoing, but ‘plain’ BB is largely unused in LHC analyses
now.

Wouter Verkerke, NIKHEF



Reducing the number NPs — Beeston-Barlow ‘lite’

e Another approach that is being used is called ‘BB’ — lite

e Premise: effect of statistical fluctuations on sum of templates is
dominant = Use one NP per bin instead of one NP per
component per bin

‘Beeston-Barlow’

LN15,b) = [PV 15, + )] [ PG, 1s)] [ P, 15)

bins bins bins
‘Beeston-Barlow lite ’

L(N|ﬁ)=nP(N,~ |ni)HP(§i+];i In,)

bins bins

el
¢

Projectgn of mod
@

3

Response function ~ Subsidiary measurements

[ w.r.t. n as parameters  of n from s~+b~
0.04

0.02

LN 17) =] [ PN, 1y,G +B)] | PG +6,17,G, +5)

[ N W R N ST SRR NS N ST bins bins
-0 8 6 4 -2 0 2 4 6 8 10

X Normalized NP lite model (hominal value of all y is 1)




Pruning complexity — MC statistical for selected bins

e (Can also make decision to model MC statistical uncertainty on a
bin-by-bin basis
— No modeling for high statistics bins

— Explicit modeling for low-statistics bins

—-
n
o

Events/(0.5)

100[—
sof-
6o
40

20

-cxpll

LN =[[PN G +b) || PG+b1nG+b) [] k)

bins low-stats bins hi-stats bins

Wouter Verkerke, NIKHEF



Adapting binning to event density

e [Effect of template statistics can also be controlled by rebinning
data such all bins contain expected and observed events

— For example choose binning such that expected background has a uniform
distribution (as signals are usually small and/or uncertain they matter less)

— Example of this approach in the ATLAS H>WW analysis

L B
190 ATLAS

120F s = aTevJLdt 5.8 fb"

Events / 10 GeV

L

1003 H—>WW —>evuv/uvev +0/1 jets

AL R e e e
-6 Data %~ SM(sys @ stat)
| ww [ Wzzzwy
(K [ Single Top
Bl Z+jets  [] WHets

[ H[125GeV]

Events / 0.33 arbitrary

=)

Data / SM

(NF applled for 2+jets Z+1ets Top, WW ,) Plot: "em:CutSR2 1jet/MT mapped em1jsr2'

160 T T R A ARARR AR

- ATLAS Internal o 0ue = S(sa) 3
140 . B ww B wzizzwy
- Vs=8TeV,[Ldt=20.7f" [ SingeTop

r (*) . B Z+jets [] W+ets -
120— H-WW '—evuv + 1 jet B H[125Gev]
100 = KS Prob =37.9% .
80 =

60
40
20

1.4
1.2
1E
0.8
0.6

0. 5 0. 6 0. 7 0. 8 0. 9 1
Mapped m_ [arbitrary]
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The interplay between shape systematics and MC systematics

e Best practice for template morphing models is to also include effect
of MC systematics

¢ Note that that for every ‘morphing systematic’ there is an set of two
templates that have their own (independent) MC statistical
uncertainties.

— A completely accurate should model MC stat uncertainties of all templates

s!+a-(sf=s') Va>0
s(a,...)=

T s!+a-(s)-s7) Va<0

L(Nla,57,5°,5%) = ]_[P(N,. | si(a,s;,sf),si*))n PG s;)ﬂ PG| s?)n PG 1s))
bins bins bins bins

Morphing response function Subsidiary measurements

e But has severe practical problems

— Can only be done in “full’ Beeston-Barlow model, not in ‘lite’ mode, enormous
number of NP models with only a handful of shape systematics...

Wouter Verkerke, NIKHEF



The interplay between shape systematics and MC systematics

e  Gommonly chosen s'+o(sf-s') Va>0
practical solution s(a,..)=y .
s;+o(s; —s;) Va<O

LNI5,b) = | [ PN 1y, [s,(es; sl ,s7)+ b D] | PG+ 5,175, +5,DG O e 1)

bins T bins Y

Morphing & MC response function Subsidiary measurements

Models relative MC rate uncertainty for each bin w.r.t the nominal
MC yield, even if morphed total yield is slightly different

B \ without BB-L
goo
go7f

0.03F

e Lo e Lo Lo e n
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4
alpha

e Approximate MC template statistics already significantly improves
influence of MC fluctuations on template morphing

- . , , . Wouter Verkerke, NIKHEF
— Because ML fit can now ‘reweight’ contributions of each bin



Summary on template morphing and template statistics

¢ Template morphing allows to model arbitrary responses of shape
systematics in template models

— Various technigues exist, choose carefully, be wary of MC statistical effects
that can dominate systematic effect

e Modeling of MC statistical uncertainties important if Nyc<10XN g4

— Full Beeston-Barlow likelihood most accurate, but leads to enormous number
of Nuisance parameters

— Beeston-Barlow-lite procedures gives very comparable answers if template
statistics are sufficient and results in less NPs

— Modeling of MC statistical uncertainties improves stability of template
morphing algorithms

Wouter Verkerke, NIKHEF



Modeling tools:
RooFit, RooStats
& HistFactory



Coding probability models and likelihood functions

e |mplementation of systematic uncertainties in likelihood models
typically leads to very complex probability models

e All statistical techniques discussed in Section 2,4 require numeric
minimization of likelihood functions. See problem in three parts

1. Construction of probability models and likelihood functions (always needed)

2. Minimization of likelihood functions (for parameter estimation, variance
estimate, likelihood-ratio intervals)

3. Construction of test statistics and calculation of their distributions,
construction of Neyman constructions on test statistics (p-values, confidence
intervals) and calculation (MC(MC)) integrals over Likelihood (Bayesian
credible intervals, Bayes factors)

e [or step 2 (minimization) the HEP industry standard is MINUIT

e [orsteps 1, 3 good tools have been developed in the past years,
will discuss these now.

