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Profiling & Systematics as part of statistical analysis


•  A HEP analysis requires close integration of ‘physics concepts’ 
and ‘statistical concepts’

1.  Design event selection “physics”


•  Use simulated samples of signal, background to aid selection process !
(cuts, BDT, NN etc)


2.  Analyze (‘fit’) data in selection “statistics”

•  Measurement with statistical error, limit based on statistical uncertainty


3.  Make inventory of systematic uncertainties “physics”

•  Generally, any effect that isn’t measured constrained from your own measurement


4.  Finalize result ‘including systematics’ “statistics”

•  Variety of (empirical/fundamental) approaches to do this


5.  Interpretation “physics”

•  Better measurement, discovery etc, find mistake/sub-optimality in procedure


•  Focus of this course: steps 3 and 4.

–  Practical problem: ‘physics notion’ of systematic uncertainties does not map 

1-1 to a statistical procedure. Many procedures exist, some ad-hoc, some 
rigorous (from the statistical p.o.v.) 
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Profiling & Systematics as part of statistical data analysis
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Outline of this course


•  Outline of this course

1.  What are systematic uncertainties?

2.  Incorporating systematic uncertainties in probability models

3.  Modeling shape systematics: template morphing

4.  Tools for modelling building RooFit/RooStats and HistFactory

5.  Diagnostics: Overconstraining & choices in model parametrization
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What are systematic uncertainties?


•  Concept & definitions of ‘systematic uncertainties’ originates from 
physics, not from fundamental statistical methodology.


–  E.g. Glen Cowans (excellent) 198pp book “statistical data analysis” !
does not discuss systematic uncertainties at all!



•  A common definition is

–  “Systematic uncertainties are all uncertainties that are !

not directly due to the statistics of the data”!



•  But the notion of ‘the data’ is a key source of ambiguity: 

–  does it include control measurements?

–  does it include measurements that were used to perform basic !

(energy scale) calibrations?
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Systematic uncertainty as a hidden measurement


•  Consider 2 examples of measurements with systematic uncertainties!



•  Example 1: Measuring length of an object with a ruler

–  ‘Ruler calibration uncertainty’ is systematic uncertainty on length measurement




•  Example 2: Counting measurement a signal !
                 in the presence of background


–  Measurement has (Poisson) statistical uncertainty.

–  Uncertainty on rate of background process introduces a systematic uncertainty 

on estimate of signal rate!



•  Is the ‘systematic uncertainty’ just a ‘hidden measurement’?

–  Ex 1: Ruler calibration could depend on temperature and uncertainty on current 

temperature could be dominant component of uncertainty

–  Ex 2: Background rate could be measured by a control sample
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Sources of systematic uncertainty in HEP


•  Detector-simulation related uncertainty

–  Calibrations (electron, jet energy scale)

–  Efficiencies (particle ID, reconstruction)

–  Resolutions (jet energy, muon momentum)!

!



•  Theoretical uncertainties

–  Factorization/Normalization scale of MC generators

–  Choice of MC generator (ME and/or PS, e.g. Herwig vs Pythia) 


•  Monte Carlo Statistical uncertainties

–  Statistical uncertainty of simulated samples 
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The simulation workflow and origin of uncertainties
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Simulation of high-energy!
physics process


Simulation of ‘soft physics’!
physics process


Simulation of ATLAS!
detector


Reconstruction !
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Typical specifications of systematic uncertainties


•  Detector-simulation related

–  “The Jet Energy scale uncertainty is 5%”

–  “The b-tagging efficiency uncertainty is 20% for jets with pT<40”


•  Theory related

–  “Vary the factorization scale by a factor 0.5 and 2.0 and consider the difference the 

systematic uncertainty”

–  “Evaluate the effect of using Herwig and Pythia  and consider the difference the 

systematic uncertainty”!



•  MC related

–  Usually left unspecified – but quite clearly defined as a Poisson distribution with the 

‘observed number of simulated events’ as mean. 

–  But if MC events are weighted, it gets a bit more complicated.!




•  Note that specifications are often phrased as a prescription to be 
executed on the estimation procedure of the physics quantity of 
interest (‘vary and rerun…’) or can be easily cast this way.
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Evaluating the effect of systematic uncertainties


•  Often measurements are treated as a ‘black-box’ !
(e.g. as if it were a physical device that reports the measurement) 


•  Inspires a ‘naive’ approach to systematic uncertainty evaluation: 
simply propagate ‘external systematic uncertainties’ into result


–  Evaluate nominal measurement (through unspecified procedure)


–  Evaluate measurement at ‘±1 sigma’ of some systematic uncertainty!
!



–  Calculate systematic uncertainty on measurement through numeric error 
propagation


–  Repeat as needed for all systematic uncertainties, !
add in quadrature for total systematic uncertainty.
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µnom = µ̂

µup = µ̂(syst −up)
µdown = µ̂(syst − down)

σ µ (syst) = µup −µdown
"# $% / 2

µmeas = µnom ±σ (JES)±...



Pros and cons of the ‘naïve’ approach


•  Pros

–  It’s easy to do

–  It results in a seemingly easy-to-interpret table of systematics


•  Cons

–  A maximum likelihood measurement is really nothing like a ‘device’

–  Uncorrelated source of systematic uncertainty can have correlated effect on 

measurement à Completely ignored

–  Magnitude of stated systematic uncertainty may be incompatible with 

measurement result à Completely ignored 

–  It’s not based rigorous procedures (i.e. evaluation of systematic uncertainties 

is completely detached from statistical procedure used to estimate physics 
quantity of interest)


•  No calibrated probabilistic statements possible (95% C.L.)


•  No known good procedure for limit setting


•  ‘Profiling’ à Incorporate a description of systematic uncertainties 
in the likelihood function that is used in statistical procedures 
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The likelihood is at the basis of many statistical techniques
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L(data |µ,
!
θ )

Maximum Likelihood Parameter estimation


Frequentist confidence intervals!
(likelihood-ratio intervals) 


Bayesian credible intervals
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‘Best-fit value’


Hypothesis !
μ that is being !
tested


P(µ | x)∝ L(x |µ) ⋅π (µ)



Introduction


•  All fundamental statistical inference techniques are based on the 
likelihood. Thus all aspects of a measurement – including 
systematic uncertainties – must be contained in the likelihood


•  Will now focus on how to express systematic uncertainties!
(an experimental science concept) into a likelihood (a statistical 
concept)


•  This starts with an examination of what we precisely mean with a 
systematic uncertainty.


–  Will discuss this based on examples taken from the different classes of 
systematic uncertainty commonly encountered in HEP analyses


–  For illustrational clarify will for now only focus on systematic uncertainties on 
counting measurements (systematic uncertainties in measurements of 
distributions will follow later)
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Modeling systematic uncertainties in the likelihood


•  What is a systematic uncertainty? It consists of

–  1: A set of one or more parameters of which the true value is unknown, 

–  2: A response model that describes the effect of those !

    parameters on the measurement.