Wouter Verkerke, NIKHEF



RooFit, RooStats and HistFactory

Will cover RooFit and HistFactory in
a bit more detail since they relate

RooFit
Language for building
probability models

Comprises datasets,
likelihoods, minimization,
toy data generation,
visualization and persistence

to model building — the key topic of this course

HistFactory

Language to simplify
construction of RooFit
models of a particular type:
binned likelihood

template (morphing) models

W, Verkerke & D. Kirkby
(exists since 1999)

Will briefly sketch
workings of RooStats

K, Cranmer, A, Shibata, G. Lewis,
L. Moneta, W. \erkerke
(exists since 2010)

RooStats

Suite of statistical tests
operating on RooFit
probability models

K. Cranmer, G. Schott,
L. MOD@IT& W. Verkerke Wouter Verkerke, NIKHEF
(exists since 2008)



RooFit core design philosophy

e Mathematical objects are represented as C++ objects

Mathematical concept RooFit class
variable X RooRealVar
function f(.X) RooAbsReal
PDF f (x) RoOAbsSPAf
space point )_é RooArgSet
integral ff(x)dx RooRealIntegral

list of space pomts RooAbsData



RooFit core design philosophy - Workspace

e The workspace serves a container class for all
objects created

—_— Gauss(X,,6)

RooGaussian g

RooFit
diagram

RooRealVar x RooRealVar y RooRealVar =z

RooFit

code RooRealVar x(“x”,”x”,-10,10) ;
RooRealvar m(“*m”,”y”,0,-10,10) ;
RooRealVar s(“s”,”z”,3,0.1,10) ;
RooGaussian g(“g”,”g”,x,m,s) ;



Basics — Creating and plotting a Gaussian p.d.f

Setup gaussian PDF and plot

// Create an empty plot frame
RooPlot* xframe = w::x.frame () ;
// Plot model on frame
model.plotOn (xframe) ;

// Draw frame on canvas
xframe->Draw() ;

| A RooPlot of "x" |

g,aussmng’DF
= [\V]
N [+/]
I l

Projedion of
2
o
l

Axis label from gauss titles -

0.01—

Unit
A RooPlot is an empty frame normalization
capable of holding anything

plotted versus it variable

0.005
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14
Basics — Generating toy MC events

Generate 10000 events from Gaussian p.d.f and show distribution

// Generate an unbinned toy MC set
RooDataSet* data = w::gauss.generate(w::x,10000) ;

// Generate an binned toy MC set
RooDataHist* data = w::gauss.generateBinned(w::x,10000) ;

// Plot PDF [ ARooPlot of "x" |
RooPlot* xframe = w::x.frame() 5
data->plotOn (xframe) ; gwo; % é
xframe->Draw () ; %2505_ w‘ﬂ{'ﬁd }Hﬁ
w -
200— H.}f{
Can generate both binned and 150 H*# {"H{
unbinned datasets = i t
100:— ﬁﬂi E&
- ’
S e
Q'M.l..l...l..l. | |...|.“i‘g~
“0 8 6 4 2 0 2 4 6 8 10



Basics — ML fit of p.d.f to unbinned data

A RooPlot of "x” |

(A
7

Events /(0.2) [
[\V]
3
|

n
T

// ML fit of gauss to data
w: :gauss.fitTo(*data) ; -
(MINUIT printout omitted)

g
|

PDF
automatically
normalized

// Parameters if gauss now to dataset
Lo v b v v by vy

// reflect fitted values P
w::mean.Print ()

RooRealVar: :mean = 0.0172335 +/- 0.0299542
w::sigma.Print()

RooRealVar::sigma = 2.98094 +/- 0.0217306

g
|

o
2
|

// Plot fitted PDF and toy data overlaid
RooPlot* xframe = w::x.frame() ;
data->plotOn (xframe) ;

w: :gauss.plotOn (xframe) ;



RooFit core design philosophy - Workspace

e The workspace serves a container class for all
objects created

—_— Gauss(X,u,6)

RooWorkspace

RooGaussian g

RooFit
diagram

RooRealVar x RooRealVar y RooRealVar z

RooFit RooRealVar x(“x”,”x”,-10,10) ;

code RooRealVar m(“m”,”y”,0,-10,10) ;
RooRealVar s(“s”,”z”,3,0.1,10) ;
RooGaussian g(“g”,”g”,x,m,s) ;
RooWorkspace w(“w”) ;
w.import(g) ;



The workspace

e The workspace concept has revolutionized the way people share and
combine analysis

— Completely factorizes process of building and using likelihood functions

— You can give somebody an analytical likelihood of a (potentially very complex)
physics analysis in a way to the easy-to-use, provides introspection, and is easy to
modify.

/- - ™
/' RoohddPdt ‘)
sum p

RooWorkspace w(“w”) ;
w.import (sum) ;

/ RooGaussian \ [ RooGaussian /" RoofirgusBG \ RooRealVar RooRealVar
\ gauss2  / \gaussl )/ \ argus gifrac g2frac - - AN Y74
A - VLN w.writeToFile (“model.root”) ;

o

\ ™,
RooRealVar RooRealVar RooRealVar / RooConstVar |
nean? cutoff \@ar/ o 0.500000 /
\7_\7 /_;/

model.root

Wouter Verkerke, NIKHEF




Using a workspace

(  RoohddPar
/\*/ oo Rookeatar
T \/x;w/ 1
*":’:: ;;;; ) (o § ) (o) (o ) D,
,/h‘\,
/" RooddPa )
Rooﬁaussxan A Rooﬁausman \ Rooﬁr\zusBG \“ RooRealVar [ RooRealVar ‘)
\\ gauss? /,‘" \,\ gaussl /,/ argus / gifrac / @ac/

( RooRealVar ‘] [ RooRealVar ) RooRea]Var \ RooRealVar N/ RooRealVar / RooRea]Var \ RooConsWar “
\ mean? signa \ meant /’ \ X @ \ argpar // \ 0500000
\ \

v d \_/ 7/’/

// Resurrect model and data

TFile f(“model.root”) ;
RooWorkspace* w = f£.Get (“w”) ;
RooAbsPdf* model = w->pdf (“sum”) ;
RooAbsData* data = w->data (“xxx”

// Use model and data
model->fitTo (*data)

RooPlot* frame =

w->var (“dt”) ->frame () ;
data->plotOn (frame) ;
model->plotOn (frame) ;
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Accessing workspace contents

e | ooking into a workspace

w.Print() ;

variables

RooGaussian: :f[ x=x mean=mean sigma=sigma ] = 0.249352
e Access components two ways

// 1 - Standard accessor method

RooAbsPdf* pdf = w->pdf (“f”) ;

// 2 - Import contents into C++ namespace in interpreter

w.exportToCint (“w”

7

RooPlot* frame = w::x.frame ()

w::f.plotOn (frame) ;
// strongly typed: w::f is ‘RooGaussiané&’



RooFit core design philosophy - Workspace

e The workspace serves a container class for all
objects created

ath Gauss(x,u,0)

RooWorkspace

RooGaussian g

RooFit
diagram

RooRealVar x RooRealVar y RooRealVar z

RooFit RooRealVar x(“x”,”x”,-10,10) ;

code RooRealVar m(“m”,”y”,0,-10,10) ;
RooRealVar s(“s”,”z”,3,0.1,10) ;
RooGaussian g(“g”,”g”,x,m,s) ;
RooWorkspace w(“w”) ;
w.import(g) ;



Factory and Workspace

One C++ object per math symbol provides
ultimate level of control over each objects functionality, but results
in lengthy user code for even simple macros

Solution: add factory that auto-generates objects from a math-like
language. Accessed through factory() method of workspace

Example: reduce construction of Gaussian pdf and its parameters
from 4 to 1 line of code

RooRealVar x(“x”,”x”,-10,10)
RooRealVar mean (“mean”,”mean”,5) ;
RooRealVar sigma(“sigma”,”sigma”, 3) ;
RooGaussian f(“f”,”f” ,x,mean,sigma) ;

. ]

w.factory (“"Gaussian: :£f(x[-10,10] ,mean[5] ,sigma[3]) ")



Populating a workspace the easy way - “the factory”

e The factory allows to fill a workspace with pdfs and variables using
a simplified scripting language

ath Gauss(x,u,0)

RooWorkspace

RooAbsReal £

RooFit
diagram

RooRealVar x RooRealVar y RooRealVar z

RooFit

code
RooWorkspace w(“w”)

w.factory (“RooGaussian::g(x[-10,10] ,m[-10,10],=z[3,0.1,10])");



Model building — (Re)using standard components

e RooFit provides a collection of compiled standard PDF classes

<j:| Physics inspired

ARGUS,Crystal Ball,

RooPolynomial Breit-Wigner, Voigtian,
/ B/D-Decay,....

RooBMixDecay

RooHisthff [1

RooArgusBG ¢

1 Non-parametric
Histogram, KEYS

RooGaussian 4 6 8 X

| I |
7 8 9

i

| Basic

\+=+—  Gaussian, Exponential, Polynomial,...
Chebychev polynomial

L1
T~

[FETRI ETRTHIRTN
275.285.29 !ix

RN R RN R AR RN RR R R R

Easy to extend the library: each p.d.f. is a separate C++ class

20



Model building — (Re)using standard components

List of most frequently used pdfs and their factory spec

Gaussian
Breit-Wigner
Landau
Exponential
Polynomial
Chebychev
Kernel Estimation
Poisson

Voigtian
(=BWQRG)

Gaussian: :g(x,mean,sigma)
BreitWigner: :bw (x,mean,gamma)
Landau: :1(x,mean,sigma)
Exponental: :e(x,alpha)
Polynomial: :p(x,{a0,al,a2})
Chebychev: :p(x, {a0,al,a2})
KeysPdf: :k (x,dataSet)
Poisson: :p(x,mu)

Voigtian: :v(x,mean,gamma, sigma)

21



38
The power of pdf as building blocks — Advanced algorithms

e Example: a ‘kernel estimation probability model’

— Construct smooth pdf from unbinned data, using kernel estimation technique

Adaptive Kernel:

Gaussian pdf Summed pdf width of Gaussian depends
Sample of events for each event for all events on local event density

) H

k] @

s

§2. H
fz Ez
1 1

ion of

T T T e
b b b by b
T T T
v b b bl
T T T

@)
Xl b b b b b
rojecti k
e d
e o - N o w
T T [T T T
1 | 1 1 |

e [Example

Events /(1)

w.import (myData,Rename (“myData”)) ;
w.factory ("KeysPdf: :k (x,myData) ”) ;

4

e Also available for n-D data

:l 11 I L1l l 111 I 11 11 l 111 l 11 1
00 2 4 6 8 10 12 14 16 18 20
X




The power of pdf as building blocks — adaptability

e RooFit pdf classes do not require their parameter arguments to be
variables, one can plug in functions as well

e Allows trivial customization, extension of probability models

class RooGaussian also class RooGaussian!

Gauss(x | u,o) Gauss(xlu-(1+2a),0)

Introduce a response function for a systematic uncertainty

// Original Gaussian
w.factory (“Gaussian: :gl(x[80,100] ,m[91,80,100],s[1])")

// Gaussian with response model in mean
w.factory(“expr: :m response (“m*(l+2alpha)”,m,alpha[-5,5])")
w.factory(“Gaussian::gl(x,m response,s[1])”)

NB: “expr” operates builds an intepreted function expression on the fly
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The power of building blocks — operator expressions

e (Create a SUM expression to represent a sum of probability models

.factory (“Gaussian: :gaussl (x[0,10] ,meanl[2] ,sigma[1l]")
.factory (“"Gaussian: :gauss2 (x,mean2[3] ,sigma) ")
w.factory ("ArgusBG: :argus (x,k[-1],9.0) ")

4
4

4

.factory ("SUM: :sum(glfrac[0.5] *gaussl, g2frac[0.1]*gauss2, argus)”)

¢ |n composite model visualization 00
components can be accessed by name =

// Plot only argus components %0
w: :sum.plotOn (frame,Components (“argus”),
LineStyle (kDashed))

.
4




39
Powerful operators — Morphing interpolation

e Special operator pdfs can interpolate existing pdf shapes

— Ex: interpolation between Gaussian and Polynomial

w.factory (“Gaussian::g(x[-20,20],-10,2)") ;
w.factory (“Polynomial::p(x, {-0.03,-0.001})") ;
w.factory (“IntegralMorph: :gp(g,p,x,alpha[0,1])”)

4

A RooPlot of "x"

[ Histogram of hh__x_alpha |

A RooPlot of "x"

+ 0.008

Events /(0.4)

-

Fit to data

Three morphing operator classes available
— IntegralMorph (Alex Read).
—  MomentMorph (Max Baak).

— Piecewiselnterpolation (via HistFactory)



Powerful operators — Fourier convolution

e (Convolve any two arbitrary pdfs with a 1-line expression

w.factory (“Landau: :L(x[-10,30],5,1)")
w.factory (“"Gaussian::G(x,0,2) ")

w: :xX.setBins (“cache”,10000)

e [Exploits power of FFTW
package available via ROOT

— Hand-tuned assembler code
for time-critical parts

— Amazingly fast: unbinned ML fit to
10.000 events take ~5 seconds!

4

; // FFT sampling density
w.factory ("FCONV: :LGf (x,L,G) ")

; // FFT convolution

| la

ndau (x) gauss convolution |

Events / (0.4)

\‘
(=3
o
T T

o
(=
o
TT T

5oof
4oof
3000
zoof

100

-2
T
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Putting it all together — a calibration uncertainty in a counting experiment
Exal I I p | e 1 . CO U nt I n g eX pt e Simplify expression by renormalizing “subsidiary measurement”

Signal rate (our parameter of interest)

o \Will now demonstrate how to L(NIs,a)=Poisson(NI;+b(l+0A.1a))~Gauss(0Ia,l)

7 A | A 4

construct a model for a o — | N
/ “Subsidiary measurement”
' " [ .
counting experiment with cxpeciaion 1M MO  fo sevmeltoa JEg,  Cocoses exemaloowdge

(a constant) parameter controls JES calibration
[a unit change in a

' '
a Syste m a‘t I C u n Ce rtal nty -a5% JES change - The scale of parameter
still results in a 10% ais now chosen such that
acceptance change] values +1 corresponds to the
nominal uncertainty
(in this example 5%)
Wouter Verkerke, NIKHEF

L(N |s,a)= Poisson(N | s + b(1+0.1a))- Gauss(0 | o, 1)

// Subsidiary measurement of alpha
w.faxtory (“Gaussian: :subs(0,alpha[-5,5],1)") -