–  3: A distribution of possible values for the parameters

–   In practice these (response) models are often only formulated implicitly, but 

modeling of systematic uncertainties in the likelihood requires an explicit 
model


•  Example of ‘typical’ systematic uncertainty prescription !
!
    “The Jet Energy Scale Uncertainty is 5%”!



•  Note that example does not meet definition standards above

–  Specification specifies variance of the distribution unknown parameter, but not 

the distribution itself (is it Gaussian, Poisson, something else) 

–  Response model left unspecified
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Formulating a response model


•  Why does the statement !
!
   “the JES uncertainty is X%” !
!
not a formulate a response model, while an additional statement!
!
    “If the JES is off by +X%, the energy of every jet !
     in the event is increased by X%”!
!
does constitute a response model?


•  The first statement doesn’t specify any correlation between jets with different 
kinematics


–  Can low pT jets be miscalibrated by -4% and high pT jets be calibrated by +5%?

–  Or must all jets be miscalibrated by exactly the same amount?


•  The former interpretation would require 2 (or more) model parameters to 
capture the effect of the miscalibration of the simulation, the latter only one.


•  Once the response model is defined, the effect of a systematic uncertainty is 
deterministically described, up to an (a set of) unknown strength parameter(s).
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Formulating a response model


•  Note that the construction of a response model for a systematic 
uncertainty is no different from choosing a model to describe your 
physics of interest


–  You define a model that deterministically describes the consequences of the 
underlying hypothesis, up to set of (a priori) unknown model parameter


•  Will (for now) assume that for our example measurement the 
example systematic uncertainty – the Jet Energy Scale – can be 
correctly described with a single parameter that coherently moves 
the calibration of all jets in the event.


–  The correctness of such an assumption we’ll revisit later (but note that this is a 
physics argument)
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Modeling the strength parameter


•  What do we know about distribution of the corresponding 
strength parameter?


–  The sqrt(variance) of the distribution was specified to be 5%


•  But a variance does not completely specify a distribution

–  Does the JES measurement follow a Gaussian distribution?

–  Does the JES measurement follow a Poisson distribution?

–  Or, a ‘block-shaped’ distribution, or anything else?


•  Not specified by “JES is 5%” prescription

–  Often not a difficult issue as detector-related uncertainties, as these!

since they are based on (calibration) measurements (and/or central limit 
theorem applies) à Gaussian or Poisson distribution


–  For theory uncertainties this can be tricky, what distribution to assume for 
‘renormalization scale uncertainty’? Will come back to this later
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Formalizing systematic uncertainties


•  The original systematic uncertainty prescription




•  The formalized prescription for use in statistical analysis
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“the JES uncertainty is 5%” 


“There is a calibration parameter in the likelihood!
of which the true value is unknown!
!
The distribution of this parameter is a Gaussian!
with a 5% width!
!
The effect of changing the calibration by 1%!
is that energy of all jets in the event is!
coherently increased by 1% ” 




Putting it all together – a calibration uncertainty in a counting experiment


•  Counting experiment



•  Background ‘b’ is estimated from MC simulation with some 

uncertainty

–  We estimate b using Monte Carlo simulation: we conclude that we expect 5.0 

background events, with a negligible MC statistical uncertainty


–  But, since we use MC simulation we are sensitive to detector simulation 
uncertainties and theoretical cross-section uncertainties


•  Ex: how to model effect of data/MC JES miscalibration uncertainty?

–  The effect of the JES calibration uncertainty is described by a single parameter that 

coherently moves jet calibration for all jets by same amount


–  Jet calibration group assigns a 5% Gaussian uncertainty to this parameter

–  You determine that a 1% coherent shift of jet-energy scale !

results in a 2% acceptance change for the background in your signal region.
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‘naïve approach’: vary b by ±2% and propagate effect to s.!
How do you put that in the likelihood? 




Putting it all together – a calibration uncertainty in a counting experiment


•  The likelihood including systematic uncertainty
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L(N, α | s,α) = Poisson(N | s+ b(α / α) ⋅2)) ⋅Gauss( α |α,σα )

Signal rate (our parameter of interest)


Observed event count


Nominal background !
expectation from MC!
(a constant), obtained!
with a=a˜


Response function!
for JES uncertainty!
(a 1% JES change !

results in a 2% !
acceptance change)


“Subsidiary measurement”



Encodes ‘external knowledge’ !
on JES calibration


L(N | s) = Poisson(N | s+ b)

Nominal calibration

Assumed calibration


Uncertainty!
on nominal!
calibration




Putting it all together – a calibration uncertainty in a counting experiment


•  Simplify expression by renormalizing “subsidiary measurement”
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L(N | s,α) = Poisson(N | s+ b(1+ 0.1α)) ⋅Gauss(0 |α,1)

Signal rate (our parameter of interest)


Observed event count


Nominal background !
expectation from MC!
(a constant)


Response function!
for normalized JES !

parameter!
[a unit change in α !

– a 5% JES change –  !
still results in a 10% !
acceptance change]


“Subsidiary measurement”!


Encodes ‘external knowledge’ !
on parameter that!
controls JES calibration!


The scale of parameter!
α is now chosen such that !
values ±1 corresponds to the !
nominal uncertainty!
(in this example 5%)


Gauss( α |α,σα )



Putting it all together – a calibration uncertainty in a counting experiment


•  Sources of information
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L(N, 0 | s,α) = Poisson(N | s+ b(1+ 0.1α)) ⋅Gauss(0 |α,1)

The response function is something that you!
measure in your physics analysis.



It must be implemented as a continuous function!
but can be a linear interpolation, e.g. based on

two or three acceptance calculations 




JES parameter 
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ce
 

-1  0  +1 0.9 

1.0 

1.1 

The subsidiary measurement is an implementation!
of information that is given to you. !

!
It is effectively a likelihood function that ‘measures’!
the JES parameter with unit Gaussian uncertainty.




Names and conventions


•  The full likelihood function of the form !
!
!
!
is usually referred to by physicists as a ‘profile likelihood’, and 
systematics are said to be ‘profiled’ when incorporated this way


–  Note: statisticians use the word profiling for something else


•  Physicists often refer to the subsidiary measurement as a 
‘constraint term’


–  This is correct in the sense that it constrains the parameter alpha, but this 
labeling commonly lead to mistaken statements (e.g. that it is a pdf for α)


–  It is explicitly not a pdf f(α|…). It is a (simplified) Likelihood that represents 
calibration measurement that measures the parameter α, based on calibration 
data sample that is removed in the simplification (and for which a placeholder 
0 value is inserted) 


Wouter Verkerke, NIKHEF


L(N, 0 | s,α) = Poisson(N | s+ b(1+ 0.1α)) ⋅Gauss(0 |α,1)

Gauss(0 |α,1)Gauss(α | 0,1)

Placeholder observable in subsidiary measurement is often called a ‘global observable’




Names and conventions


•  The ‘subsidiary measurement’ as simplified form of the ‘full 
calibration measurement’ also illustrates another important point


–  The full likelihood is simply a joint likelihood of a physics measurement and a 
calibration measurement where both terms are treated on equal footing in the 
statistical procedure


–  In a perfect world, not bound by technical modelling constraints!
you would use this likelihood!
!
!
!
where LJES is the full calibration measurement as performed by the Jet 
calibration group, based on a dataset y, and which may have other 
parameters θ specific to the calibration measurement.


•  Since we are bound by technical constrains, we substitute LJES 
with simplified (Gaussian) form, but the statistical treatment and 
interpretation remains the same
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L(N, y | s,α) = Poisson(N | s+ b(1+ 0.1α)) ⋅LJES (
y |α,


θ )



Another example – sideband measurements


•  Consider again the same counting measurement




•  Now b is estimated from a sideband measurement !

instead of MC simulation. 

–  Joint likelihood of signal count and sideband count is!

!
!
!
!



–  Nobody will consider the uncertainty on b in the signal region a systematic 
uncertainty (since it is constrained from side-band data), !
but note the similarity in the full likelihood with the ‘JES’ systematic uncertainty
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L(N,Nctl | s,b) = Poisson(N | s+ b) ⋅Poisson(Nctl |τ ⋅b)

L(N, 0 | s,αJES ) = Poisson(N | s+ b(1+ 0.1αJES )) ⋅Gauss(0 |αJES,1)

Constant factor τ accounts for possible!
size difference of signal/background region!






Sideband measurements with systematic uncertainties


•  Sideband measurements can also be affected by systematic 
uncertainties


•  Above model has effectively has a constant ‘response function’ 
implemented by the factor τ, which is ratio of bkg acceptance in 
SR to CR, but this ratio estimate may be affected by detector 
simulation uncertainties such as JES.


•  How can we implement the effect of JES uncertainty in the 
‘transport factor’ of the background estimate from CR to SR?
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L(N,Nctl | s,b) = Poisson(N | s+ b) ⋅Poisson(Nctl |τ ⋅b)

L(N,Nctl, 0 | s,b,αJES ) = Poisson(N | s+ b) ⋅Poisson(Nctl |τ (1+ XαJES ) ⋅b) ⋅Gauss(0 |αJES,1)

JES response model for ratio bSR/bCR 

Subsidiary measurement !

of JES response parameter




MC statistical uncertainties as systematic uncertainty


•  In original JES uncertainty example, the MC statistical uncertainty 
was ignored (since 100Mevt were available)


•  What should you do if MC statistical uncertainties cannot be 
ignored?


•  Follow same procedure again as before: 

–  Define response function (this is trivial for MC statistics: !

it is the luminosity ratio of the MC sample and the data sample)


–  Define distribution for the ‘subsidiary measurement’ – This is a Poisson 
distribution – since MC simulation is also a Poisson process


–  Construct full likelihood (‘profile likelihood’)


•  Note uncanny similarity to full likelihood of a sideband measurement! 
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L(N,NMC | s,b) = Poisson(N | s+ b) ⋅Poisson(NMC |τ ⋅b)
Constant factor τ = L(MC)/L(data)


L(N,Nctl | s,b) = Poisson(N | s+ b) ⋅Poisson(Nctl |τ ⋅b)



MC statistical uncertainties as systematic uncertainty


•  For notational convenience parameters associated with MC 
statistical uncertainty are expressed as renormalized γ 
parameters, similar to the renormalized α parameters!
!
!
!
!
!
!
!



•  Just for fun & completeness: the full likelihood with modeling of 
both MC statistical uncertainty and JES uncertainty.
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L(N | s,b) = Poisson(N | s+ b) ⋅Poisson(NMC |τ ⋅b)

L(N | s,αJES,γ ) = Poisson(N | s+ (1+ XαJES )γb) ⋅Poisson(NMC |τγb) ⋅Gauss(0 |αJES,1)

L(N | s,γ ) = Poisson(N | s+γb) ⋅Poisson(NMC |τ ⋅γb)
where b is now a constant expression!
(nominal lumi-normalized event count)!
and γ is a parameter with nominal value 1




Overview of common subsidiary measurement shapes


•  Gaussian G(x|μ,σ)

–  ‘Default’, motivated by Central Limit Theorem !

(asymp dist for sum of random variables)


•  (Rescaled) Poisson P(N|μτ)

–  Obvious choice for any subsidiary measurement!

that is effectively a counting experiment


–  NB: For a Poisson model the distribution in μ!
is a Gamma distribution (posterior of Poisson)


–  Scale factor τ allows to choose variance!
independently of mean (e.g. to account for!
side-band size ratio, data/mc lumi ratio) 




•  LogNormal LN(x|μ,σ)


–  Asymptotic distribution for product!
of random variables


–  Appealing property for many applications is!
that it naturally truncates at x=0
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Specific issues with theory uncertainties


•  Modeling of theoretical syst. uncertainties follows familiar pattern

–  Define response

–  Define distribution for the ‘subsidiary measurement’ 

–  Construct full likelihood


•  But distribution of subsidiary theory measurement can be a thorny issue

–  For detector simulation uncertainties, subsidiary measurement usually based on actual 

measurement à Central Limit Theorem à convergence to Gaussian distribution when 
measurement is based on many events


–  This argument does not always apply to theoretical uncertainties, as there may be no 
underlying measurement


•  Example: (N)LO scale uncertainties in Matrix Element calculations

–  Typical prescription “vary to 0.5x nominal and 2x nominal and consider the difference” 

makes no statement on distribution

–  Yet proper statistical treatment of such an uncertainty (i.e. modeling in the likelihood) 

demands a specified distribution

–  Not clear what to do. You can ask theory expert, but not clear if has a well-motivated 

choice of distribution…

–  In any case if choice of distribution turns out not to matter too much, you just pick one.
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Specific issue with theory uncertainties


•  Worst type of ‘theory’ uncertainty are prescriptions that result in 
an observable difference that cannot be ascribed to clearly 
identifiable effects


•  Examples of such systematic prescriptions

–  Evaluate measurement with CTEQ and MRST parton density functions and 

take the difference as systematic uncertainty.


–  Evaluate measurement with Herwig and Pythia showering Monte Carlos and 
take the difference as systematic uncertainty 


•  I call these ‘2-point systematics’. 

–  You have the technical means to evaluate two known different configurations, 

but reasons for underlying difference are not clearly identified.
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Specific issue with theory uncertainties


•  It is difficult to define rigorous statistical procedures to deal with 
such 2-point uncertainties. So you need to decide


•  If their estimated effect is small, you can pragmatically ignore 
these lack of proper knowledge and ‘just do something 
reasonable’ to model these effects in a likelihood


•  If their estimated effect is large, your leading uncertainty is related 
to an effect that largely ununderstood effect. This is bad for 
physics reasons! 


–  You should go back to the drawing board and design a new measurement 
that is less sensitive to these issues.


–  Hypothetical example: !
* You measure an inclusive cross-section.!
* But Pythia-Herwig effect is largest uncertainty, originates from the visible-to-!
  inclusive acceptance factor.!
* Does it make to publish the inclusive cross-section, or is it better to publish!
  visible cross-section in some well-defined fiducial range? !
* Your measurement can then contribute to further discussion and validation   !
  of various showering MC packages.  
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Specific issues with theory uncertainties


•  Pragmatic solutions to likelihood modeling of ‘2-point systematics’

•  Final solution will need to follow usual pattern!