// Response function mu (alpha)
w.factory (Vexpr: :mu('‘s+b(1+0.1*alpha)’ ,s[20] ,b[20] ,alpha)”) ;

// Main measurement
w.factory (“Poisson: :p(N[0,10000] ,mu) ") ;

// Complete model Physics*Subsidiary
w.factory (“"PROD: :model (p,subs) ”) ;



Example 2: unbinned L with syst.

e Will now demonstrate how to
code complete example of
the unbinned profile likelihood

of Section 5;

L(m, lu,0, )= H[u -Gauss(m

// Subsidiary measurement of alpha

()
n»

Introducing shape systematic uncertainties

e Modeling of systematic uncertainties in Likelihood describing
distributions follows the same procedure as for counting models
— Example: Likelihood modeling

distribution in a di-lepton invariant
mass. POl is the signal strength p

o}
L, Iu;-H[u-G:xua.\(m;,".‘)IAl)Ml —;ll-Unilbnn(mjj‘)] w

...................................

uuuuuuuuuuuu

e Consider a lepton energy scale
systematic uncertainty that affects this measurement

— The LES has been measured with a 1% precision
— The effect of LES on m, has been determined to a 2% shift for 1% LES change

Ly, \p.a ) = H[u*Gzluss(m},".‘)l (1420, D)+ (1 —;1)~Uniform(m;,”)]-Guu.\'x(O lat,.1)
i — —_—

Response function Subsidiary measurement

91-(1+20,;),1)+ (1- w)- Uniform(m{”) | Gauss (0, 5,1)
|

w.factory (“Gaussian: :subs(0,alpha[-5,5],1)");

// Response function m(alpha)

w.factory(Yexpr: :m a(“m*(1+2alpha)”,m[91,80,100],alpha)”) ;

// Signal model

w.factory(“Gaussian::sig(x[80,100] ,m a,s[1])")

// Complete model Physics(signal plus background) *Subsidiary
w.factory ("PROD: :model (SUM(mu[0,1] *sig,Uniform: :bkg(x)) ,subs)”) ;




Example 3 : binned L with syst

e Example of template morphing
systematic in a binned likelihood

s!+a-(sf=s') Va>0
s(a,...)= . .
s, +a-(s;—-s;) Va<0

Visualization of bin-by-bin linear interpolation of distribution

L(N1a,57,5°5") = | [ PN/ 15,(00.57,57,57)) GO 1w, )

bins v

// Import template histograms in workspace
w.import(hs O,hs p,hs m) ;

// Construct template models from histograms
w.factory (“HistFunc::s_0(x[80,100] ,hs 0)") ;
w.factory (“HistFunc::s_p(x,hs p)”) ;
w.factory (“HistFunc::s _m(x,hs m)"”) ;

// Construct morphing model

w.factory (“"PiecewiselInterpolation::sig(s_0,s ,m,s p,alpha[-5,5])") ;

// Construct full model

w.factory (V"PROD: :model (ASUM(sig,bkg,£f[0,1]) ,Gaussian(0,alpha,l))”) ;




Reducing the number NPs — Beeston-Barlow ‘lite’

Example 4 - BeeSton‘BaHOW |ight e Another approach that is being used is called ‘BB’ - lite

e Premise: effect of statistical fluctuations on sum of templates is
dominant - Use one NP per bin instead of one NP per
component per bin

e Beeston-Barlow-(lite) modeling e
of MC statistical uncertainties

‘Beeston-Barlow lite

L(N17) =HP(N, |n,)HP(§, +b,1n)
bins bins

Response function ~ Subsidiary measurements
w.r.t. n as parameters  of n from s~+b~

L(N1¥)= HP(Nl. ly.(5, + 15,.))]_[ PG +b 1.5, +D.))

bins bins

LN 1) = HP(N, ly,G5,+ L?,.))HP(E, +b,17,(5,+b))
bins bins

Normalized NP lite model (nominal value of all y is 1)

// Import template histogram in workspace
w.import (hs) ;

// Construct parametric template models from histograms
// implicitly creates vector of gamma parameters

w.factory (“ParamHistFunc::s(hs)”) ;

// Product of subsidiary measurement
w.factory (“HistConstraint: :subs(s)”) ;

// Construct full model
w.factory (V"PROD: :model (s,subs) ") ;

Wourter Verkerke, NIKHEF



e Template morphing model

The interplay between shape systematics and MC systematics

Example 5 - BB'llte + mOrphlﬂg ¢ Commonly chosen s’(aw')={s,"+a‘(s,‘—s?) Ya>0

practical solution 0 0 -
si+a(s;-s7) Va<0

L(N5,b)= HP(N, ly, -[s,(a,s,"s,‘"s,’)+h,])HP(§, +b,17,[5,+b)GO 1))
‘bins L T I pins * T 4

Morphing & MC response function Subsidiary measurements

. '
W I t h B eesto n = B arl OW = I Ite Models relative MC rate uncertainty for each bin w.r.t the nominal
MC yield, even if morphed total yield is slightly different

MC statistical uncertainties ; ﬂ

s!+a(sf=s') Va>0

s(a,...)=
LA 0 0
. —_q e Approximate MC template statistics already significantly improves

S, +a (Si Si ) Va < O influence of MC fluctuations on template morphing

— Because ML fit can now ‘reweight’ contributions of each bin

erkerke, NIKHEF

L(NI§,B)=HP(NI.I)/Z. [S(a 57,8008 )+b])1_ PG +b1y.-[5,+b.1GO 1 a,1)

bins bms
Y J

// Import template histograms in workspace
w.import(hs_0,hs p,hs m,hb) ;

// Construct parametric template morphing signal model

w.factory (“"ParamHistFunc::s_p(hs _p)”) ;

w.factory ("HistFunc::s m(x,hs m)”) ;

w.factory ("HistFunc::s_0(x[80,100] ,hs_0)") ;

w.factory (“Piecewiselnterpolation::sig(s_0,s ,m,s p,alpha[-5,5])")

// Construct parametric background model (sharing gamma’s with s p)
w.factory (“"ParamHistFunc: :bkg(hb,s p) ")

// Construct full model with BB-lite MC stats modeling
w.factory (“"PROD: :model (ASUM(sig,bkg,£[0,1]),
HistConstraint({s_0,bkg}) ,Gaussian(0,alpha,l))”) ;



HistFactory — structured building of binned template models

e RooFit modeling building blocks allow to easily construct
likelihood models that model shape and rate systematics with
one or more nuisance parameter

— Only few lines of code per construction
e Typical LHC analysis required modeling of 10-50 systematic
uncertainties in O(10) samples in anywhere between 2 and 100

channels => Need structured formalism to piece together model
from specifications. This is the purpose of HistFactory

e HistFactory conceptually similar to workspace factory, but has
much higher level semantics

— Elements represent physics concepts (channels, samples, uncertainties and
their relation) rather than mathematical concepts

— Descriptive elements are represented by C++ objects (like roofit),
and can be configured in C++, or alternively from an XML file

— Builds a RooFit (mathematical) model from a HistFactory physics model.