!
!



•  Since underlying concept of systematic uncertainty not defined,!
the only option is to define its meaning terms in terms of response in the 
physics measurement


•  Example

–  Estimate of bkg with Herwig = 8, with Pythia = 12

–  In the likelihood choose b=8 and then define !

f(α) = |1+4*α|, so that f(0) results in ‘Herwig (b.f=8)’!
and f(±1) results in ‘Pythia (b.f=12)’


–  For lack of a better word you could call α now the !
‘Herwigness of fragmentation w.r.t its effect on my !
background estimate’  


•  A thorny question remains: What is the subsidiary measurement for α?

–  This should reflect you current knowledge on α.  
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L(N | s,α) = Poisson(N | s+ b ⋅ f (α)) ⋅SomePdf (0 |α)

αgen


b
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Nuisance parameter


Pythia


Herwig




Specific issues with theory uncertainties


•  Subsidiary measurement of a theoretical 2-point uncertainty 
effectively quantifies the ‘knowledge’ on these models


•  Formally staying in concepts of frequentist statistics here: likelihood of subsidiary measurement L(x|α) is strictly P(data|theory), 
but you ‘data’ here is not really data but something that quantifies your belief since you have no data on this problem.


•  I realize this sounds very much like “you have no idea what you’re doing”, but to some extent this is precisely the problem 
with 2-point systematics – you really don’t know (or decided not to care about) the underlying physics issues.


•  Some options and their effects
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Herwig
Pythia
 Pythia
 Herwig
Pythia
 Pythia
 Herwig
Pythia
 Pythia


Prefers Herwig at 1σ
 All predictions ‘between’!
Herwig and Pythia equally!
probable


Only ‘pure’ Herwig!
and Pythia exist


Gaussian

Box with !

Gaussian wings
 Delta fuctions




Modeling multiple systematic uncertainties


•  Introduction of multiple systematic uncertainties presents no 
special issues


•  Example JES uncertainty plus generator ISR uncertainty




•   A brief note on correlations


–  Word “correlations” often used sloppily – proper way is to think of correlations 
of parameter estimators. Likelihood defines parameters αJES, αISR. !
The (ML) estimates of these are denoted


–  The ML estimators of               using the Likelihood of the subsidiary 
measurements are uncorrelated (since the product factorize in this example)


–  The ML estimators of               using the full Likelihood may be correlated.!
This is due to physics modeling effects encoded in the joint response function 
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L(N, 0 | s,αJES,α ISR ) = P(N | s+ b(1+ 0.1αJES + 0.05α ISR )) ⋅G(0 |αJES,1) ⋅G(0 |α ISR,1)

Joint response function!
for both systematics


One subsidiary!
measurement for each 

source of uncertainty


α̂JES,α̂ ISR

α̂JES,α̂ ISR

α̂JES,α̂ ISR



Modeling systematic uncertainties in multiple channels


•  Systematic effects that affect multiple measurements should be 
modeled coherently.


–  Example – Likelihood of two Poisson counting measurements


–  Effect of changing JES parameter αJES coherently affects both measurement.

–  Magnitude and sign effect does not need to be same, this is dictated by the 

physics of the measurement 
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L(NA,NB | s,αJES ) = P(NA | s ⋅ fA + bA (1+ 0.1αJES )) ⋅P(NB | s ⋅ fB + bB (1− 0.3αJES )) ⋅G(0 |αJES,1) ⋅

JES response !
function for !
channel A


JES response 

function for !
channel B


JES!
subsidiary!

measurement




Summary on likelihood modeling of systematic uncertainties 


•  To describe a systematic uncertainty in a likelihood model you need

–  A response model that deterministically describes the effect underlying the 

uncertainty (e.g. a change in calibration). Such a model has one or more 
parameters that control the strength of the effect


–  The ‘external knowledge’ on the strength of the effect is modeled as Likelihood 
representing the ‘subsidiary measurement’ through which this knowledge was 
obtained


•  Conceptually this is identical to including the likelihood of the actual calibration !
measurement in the likelihood of the physics analysis


•  In practice a simplified form of the measurement is included,  but you must choose an explicit 
distribution that best represents the original measurement. For systematic uncertainties that related to 
external measurements (calibrations), this is often a Gaussian or Poisson distribution!



•  Modeling prescription can easily be repeated to extend describe 
effect of multiple uncertainties in multiple simultaneous measurement


–  Conceptually it is not more complicated, but technically it can get tedious. We 
have good tools for this à will discuss these later!
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Summary on likelihood modeling of systematic uncertainties 


•  Often the process of modeling uncertainties in the likelihood 
requires information that is traditionally not provided as part of a 
systematic uncertainty prescription


•  This is good thing – your evaluation of these uncertainties 
otherwise relies on tacit assumptions on these. Discuss modeling 
assumptions you make with the prescription ‘provider’ 


•  You may also learn that your measurement is strongly affect by 
something you don’t know (e.g. distribution of a theory 
uncertainty). This is also a good thing. This is a genuine physics 
problem, that you might have otherwise overlooked 


•  Theory uncertainty modeling can pose difficult questions

–  Usually discovered 3 days before approval deadline, tendency is to ‘be 

conservative’ and not think much about problem. ‘Conservative’ solution !
tend to be ‘naïve error propagation’ à problem gets hidden behind 
unspecified assumptions of that method.   
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Dealing with nuisance parameters – The profile likelihood ratio


•  Once we introduced systematic uncertainties as ‘nuisance 
parameters’, we need to account for them in the statistical 
inference


•  For frequentist confidence intervals with LR test statistic,!
incorporate ‘new’ parameters θ as follows:


•  NB: value profile likelihood ratio does not depend on θ 
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Profiling illustration with one nuisance parameter
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Link between MINOS errors and profile likelihood




•  Note that MINOS !

algorithm in MINUIT !
gives same uncertainties!
as interval on !
Profile Likelihood Ratio!



–  MINOS errors is bounding box !
around λ(s) contour


–  Profile Likelihood = Likelihood!
minimized w.r.t. all nuisance !
parameters
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Modeling !
shape systematics:

template morphing
3 



Introducing response functions for shape uncertainties 


•  Modeling of systematic uncertainties in Likelihoods describing 
distributions follows the same procedure as for counting models


–  Example: Likelihood modeling !
distribution in a di-lepton invariant!
mass. POI is the signal strength μ!






•  Consider a lepton energy scale !
systematic uncertainty that affects this measurement


–  The LES has been measured with a 1% precision

–  The effect of LES on mll has been determined to a 2% shift for 1% LES change
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L( mll |µ) = µ ⋅Gauss(mll
(i), 91,1)+ (1−µ) ⋅Uniform(mll

(i) )#$ %&
i
∏

L( mll |µ,αLES ) = µ ⋅Gauss(mll
(i), 91⋅ (1+ 2αLES,1)+ (1−µ) ⋅Uniform(mll

(i) )#$ %&
i
∏ ⋅Gauss(0 |αLES,1)

Response function
 Subsidiary measurement




Analytical versus non-parametric shapes


•  At hadron colliders (including), analytical distributions for signal 
and background shapes are usually not available


•  Instead rely on MC simulation chain to obtain distribution à 
knowledge of distribution is a histogram of expected yields in bins 
of a discriminating observable


•  Modeling of a rate systematic uncertainty is straightforward:
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L(

N |µ) = Poisson(

i
∏ Ni |µsi + bi )

L(

N |µ,α) = Poisson(

i
∏ Ni |µsi ⋅ (1+3.75α)+ bi ) ⋅Gauss(0 |α,1)

Response function
 Subsidiary measurement

What about a systematic effect that shifts the mean?




Modeling of shape systematics in the likelihood


•  Effect of any systematic uncertainty that affects the shape of a 
distribution can in principle be obtained from MC simulation chain


–  Obtain histogram templates for distributions at ‘+1σ’ and ‘-1σ’ !
settings of systematic effect


•  Now construct a response function based on the shape of these 
three templates. 
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‘-1σ’
 ‘nominal’
 ‘+1σ’




Need to interpolate between template models


•  Need to define ‘morphing’ algorithm to define !
distribution s(x) for each value of α
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s(x,α=-1) 

s(x,α=0) 

s(x,α=+1) 
s(x)|α=-1 

s(x)|α=0 

s(x)|α=+1 



Piecewise linear interpolation


•  Simplest solution is piece-wise linear interpolation for each bin
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Piecewise linear!
interpolation!
response model!
for a one bin


Extrapolation to |α|>1


Kink at α=0


Ensure si(α)≥0




Visualization of bin-by-bin linear interpolation of distribution
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Limitations of piece-wise linear interpolation


•  Bin-by-bin interpolation looks spectacularly easy and simple, !
but be aware of its limitations


–  Same example, but with larger ‘mean shift’ between templates
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Note double peak structure around |α|=0.5




•  Also be aware of extrapolation effects

–  Nuisance parameters associated to systematic uncertainties can be pulled 

well beyond ‘1σ’, especially in high-significance hypothesis testing


–  Original example (with modest shift), but now visualized up to |α|=5 
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Limitations of piece-wise linear interpolation


MC statistical fluctuations!
amplified by extrapolation




Non-linear interpolation options


•  Piece-wise linear interpolation leads to kink in response functions that 
may result in pathological likelihood functions!
!
!
!
!
!
!
!
!
!
!



•  A variety of other interpolation options exist that improve this

–  Parabolic interpolation/linear extrapolation (but causes shift of minimum)

–  Polynomial interpolation [orders 1,2,4,6]/linear extrapolation (order 1 term allows!

for asymmetric modeling of templates)
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L(α>0) predicts α<0
 L(α<0) predicts α>0




Non-linear interpolation options


•  Comparison of common interpolation options
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Piece-wise interpolation for >1 nuisance parameter


•  Concept of piece-wise linear interpolation can be trivially extended 
to apply to morphing of >1 nuisance parameter.


–  Difficult to visualize effect on full distribution, but easy to understand concept 
at the individual bin level


–  One-parameter interpolation!



!
!


–  N-parameter interpolation
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Other morphing strategies – ‘horizontal morphing’


•  Other template morphing strategies exist that are less !
prone to unintended side effects


•  A ‘horizontal morphing’ strategy was invented by Alex read. 

–  Interpolates the cumulative distribution function instead of the distribution

–  Especially suitable for shifting distributions

–  Here shown on a continuous distribution, but also works on histograms

–  Drawback: computationally expensive, algorithm only worked out for 1 NP
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Integrate


Integrate


Interpolate
 Differentiate




Yet another morphing strategy – ‘Moment morphing’


•  Given two template model f-(x) and f+(x) the strategy of moment 
morphing considers first two moment of template models!
(mean and variance)!
!
!
!
 


•  The goal of moment morphing is to construct an interpolated function 
that has linearly interpolated moments





•  It constructs this morphed function as combination of linearly 
transformed input models


–  Where constants a,b,c,d are chosen such so that f(x,α) satisfies conditions [1]
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f (x,α)→α f−(ax + b)+ (1−α) f+(cx − d)

µ− = x ⋅ f−(x)∫ dx

V− = (x −µ− )
2 ⋅ f−(x)∫ dx

µ+ = x ⋅ f+(x)∫ dx

V+ = (x −µ+ )
2 ⋅ f+(x)∫ dx

µ(α) =αµ− + (1−α)µ+

V (α) =αV− + (1−α)V+
[1]


M. Baak & S. Gadatsch




Comparison of morphing algorithms
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Vertical!
Morphing


Horizontal!
Morphing


Moment!
Morphing


Gaussian!
varying!
width


Gaussian!
varying!
mean


Gaussian

to!

Uniform!
(this is!

conceptually ambigous!)


n-dimensional!
morphing?
 ✔ ✗ ✔ 



Shape, rate or no systematic?


•  Be judicious with modeling of systematic with little or no significant 
change in shape (w.r.t MC template statistics)


–  Example morphing of a very subtle change in the background model

–  Is this a meaningful new degree of freedom in the likelihood model?


–  A χ2 or KS test between!
nominal and alternate!
template can help to decide !
if a shape uncertainty is meaningul


–  Most systematic uncertainties!
affect both rate and shape, but can make!
independent decision on modeling rate (which less likely to affect fit stability)
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Fit stability due to insignificant shape systematics


•  Shape of profile likelihood in NP α clearly raises two points


•  1) Numerical minimization process will be ‘interesting’

•  2) MC statistical effects induce strongly defined minima that are fake


–  Because for this example all three templates were sampled from the same parent 
distribution (a uniform distribution)
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+ à 
− logλ(α) = − log L(α,

ˆ̂µ)
L(α̂, µ̂)



Recap on shape systematics & template morphing 


•  Implementation of shape systematic in !
likelihoods modeling distributions conceptually !
no different that rate systematics in counting !
experiments


•  For template modes obtained from MC simulation template 
provides a technical solution to implement response function


–  Simplest strategy piecewise linear interpolation,!
but only works well for small changes


–  Moment morphing better adapted to modeling!
of shifting distributions


–  Both algorithms extend to n-dimensional!
interpolation to model multiple systematic NPs!
in response function


–  Be judicious in modeling ‘weak’ systematics:!
MC systematic uncertainties will dominate likelihood
 Wouter Verkerke, NIKHEF


L( mll |µ,αLES ) = µ ⋅Gauss(mll
(i), 91⋅ (1+ 2αLES,1)+ (1−µ) ⋅Uniform(mll

(i) )#$ %&
i
∏ ⋅Gauss(0 |αLES,1)



Nuisance parameters for template statistics


•  Template morphing implements response function !
for shape systematic NPs. 


•  How do we model uncertainty in template due to finite MC statistics?