Wouter Verkerke, NIKHEF



HistFactory elements of a channel

e Hierarchy of concepts for description of one measurement channel

I 1
140 - Data %% SM(sys®stat)

ATLAS

>

[0}

g | ww [ wWzzzwy ]
2 120k \s-8TeV,| Ldt-58fo" [ [ SngeTop  —
~ ) B Z+jets [ WH+ets ]
2 e H->WW —evuv/uvev + 0/1 jets [CJH[125GeV]

2

L

Channel
Name
InputFile

)

60 . .

HistoPath
HistoName

s 7
40 —
- ) i

e

Data StatErrorConfig Sample e E—— .

InputFile |HeIErrorThreshoId | Name 250 300
HistoPath ConstraintType InputFile GeV
HistoName HistoName my [ ]

HistoPath
NormalizeByTheory

Beeston-Barlow-lit statjgtical/uncertaintie

StatError =

Activate
HistoName
InputFile
HistoPath

HistoSys
Name
INputFile
HistoFileHigh
HistoPathHigh
HistoNameHigh
HistoFileLow
HistoPathLow
HistoNameLow

/|  OverallSys

Name
High
Low

ShapeSys
Name
HistoName
HistoPath

InputFile
ConstraintType

NormFactor
Name
Val
High
Low
Const

Template morphing shape systematic

ShapeFactor
Name

(Theory) sample normalization

Wouter Verkerke, NIKHEF



HistFactory elements of measurement

e (One or more channels are combined to form a measurement

— Along with some extra information (declaration of the PQOI, the luminosity of the
data sample and its uncertainty)

:I Measurement
Name
Lumi
LumiRelErr
ExportOnly
> '] .
8 "V aras Lo & emem POI ParamSetting ConstraintTerm
% 12¢- \s-8TeV, [ Ldt- 581" =1 Er’:w val Type
HoWW evuviuvev + 0/1 jets CH25Gev) 3 .
3 Const RelativeUncertainty
& +
Name
HistoName o T >
. - 1 @ Data == SM(sys ® st
¢ 2 (g ATLAS - i‘w - :;ley
2 120 \se8Tev,[Ldtasen’ i ESeweTe
S ) HoWW evuviuvey + 0/1 ,wls- o E Nwl.‘:G-w
e oot Simele 0 100 150 200 250 300 g !
HistoPath ConstraintType InputFile my (GeV] Channel
HistoName HistoName Wml
Normal Theor HistoPath 1 e .
HstoName 4
’ ¢ > - .
Beeston-Barlow-lit statjstica) uncertainti 4
= e [ e ([ [ | o [ T b
o amo amo
HistoName. INputFile High HstoName Val InputFile ReiErmorThreshoid Name 0 100 150 200 250 300
InputFile. HistoF leHigh Low HistoPath High HistoPath ConstraintType InputFile my (GeV]
HistoPath HistoPathHigh InputFile Low. HistoName HistoName
istoFleLow Corsialnipe ot 3 o oPn
i 8 ormal
HstoPathLow °
. . 2 1se8Tev, [Lotassn’ O Sego Top . 4 -,
Zeoweney_ITemplate morphing shape systematic 5 NC IO L}~ Beeston-Barlow-lit statjsfica uncertainti
- g
@ StatError HistoSys Overallsys ShapeSys NormFactor ‘ShapeFactor
Actvate Name Name Name Name Name
HistoName INputFile High HistoName Val
InputFile. HistoF leHigh Low HistoPath High
HistoPath HistoPe h InputFile Low. " 2
aa ConstraintType Const (Theory) sample normalization
HistoFileLow
HistoPathLow
Heohemetow_] Template morphing shape systematic
Data StatErrorConfig. Sample
InputFiie ReiErrorThreshoid Name
HisoPan ConstraintType InputFie
HistoName HistoName mr [GeV]
HistoPath
N Theor
Beeston-Barlow-lit staﬁstﬂ:a:uncegainti
StatError HistoSys OveraliSys ShapeSys "actor ShapeFactor
Actvate Name Name Name Name Name
INputFiie High HestoName Val
InputFile HistoFileHigh Low HistoPath High
e lorametigh ConstraintType Const (Theory) sample normalization
HistoFileLow
HisoPathLow
Hesohamelow ] Template morphing shape systematic

Wouter Verkerke, NIKHEF



Example of model building with HistFactory

An example of model building with HistFactory
Measurement consists of one channel (“VBF”)

The VBF channel comprises
1. A data sample
2. Atemplate model of two samples (“signal” and “gcd”)

3. The background sample has a “JES” template
morphing systematic uncertainty

Events/(0.5)

100
80

a0l ||||||‘

_;|“

40

20

i - - ,& ’;‘ +
v b b b b b v by by 1 !
%0 82 84 86 88 90 92 94 96 98 1 00

Wouter Verkerke, NIKHEF



Model building with HistFactory

// external input in form of TH1 shown in green

// Declare ingredients of measurement
HistFactory::Data data—

Example of model building with HistFactory

e An example of model building with HistFactory
e Measurement consists of one channel (“VBF”)

¢ The VBF channel comprises
1. Adata sample
2. Atemplate model of two samples (“signal” and “acd”)

3. The background sample has a “JES” template
morphing systematic uncertainty

data.SetHisto(data hist) ;

HistFactory::Sample signal ("signal") —— |

signal.SetHisto (sample hist) ;

HistFactory: :Sample gcd ("QCD") ;—*””"fﬂﬁﬂfﬂ’f’

Wouter Verkerke, NIKHEF

gcd.SetHisto (sample hist) ;

HistFactory: :HistoSys hsys ("QCD JetEnergyScale")
hsys.SetHistoLow (sample hist sysdn) ;
hsys.SetHistoHigh (sample hist sysup) ;
gcd.AddHistoSys (hsys)

HistFactory: :Channel channel ("VBF") ;
channel.SetData (data) ;
channel .AddSample (sample) ;

HistFactory: :Measurement meas ("MyAnalysis") ;
meas.AddChannel (channel) ;

// Now build RooFit model according to specs

HistFactory::HistoToWorkspaceFactoryFast h2w (meas)

RooWorkspace* w = h2w.MakeCombinedModel (meas) ;
w—>Print ("t")
w->writeToFile ("test.root") ;

.
4

Wouter Verkerke, NIKHEF




HistFactory model output

e (Contents of RooFit workspace produced by HistFactory

RooFit
probability

model as =

specified

Definition of

POI, NPs,
Observables
Global observables

Universal
Model Configuration

..[

Rooworkspace(combined) combined contents

variables
(Lumi,alpha_QCD_JetEnergysScale,binwidth_obs_x_VBF_0,binwidth_obs_x_VBF_1,channelcat,
nom_alpha_QCD_JetEnergyScale,nominalLumi,obs_x_VBF,weightvar)

RooSimultaneous: :simPdf[ indexCat=channelcat VBF=model_VBF ] = 0
RooProdPdf: :mode1_VBF[ TumiConstraint * alpha_QCD_JetEnergyScaleConstraint * VBF_model(obs_x_VBF) ] = 0
RooGaussian::TumiConstraint[ x=Lumi mean=nominalLumi sigma=0.1 ] =1
RooGaussian::alpha_QCD_JESConstraint[ x=alpha_QCD_JetEnergyScale mean=nom_alpha_QCD_JetEnergyScale sigma=1l ] = 1
RooRealsumpdf: :VBF_model[ binw_obs_x_VBF_0 * L_x_sig_VBF_overallSyst_x_Exp + binw_obs_x_VBF_1 * L_x_QCD_VBF_overallSyst_x_HistSyst ] = 0
RooProduct: :L_x_sig_VBF_overallsyst_x_Exp[ Lumi * sig_VBF_overallSyst_x_Exp ] =0
RooProduct: :sig_VBF_overallSyst_x_Exp[ sig_VBF_nominal * sig_VBF_epsilon ] =0
ROOHistFunc::sig_vBF_nominal[ depList=(obs_x_VBF) ] = 0
RooProduct: :L_X_QCD_VBF_overal1Syst_x_HistSyst[ Lumi * QCD_VBF_overallSyst_x_HistSyst ] = 0
RooProduct: :QCD_VBF_overallSyst_x_HistSyst[ QCD_VBF_Hist_alpha * QCD_VBF_epsilon ] = 0
PiecewiseInterpolation: :QCD_VBF_Hist_alphal ] = 0
ROOHistFunc: :QCD_VBF_Hist_alphanominal[ depList=(obs_x_VBF) ] =
ROOHistFunc: :QCD_VBF_Hist_alpha_Olow[ depList=(obs_x_VBF) ] =0
ROOHistFunc: :QCD_VBF_Hist_alpha_0Ohigh[ depList=(obs_x_VBF) ] =0

0

datasets

RooDataSet: :asimovData(obs_x_VBF,weightvar,channelcat)
RooDataSet: :obsData(channelCat,obs_x_VBF)

embedded datasets (in pdfs and functions)

RooDataHist::sig_VBFnominalDHist(obs_x_VBF)
RooDataHist::QCD_VBF_Hist_alphanominalDHist(obs_x_VBF)
RooDataHist::QCD_VBF_Hist_alpha_0TowDHist(obs_x_VBF)
RooDataHist::QCD_VBF_Hist_alpha_0highDHist(obs_x_VBF)

parameter snapshots
NominalParamvalues = (nominalLumi=1[C],nom_alpha_QCD_JetEnergyScale=0[C],weightvar=0,obs_x_VBF=-4.5,Lumi=1,alpha_QCD_JetEnergyScale=0,
binwidth_obs_x_VBF_0=1[C],binwidth_obs_x_vBF_1=1[C])

named sets

ModelConfig_Globalobservables: (nominalLumi,nom_alpha_QCD_JetEnergyScale)
ModeTlcConfig_Observables: (obs_x_VBF,weightvar,channelcat)
Modelconfig_POI: ()

globalobservables: (nominalLumi,nom_alpha_QCD_JetEnergyScale)
observables: (obs_x_VBF,weightvar,channelcat)

generic objects

RooStats: :ModelcConfig: :ModelConfig




HistFactory model structure

e RooFit object structure

— Asvisalized with simPdf: :graphvizTree(“model.dot”)
followed by dot -Tpng -omodel.png model.dot’

( RooSimultaneous
simPdf

LLumi subsidiary N JES subsidiary
measurement D G g
— e measurement

E— — ; . —_ -
RooGaussian @ /7~ RooRealsumPdf — RooGaussian
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- e
" A — —
Rox c tV Roo P od ct ‘ RooRealVar - RooProduct ' " RooRealVar RooConstVar RooRealVar
minal Lx g VBF_o IISyI x_Exp b nWidth_obs x VBF 0 7 L_x_QCD_VBF_overallSyst_x_HistSyst N hanldth_obs_x_VBF_l 1 __ nom_ Iph QCD_] etEne gyS | _
ook oduct ( R oRe. lv / ) Rooroduct /
g VBF_overallSyst_x_Ex| p A\ Lu OCD _VBF_o IISy st_x_Hisl !Sy l ‘
RooConstVar RooHistFunc Piecewiselnterpolatiol RooConstVar \
SigivsFi psilon sig_VBF_nominal Qco_ VBF_Hist_a lph Qo vsr epsilon
o T / / B \ ‘l
(\ _~\\>—f’ —
RooHistFu RooHistFun RooHistFui RooRealVar
QCD_VBF_Hist_a Iph nominal QCD_VBF_Hist_al Iph Olow QCD_VBF_Hist_al lph Ohigh . alpha_QCD JetEnergyScale __/

\/

Signal model s

ver

T QCD morphing model

e This RooFit probability model can be evaluated without knowledge
of HistFactory

— Additional (documentary) information stored in workspace sp\eoifie\s/a uniquely
specified statistical model (definition of POI, NP etc) Wouter Verkerie, NIKHEF



Diagnostics |
Overconstraining &
choices in modeling
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Role reversal of physics and subsidiary measurements

e As mention in Section 3, full (profile) likelihood treats physics and
subsidiary measurement on equal footing

L(N,0ls,a)= Poisson(N ls+b(1+0.1a))- Gauss(0 |l a,1)

| I

Physics measurement Subsidiary measurement

e Qur mental picture: “measures s” “measures a”

“dependence on a
weakens inference on s”

e |s this picture (always) correct?

Wouter Verkerke, NIKHEF



Understanding your model — what constrains your NP

e [he answer is no — not always! Your physics measurement

may in some circumstances constrain a better than your
subsidiary measurement.

e Doesn’t happen in Poisson counting example

— Physics likelihood has no information to distinguish effect of s from effect of a

L(N,0ls,a)= Poisson(N |ls+b(1+0.1a)): Gauss(0 |l a,1)
| I J Y )

Physics measurement Subsidiary measurement

But if physics measurement is based on a distribution or
comprises multiple distributions this is well possible

Wouter Verkerke, NIKHEF



Understanding your model — what constrains your NP

e A case study — measuring jet multiplicity

— Physics observable of interest is a jet multiplicity spectrum
[3),4],5]] after an (unspecified) p; cut.

— Describe data with sum of signal (mildly peaking at 4j) and
a single background (exponentially falling in nj).

LN lw,0) = | | Poisson(N,1(u+5, - +b,) 1,(t ) Gauss(0 1t 5,1)
i=3,4,5
— POl is signal strength modifier p.