–  Again same concept: introduce response model in template and add subsidiary 

measurement to quantify MC statistical uncertainty. Conceptually straightforward 
for histograms: all bins are independent


L(

N ) = P(Ni | si + bi )

bins
∏

L(

N | s,


b) = P(Ni | si + bi )

bins
∏ P(si | si

bins
∏ ) P( bi | bi

bins
∏ )

L(

N | γ s,


γb ) = P(Ni |γ s,i si +γb,i bi )

bins
∏ P(si |γ s,i si

bins
∏ ) P( bi |γb,i bi

bins
∏ )

Binned likelihood !
with rigid template


Response function!
w.r.t. s, b as parameters


Subsidiary measurements!
of s ,b from s~,b~


Normalized NP model (nominal value of all γ is 1)




Nuisance parameters for template statistics


•  Solution of one NP per template bin conceptually straightforward, 
but can lead to a very large number of NPs in even the simplest 
models (e.g. 100 bins à 200 NPs for a signal+background model!)


•  Is this a problem? And if yes, can we do something about this?

–  It is mostly a problem because it makes numerical minimization of the likelihood 

tedious (many gradients to calculate, huge covariance matrix)


•  Roger Barlow and Christine Beeston realized that for parameter 
estimation of template yields in ‘sum of template models’ (‘signal 
and background’) the minimization of each γ parameter can be 
factorized and solved with a set of n independent equations
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Merits of the Beeston-Barlow approach


•  Beeston-Barlow method implemented in ROOT class TFractionFitter

–  Works great, effectively a minimization prescription, not a likelihood modeling 

prescription


–  Corresponding likelihood is full likelihood model shown earlier 


•  Effective computational efficiency gain also not completely clear

–  Solution of BB equation takes comparable amount of calculation!

compared to a numeric gradient calculation in one γ parameter, so do not 
expect a large gain in minimization phase of MINUT 


–  Some work on this still ongoing, but ‘plain’ BB is largely unused in LHC analyses 
now. 
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L(

N | s,


b) = P(Ni | si + bi )

bins
∏ P(si | si

bins
∏ ) P( bi | bi

bins
∏ )



Reducing the number NPs – Beeston-Barlow ‘lite’ 


•  Another approach that is being used is called ‘BB’ – lite

•  Premise: effect of statistical fluctuations on sum of templates is 

dominant à Use one NP per bin instead of one NP per 
component per bin  


L(

N | n) = P(Ni | ni )

bins
∏ P(si + bi | ni

bins
∏ )

L(

N | γ ) = P(Ni |γ i (si + bi ))

bins
∏ P(si + bi |γ i (si + bi

bins
∏ ))

Response function!
w.r.t. n as parameters


Subsidiary measurements!
of n from s~+b~


Normalized NP lite model (nominal value of all γ is 1)


L(

N | s,


b) = P(Ni | si + bi )

bins
∏ P(si | si

bins
∏ ) P( bi | bi

bins
∏ )

‘Beeston-Barlow’


‘Beeston-Barlow lite ’




Pruning complexity – MC statistical for selected bins


•  Can also make decision to model MC statistical uncertainty on a 
bin-by-bin basis


–  No modeling for high statistics bins

–  Explicit modeling for low-statistics bins
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L(

N | γ ) = P(Ni |γ i (si + bi ))

bins
∏ P(si + bi |γ i (si + bi

low−stats bins
∏ )) δ(γ i )

hi−stats bins
∏



Adapting binning to event density


•  Effect of template statistics can also be controlled by rebinning 
data such all bins contain expected and observed events


–  For example choose binning such that expected background has a uniform 
distribution (as signals are usually small and/or uncertain they matter less)


–  Example of this approach in the ATLAS HàWW analysis
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The interplay between shape systematics and MC systematics


•  Best practice for template morphing models is to also include effect 
of MC systematics


•  Note that that for every ‘morphing systematic’ there is an set of two 
templates that have their own (independent) MC statistical 
uncertainties.


–  A completely accurate should model MC stat uncertainties of all templates!
!
!



•  But has severe practical problems

–  Can only be done in ‘full’ Beeston-Barlow model, not in ‘lite’ mode, enormous 

number of NP models with only a handful of shape systematics…
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Morphing response function
 Subsidiary measurements




The interplay between shape systematics and MC systematics


•  Commonly chosen !
practical solution!
!
!
!



•  Approximate MC template statistics already significantly improves 
influence of MC fluctuations on template morphing


–  Because ML fit can now ‘reweight’ contributions of each bin 
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Morphing & MC response function!
!
Models relative MC rate uncertainty for each bin w.r.t the nominal 
MC yield, even if morphed total yield is slightly different


Subsidiary measurements


without BB-L

with BB-L




Summary on template morphing and template statistics


•  Template morphing allows to model arbitrary responses of shape 
systematics in template models


–  Various techniques exist, choose carefully, be wary of MC statistical effects 
that can dominate systematic effect


•  Modeling of MC statistical uncertainties important if NMC<10xNdata


–  Full Beeston-Barlow likelihood most accurate, but leads to enormous number 
of Nuisance parameters


–  Beeston-Barlow-lite procedures gives very comparable answers if template 
statistics are sufficient and results in less NPs


–  Modeling of MC statistical uncertainties improves stability of template 
morphing algorithms
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Modeling tools:!
RooFit, RooStats!
& HistFactory
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Coding probability models and likelihood functions


•  Implementation of systematic uncertainties in likelihood models 
typically leads to very complex probability models


•  All statistical techniques discussed in Section 2,4 require numeric 
minimization of likelihood functions. See problem in three parts


1.  Construction of probability models and likelihood functions (always needed) 

2.  Minimization of likelihood functions (for parameter estimation, variance 

estimate, likelihood-ratio intervals)

3.  Construction of test statistics and calculation of their distributions, 

construction of Neyman constructions on test statistics (p-values, confidence 
intervals) and calculation (MC(MC)) integrals over Likelihood (Bayesian 
credible intervals, Bayes factors)


•  For step 2 (minimization) the HEP industry standard is MINUIT

•  For steps 1, 3 good tools have been developed in the past years,!

will discuss these now.
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RooFit, RooStats and HistFactory
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RooFit

Language for building!
probability models!


Comprises datasets,!
likelihoods, minimization,!
toy data generation,!
visualization and persistence


HistFactory!
!
Language to simplify!
construction of RooFit!
models of a particular type: !
binned likelihood!
template (morphing) models


RooStats!
!
Suite of statistical tests!
operating on RooFit!
probability models 


W. Verkerke & D. Kirkby"
(exists since 1999)
 K. Cranmer, A. Shibata, G. Lewis, "

L. Moneta, W. Verkerke"
 (exists since 2010) 


K. Cranmer, G. Schott,"
L. Moneta, W. Verkerke"
(exists since 2008) 


Will cover RooFit and HistFactory in!
a bit more detail since they relate!
to model building – the key topic of this course


Will briefly sketch!
workings of RooStats!