— Jet Energy Scale is the leading g ____________ g
systematic uncertainty ;‘“? : Bl
e JES strongly affects jet multiplicity ok 5 ok
after a p; cut, SN R :
¢ Effect modeled by response >“’ A— "’
function r,(c) .
e Magnitude of uncertainty on a w e )
constrained by subsidiary :
measurement CE...I...I...I...I...I...I{...I...I...I... CE...I...I...I‘...I...I...I...I...I...I...

42 44 46 a4
Njet Njet

Wouter Verkerke, NIKHEF



Understanding your model — what constrains your NP

e Now measure (u,a) from data — 80 events i i*

Fit to small data sample 'IOQ(L)murshuvsa.ﬁs o ‘| ,,,,,,
if 21 .
= s Estimators of
g [ : U, a correlated
i a=0.01=0.83.L due to similar
i : response in physics
t T measurement
I i4=10£037 Uncertglnty
; on u without effect of JES
obuiv bbb b bl [P PO N PN PR P O

Njet

® |s this fit OK?

— Effect of JES uncertainty propagated in to p via response modeling in likelihood.
Increases total uncertainty by about a factor of 2

— Estimated uncertainty on a is not precisely 1, as one would expect
from unit Gaussian subsidiary measurement...

Wouter Verkerke, NIKHEF



Understanding your model — what constrains your NP

e The next year — 10x more data (800 events)
repeat measurement with same model

Fit to large data sample Hog(L) contours inpvsa

oo £

L i
b

asob T

== I
| b = —0.23:0.31:-[
150;_ ‘_*_ o.sz—
T

090+0.13

Njet

e s this fit OK?

Uncertainty of JES NP much reduced w.r.t. subsidiary meas. (a =0 + 1)

O-IIIIlllllllllllllIIIIIIIIllllllllll[llI Ry -t I 11 L1 L1l 111 1
32 34 36 38 4 42 44 46 48

/ Estimators of
U, a correlated
due to similar

response in physics
measurement

Because the physics likelihood can measure it better than the subsidiary
measurement (the effect of py, a are sufficiently distinct that both can be

constrained at high precision)

Wourter Verkerke, NIKHEF



Understanding your model — what constrains your NP

e |sit OK if the physics measurement constrains NP associated with
a systematic uncertainty better than the designated subsidiary
measurement?

— From the statisticians point of view: no problem, simply a product of two
likelihood that are treated on equal footing ‘simultaneous measurement’

— From physicists point of view? Measurement is only valid is model is valid.
e |s the probability model of the physics measurement valid?

L(N lu,0,5) = | | Poisson(N, | (-5, +b,) 1, (0t5))) Gauss(0 | a5, 1)

i=3,4,5

e Reasons for concern
— Incomplete modeling of systematic uncertainties,

— Or more generally, model insufficiently detailed

Wouter Verkerke, NIKHEF



Understanding your model — what constrains your NP

e \What did we overlook in the example model?
— The background rate has no uncertainty!

— Insert modeling of background uncertainty

L(N lu,a ., )= H Poisson(N,; | (u-s, -+15l. () Q) Gauss(0la, g, 1) - Gauss(0 1 ay,, 1)

i=3,4,5 —
Background rate Background rate
response function subsidiary measurement
PY VVi-th improved model Fit to large data sample bkg floating -log(L) contours inu vs o

accuracy estimated

uncertainty on both

Q,es, M QOES up again...
— Inference weakened

by new degree of
freedom ay,q

£°7
i
G =0.90£0.70 | .
(G, =1.36£0.20)

14=093+029

05—

— NB g5 estimate still ;
deviates a bit from normal ]
distribution estimate... i

obolnbin bl bl i P T AT T AT
3 32 34 36 38 4 42 44 46 4B 5 06 08 1 12
Njet




Understanding your model — what constrains your NP

e [ esson learned: if probability model of a physics measurement is
insufficiently detailed (i.e. flexible) you can underestimate
uncertainties

e Normalized subsidiary measurement provide an excellent
diagnostic tool

— Whenever estimates of a NP associated with unit Gaussian subsidiary
measurement deviate from a = 0 + 1then physics measurement is

constraining or biases this NP.

— Always inspect all NPs of your fit for such signs

e |s ‘over-constraining’ of systematics NPs always bad?

— No, sometimes there are good arguments why a physics measurement can
measure a systematic uncertainty better than a dedicated calibration
measurement (that is represented by the subsidiary measurement)

— Example: in sample of reconstructed hadronic top quarks t>bW(qq), the pair
of light jets should always have m(jj)=mW. For this special sample of jets it will

possible to calibrate the JES better than with generic calibration measurement
Wouter Verkerke, NIKHEF



Commonly heard arguments in discussion on over-constraining

e (Qverconstraining of a certain systematic is OK “because this is what
the data tell us”

— It is what the data tells you under the hypothesis that your model is correct. The
problem is usually in the latter condition

* “The parameter a .5 should not be interpreted as Jet Energy Scale
uncertainty provided by the jet calibration group”

— A systematic uncertainty is always combination of response prescription and one or
More nuisance parameters uncertainties.

— If you implement the response prescription of the systematic, then the NP in your
model really is the same as the prescriptions uncertainty

e “My estimate of a5 = 0 + 0.4 doesn’t mean that the ‘real’ Jet Energy
Scale systematic is reduced from 5% to 2%

— It certainly means that in your analysis a 2% JES uncertainty is propagated to the
POl instead of the “official” 5%.

— One can argue that the 5% shouldn’t apply because your sample is special and can
be calibrated better by a clever model, but this is a physics argument that should
be documented with evidence for that (e.g. argument JES in t>bW(qQq) decays)

Wouter Verkerke, NIKHEF



Dealing with over-constrained systematic NPs

e Step 1 — Diagnostics

— Always inspect nuisance parameters in your fit for signs of over-constraining

e Step 2 — Analyze

— Are there systematic uncertainties overlooked in the construction of the
likelihood that introduce unwarranted physics assumption in model that ML
estimator exploits to constrain models”?

— |s your systematic uncertainty conceptually covered by a single nuisance
parameter? do you perhaps need more NPs?

— In case the physics likelihood comprises multiple samples, do you assume
fully correlated responses functions, whereas sample composition should
conceptually allow for some degree of decorrelation?

e Step 3 — Solution

— If over-constraining is analyzed to be the result of inaccurate modeling,
improve model structure, add new NPs, decompose NPs in different ways to
reflect sample correlations

— If constraint from physics is believed to be document studies as part of your
physics analysis

Wouter Verkerke, NIKHEF



Dealing with over-constraining — introducing more NPs

e Some systematic uncertainties are not captured well by one
nuisance parameter.

e Example Jet Energy Scale

— Statement “the JES uncertainty is 5% for all jets” does not necessarily imply
that the calibration of all jets can be modeled with a single NP,

— A single NP implies that the calibration can only be coherently off among all
jets. Such an assumption allows, for example, to precisely constrain JES with
a high-statistics sample of low-py jets, and then transport that reduced
uncertainty to high-py jets, using the calibration scale coherency encoded in
the model

— In reality correlation between the energy scale of low-pT and high-pT jets is
controlled by the detector design and calibration procedure and is likely a lot
more complicated - Invalid modeling of systematic uncertainties often a
result of ‘own interpretation’ of imprecisely formulated systematic prescription.