RooFit core design philosophy


•  Mathematical objects are represented as C++ objects




variable RooRealVar 

function RooAbsReal 

PDF RooAbsPdf 

space point RooArgSet 

list of space points RooAbsData 

integral RooRealIntegral 

RooFit class Mathematical concept 

)(xf

x

x!

dxxf
x

x
∫
max

min

)(

)(xf
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RooFit core design philosophy - Workspace


•  The workspace serves a container class for all!
objects created


Gauss(x,µ,σ) 

RooRealVar x RooRealVar y RooRealVar z 

RooGaussian g 

RooRealVar x(“x”,”x”,-10,10) ; 
RooRealVar m(“m”,”y”,0,-10,10) ; 
RooRealVar s(“s”,”z”,3,0.1,10) ; 
RooGaussian g(“g”,”g”,x,m,s) ; 

Math 

RooFit 
diagram 

RooFit 
code 
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Basics – Creating and plotting a Gaussian p.d.f 


// Create an empty plot frame 
RooPlot* xframe = w::x.frame() ; 
 
// Plot model on frame 
model.plotOn(xframe) ; 
 
// Draw frame on canvas 
xframe->Draw() ;  
 

Plot range taken from limits of x 

Axis label from gauss title 

Unit  
normalization 

Setup gaussian PDF and plot 

A RooPlot is an empty frame 
capable of holding anything 
plotted versus it variable 
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Basics – Generating toy MC events


// Generate an unbinned toy MC set 
RooDataSet* data = w::gauss.generate(w::x,10000) ;   
 
// Generate an binned toy MC set 
RooDataHist* data = w::gauss.generateBinned(w::x,10000) ;   
 
// Plot PDF 
RooPlot* xframe = w::x.frame() ; 
data->plotOn(xframe) ; 
xframe->Draw() ; 

Generate 10000 events from Gaussian p.d.f and show distribution 

Can generate both binned and!
unbinned datasets
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Basics – ML fit of p.d.f to unbinned data


// ML fit of gauss to data 
w::gauss.fitTo(*data) ; 
(MINUIT printout omitted) 
 
// Parameters if gauss now 
// reflect fitted values 
w::mean.Print() 
RooRealVar::mean = 0.0172335 +/- 0.0299542  
w::sigma.Print() 
RooRealVar::sigma = 2.98094  +/- 0.0217306 
 
// Plot fitted PDF and toy data overlaid 
RooPlot* xframe = w::x.frame() ; 
data->plotOn(xframe) ; 
w::gauss.plotOn(xframe) ; 

PDF 
automatically 
normalized 
to dataset 
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RooFit core design philosophy - Workspace


•  The workspace serves a container class for all!
objects created


RooRealVar x RooRealVar y RooRealVar z 

RooGaussian g 

RooRealVar x(“x”,”x”,-10,10) ; 
RooRealVar m(“m”,”y”,0,-10,10) ; 
RooRealVar s(“s”,”z”,3,0.1,10) ; 
RooGaussian g(“g”,”g”,x,m,s) ; 
RooWorkspace w(“w”) ; 
w.import(g) ; 

Math 

RooFit 
diagram 

RooFit 
code 

6 

RooWorkspace


Gauss(x,µ,σ) 



The workspace


•  The workspace concept has revolutionized the way people share and 
combine analysis


–  Completely factorizes process of building and using likelihood functions

–  You can give somebody an analytical likelihood of a (potentially very complex) 

physics analysis in a way to the easy-to-use, provides introspection, and is easy to 
modify.
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RooWorkspace 

RooWorkspace w(“w”) ; 
w.import(sum) ; 
w.writeToFile(“model.root”) ; 

model.root 



Using a workspace 
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RooWorkspace 

// Resurrect model and data 
TFile f(“model.root”) ; 
RooWorkspace* w = f.Get(“w”) ; 
RooAbsPdf* model = w->pdf(“sum”) ; 
RooAbsData* data = w->data(“xxx”) ; 
 
// Use model and data 
model->fitTo(*data) ; 
 
RooPlot* frame =  
         w->var(“dt”)->frame() ; 
data->plotOn(frame) ; 
model->plotOn(frame) ; 



Accessing workspace contents


•  Looking into a workspace!
!

!
!
!
!





•  Access components two ways


  w.Print() ; 
 
  variables 
  --------- 
  (mean,sigma,x) 
 
  p.d.f.s 
  ------- 
  RooGaussian::f[ x=x mean=mean sigma=sigma ] = 0.249352 

  // 1 - Standard accessor method 

  RooAbsPdf* pdf = w->pdf(“f”) ; 
 
  // 2 - Import contents into C++ namespace in interpreter 

  w.exportToCint(“w”) ; 

  RooPlot* frame = w::x.frame() ; 

  w::f.plotOn(frame) ; 

  // strongly typed: w::f is ‘RooGaussian&’ 



RooFit core design philosophy - Workspace


•  The workspace serves a container class for all!
objects created


RooRealVar x RooRealVar y RooRealVar z 

RooGaussian g 

RooRealVar x(“x”,”x”,-10,10) ; 
RooRealVar m(“m”,”y”,0,-10,10) ; 
RooRealVar s(“s”,”z”,3,0.1,10) ; 
RooGaussian g(“g”,”g”,x,m,s) ; 
RooWorkspace w(“w”) ; 
w.import(g) ; 

Math 

RooFit 
diagram 

RooFit 
code 
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RooWorkspace


Gauss(x,µ,σ) 



Factory and Workspace


•  One C++ object per math symbol provides !
ultimate level of control over each objects functionality, but results 
in lengthy user code for even simple macros


•  Solution: add factory that auto-generates objects from a math-like 
language. Accessed through factory() method of workspace


•  Example: reduce construction of Gaussian pdf and its parameters 
from 4 to 1 line of code


w.factory(“Gaussian::f(x[-10,10],mean[5],sigma[3])”) ; 

RooRealVar x(“x”,”x”,-10,10) ; 
RooRealVar mean(“mean”,”mean”,5) ; 
RooRealVar sigma(“sigma”,”sigma”,3)  ; 
RooGaussian f(“f”,”f”,x,mean,sigma) ; 
w.import(f) ; 
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Populating a workspace the easy way – “the factory”


•  The factory allows to fill a workspace with pdfs and variables using 
a simplified scripting language


RooRealVar x RooRealVar y RooRealVar z 

RooAbsReal f 

RooWorkspace w(“w”) ; 
w.factory(“RooGaussian::g(x[-10,10],m[-10,10],z[3,0.1,10])”); 

Math 

RooFit 
diagram 

RooFit 
code 

RooWorkspace


Gauss(x,µ,σ) 



Model building – (Re)using standard components


•  RooFit provides a collection of compiled standard PDF classes


RooArgusBG 

RooPolynomial 

RooBMixDecay 

RooHistPdf 

RooGaussian 

Basic 
Gaussian, Exponential, Polynomial,… 
Chebychev polynomial 

Physics inspired 
ARGUS,Crystal Ball,  
Breit-Wigner, Voigtian, 
B/D-Decay,…. 

Non-parametric 
Histogram, KEYS 

Easy to extend the library: each p.d.f. is a separate C++ class 
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Model building – (Re)using standard components


•  List of most frequently used pdfs and their factory spec!