— Besides this, a calibration may have multiple sources of uncertainty that were
lumped together in a prescription (calibration measurements, simulation
assumptions, sample-dependent effects) that would need to be individually
modeled

Wouter Verkerke, NIKHEF



Dealing with over-constraining — Theory uncertainties

e Qver-constraining of theory uncertainties in physics measurements
has different set of issues than for detector uncertainties

e Different: In principle it is the goal of physics measurements to
constrain theory uncertainties

— So role of physics measurement and subsidiary measurement are not symmetric:
the latter quantifies some ‘degree of belief’ that is not based on an experimental
measurement.

— Likelihood of physics measurement constitutes an experimental measurement and
is in principle preferred over ‘belief’

— But question remains if physics likelihood was well designed to constrain this
particular theory uncertainty.

e Same: response function and set of NPs must be able to accurately
capture underlying systematic effect.

— Sometimes easy, e.g. ‘renormalization scale’ has well-defined meaning in a given
theoretical model and a clearly identifiable single associated parameter

— Sometimes hard, e.g. ‘Pythia vs Herwig’. Not clear what it means or how many
degrees of freedom underlying model has.

Wouter Verkerke, NIKHEF



Specific issues with theory uncertainties

Dealing with ‘two-point’ uncertainties
L(N |'s,a) = Poisson(N | s+b- f(a))-SomePdf (0| a)
In discussion of rate systematics in Section 3 " oot s et s e
it was mentioned that ‘two-point systematics’ ot

can always be effectively represented with an R L e

interpolation strategy

Response model

O

Pythia

Herwig

Background rate

Nuisance parameter Qgen

- For lack of a better word you could call a now the
‘Herwianess of fragmentation w.r.t its effect on my background estimate’

* Athomy question remains: What is the subsidiary measurement for a?

— This should reflect you current knowledge on a.

Subsidiary meas.

wll

IR

Pythia Herwig, Pythia

But this argument relies crucially on the dimensional correspondence
between the observable and the NP

— The effect on a scalar observable can always be modeled with one NP

— In other words the existence of a 3" generator ‘Sherpa’ can always be
effectively capture by the Pythia-Herwig inter/extrapolation

— It can of course modify your subsidiary measurement (e.g. lending more credence
to the Pythia outcome if its result is close, but response model is still valid)

Wouter Verkerke, NIKHEF



Dealing with ‘two-point” uncertainties

e |f ‘2-point’response functions models a distribution, the response
corresponding to a new ‘third point’ is not necessarily mapped by

b(a) for any value of a

e This point is important in the discussion to what extent a two-
point response function can be over-constrained.

— Aresult a,, = 0.5 £ 7 has ‘reasonable’ odds to cover the ‘true generator’
assuming all generators are normally scattered in an imaginary ‘generator

space’

Modeled uncertainty (1 dimension)
assuming ‘nature is on line’

; Effectively captured uncertainty
Pythia ° Nature
under the assumption that effect
@ Sherpa of ‘position in model space’ in
any dimension is similar on

response function

Nextyears (O
generator

Wouter Verkerke, NIKHEF



Dealing with ‘two-point” uncertainties

e |f ‘2-point’response functions models a distribution, the response
corresponding to a new ‘third point’ is not necessarily mapped by
b(a) for any value of a

e This point is important in the discussion to what extent a two-
point response function can be over-constrained.

— Does a hypothetical overconstrained result a,, = 0.7 + 0.2 ‘reasonably’ cover
the generator model space?

Modeled uncertainty (1 dimension)
assuming ‘nature’ is on line

Pythia Effectively captured uncertainty

Nature
@

@ Sherpa under the assumption that effect
of ‘position in model space’ in
any dimension is similar on
response function

Nextyears (O
generator

Wouter Verkerke, NIKHEF



Dealing with ‘two-point” uncertainties

Arguments on representativeness of sampling points of ‘2 point” models raise

questions in validity of physics models that over-constrain these

The main problem is that you become rather sensitive to things you don’t

know and quantify: the ‘dimensionality’ of the generator space.
To understand what you are doing you’d need to know what all degrees of freedom are

(and ideally what they conceptually represent)

Unless you know this — trying to reduce the ‘considered space of possibilities’ is rather

speculative

The real problem is often that you don’t really know what causes the ‘Pythia/Herwig’
effect. Unless you learn more about that there is no real progress.

standard modeling assumptions

Take an inclusive cross-section measurement

Needs to extrapolate acceptance region
to full inclusive phase space using generator

- Introduces generator systematic Nature
Physics likelihood can ‘measure’ is measured
that nature inside acceptance is very

Pythia-like insideusing 2-point to be very
response function with 1 NP Pythia-like

s nature in the entire phase space therefore ~ here
Pythia-like? If yes, we can greatly reduce
inclusive cross-section uncertainty, if no, not...

The ‘unknown dimensionality’ problem often enters a model in a seemlingly

Generator phase space

Analysis acceptand

|s nature

therefore

also very Pythia-like
here?

e



Summary

e Diagnostics over NP overconstraining provide powerful insight into
your analysis model

— An overconstrained NP indicates an externally provided systematic is
inconsistent with physics measurement

— This may point to either an incorrect response modeling of that uncertainty, to
result in a genuinely better estimate of the uncertainty

— Solution not always clear-cut, but you should be at least aware of it.

— Note that over-constraining always points to an underlying physics issue
(lack of knowledge, simplistic modeling) = Treat it as a physics analysis
problem, not as a statistics problem

e Diagnostic power of profile likelihood models highlights one of the
major shortcomings of the ‘naive’ strategy of error propagation (as
discussed in Section 1)

— Physics measurement can entangle in non-trivial ways with systematic
uncertainties

Wouter Verkerke, NIKHEF



Example of likelihood modeling diagnostics
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Summary
& conclusions
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Summary

e Modelling of systematic uncertainties in the likelihood (‘profiling’)
is the best we know to incorporate systematic uncertainties in
rigorous statistical procedures

Profiling requires more a ‘exact’ specification of what a systematic uncertainty
means that traditional prescriptions = this is good thing, it makes you think
about (otherwise hidden) assumption

It’s important to involve the ‘author’ of uncertainty prescription in this process,
as flawed assumptions can be exploited by statistical methods to arrive at
unwarranted conclusions

Systematic uncertainties that have conceptual fuzziness (‘pythia-vs-herwig’)
are difficult to capture in the likelihood, but this is a reflection of an underlying
physics problem

Good software tools exist to simplify the process of likelihood modeling

It’s important to carefully diagnose your profile likelihood models for both
technical and interpretational problems (‘over-constraining’)

Wouter Verkerke, NIKHEF