Gaussian 
 
     Gaussian::g(x,mean,sigma) 

Breit-Wigner 
           BreitWigner::bw(x,mean,gamma) 

Landau 
 
         Landau::l(x,mean,sigma) 

Exponential 
             Exponental::e(x,alpha) 

Polynomial 
 
 Polynomial::p(x,{a0,a1,a2}) 

Chebychev 
 
   Chebychev::p(x,{a0,a1,a2}) 

Kernel Estimation              KeysPdf::k(x,dataSet) 

Poisson 
 
      Poisson::p(x,mu) 

Voigtian 
 
    Voigtian::v(x,mean,gamma,sigma) 
(=BW⊗G)
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The power of pdf as building blocks – Advanced algorithms


•  Example: a ‘kernel estimation probability model’

–  Construct smooth pdf from unbinned data, using kernel estimation technique


•  Example


•  Also available for n-D data


Sample of events 
Gaussian pdf  

for each event 
Summed pdf 
for all events 

Adaptive Kernel: 
width of Gaussian depends  
on local event density 

 
   w.import(myData,Rename(“myData”)) ; 
   w.factory(“KeysPdf::k(x,myData)”) ; 
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The power of pdf as building blocks – adaptability


•  RooFit pdf classes do not require their parameter arguments to be 
variables, one can plug in functions as well


•  Allows trivial customization, extension of probability models





 
  // Original Gaussian 
  w.factory(“Gaussian::g1(x[80,100],m[91,80,100],s[1])”) 
 
 
  // Gaussian with response model in mean 
  w.factory(“expr::m_response(“m*(1+2alpha)”,m,alpha[-5,5])”) ;   
  w.factory(“Gaussian::g1(x,m_response,s[1])”) 
 

Gauss(x |µ,σ ) Gauss(x |µ ⋅ (1+ 2α),σ )
class RooGaussian
 also class RooGaussian!


Introduce a response function for a systematic uncertainty


NB: “expr” operates builds an intepreted function expression on the fly




The power of building blocks – operator expressions


•  Create a SUM expression to represent a sum of probability models


•  In composite model visualization!
components can be accessed by name 


 
  w.factory(“Gaussian::gauss1(x[0,10],mean1[2],sigma[1]”) ; 
  w.factory(“Gaussian::gauss2(x,mean2[3],sigma)”) ; 
  w.factory(“ArgusBG::argus(x,k[-1],9.0)”) ; 
 
  w.factory(“SUM::sum(g1frac[0.5]*gauss1, g2frac[0.1]*gauss2, argus)”) 
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  // Plot only argus components 
  w::sum.plotOn(frame,Components(“argus”), 
                LineStyle(kDashed)) ; 
 



Powerful operators – Morphing interpolation

•  Special operator pdfs can interpolate existing pdf shapes


–  Ex: interpolation between Gaussian and Polynomial!
!
!
!
!
!
!
!





•  Three morphing operator classes available


–  IntegralMorph (Alex Read). 

–  MomentMorph (Max Baak).

–  PiecewiseInterpolation (via HistFactory)!




w.factory(“Gaussian::g(x[-20,20],-10,2)”) ; 
w.factory(“Polynomial::p(x,{-0.03,-0.001})”) ; 
w.factory(“IntegralMorph::gp(g,p,x,alpha[0,1])”) ; 

Fit to data


α = 0.812 ± 0.008


39 



Powerful operators – Fourier convolution


•  Convolve any two arbitrary pdfs with a 1-line expression


•  Exploits power of FFTW!
package available via ROOT


–  Hand-tuned assembler code!
for time-critical parts


–  Amazingly fast: unbinned ML fit to !
10.000 events take ~5 seconds!


 
  w.factory(“Landau::L(x[-10,30],5,1)”) : 
  w.factory(“Gaussian::G(x,0,2)”) ; 
 
  w::x.setBins(“cache”,10000) ; // FFT sampling density 
  w.factory(“FCONV::LGf(x,L,G)”) ; // FFT convolution 
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Example 1: counting expt


•  Will now demonstrate how to !
construct a model for a !
counting experiment with!
a systematic uncertainty


Wouter Verkerke, NIKHEF


 
  // Subsidiary measurement of alpha 
  w.faxtory(“Gaussian::subs(0,alpha[-5,5],1)”) ; 
 
 // Response function mu(alpha) 
  w.factory(“expr::mu(‘s+b(1+0.1*alpha)’,s[20],b[20],alpha)”) ;   
 
  // Main measurement  
  w.factory(“Poisson::p(N[0,10000],mu)”); 
   
  // Complete model Physics*Subsidiary 
  w.factory(“PROD::model(p,subs)”) ; 
 

L(N | s,α) = Poisson(N | s+ b(1+ 0.1α)) ⋅Gauss(0 |α,1)



Example 2: unbinned L with syst. 


•  Will now demonstrate how to !
code complete example of!
the unbinned profile likelihood !
of Section 5:
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L( mll |µ,αLES ) = µ ⋅Gauss(mll
(i), 91⋅ (1+ 2αLES ),1)+ (1−µ) ⋅Uniform(mll

(i) )#$ %&
i
∏ ⋅Gauss(0 |αLES,1)

 
  // Subsidiary measurement of alpha 
  w.factory(“Gaussian::subs(0,alpha[-5,5],1)”); 
   
  // Response function m(alpha) 
  w.factory(“expr::m_a(“m*(1+2alpha)”,m[91,80,100],alpha)”) ;   
 
  // Signal model 
  w.factory(“Gaussian::sig(x[80,100],m_a,s[1])”) 
 
  // Complete model Physics(signal plus background)*Subsidiary 
  w.factory(“PROD::model(SUM(mu[0,1]*sig,Uniform::bkg(x)),subs)”) ; 
 



Example 3 : binned L with syst


•  Example of template morphing!
systematic in a binned likelihood


Wouter Verkerke, NIKHEF


L(

N |α, s −, s 0, s + ) = P(Ni | si (α, si

−, si
0, si

+ )
bins
∏ ) ⋅G(0 |α,1)

si (α,...) =
si
0 +α ⋅ (si

+ − si
0 ) ∀α > 0

si
0 +α ⋅ (si

0 − si
− ) ∀α < 0

$
%
&

'&

// Import template histograms in workspace 
 w.import(hs_0,hs_p,hs_m) ; 
 
 // Construct template models from histograms 
 w.factory(“HistFunc::s_0(x[80,100],hs_0)”) ; 
 w.factory(“HistFunc::s_p(x,hs_p)”) ; 
 w.factory(“HistFunc::s_m(x,hs_m)”) ; 
 
 // Construct morphing model 
 w.factory(“PiecewiseInterpolation::sig(s_0,s_,m,s_p,alpha[-5,5])”) ;  
 
 // Construct full model 
 w.factory(“PROD::model(ASUM(sig,bkg,f[0,1]),Gaussian(0,alpha,1))”) ; 



Example 4 – Beeston-Barlow light


•  Beeston-Barlow-(lite) modeling!
of MC statistical uncertainties
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L(

N | γ ) = P(Ni |γ i (si + bi ))

bins
∏ P(si + bi |γ i (si + bi

bins
∏ ))

// Import template histogram in workspace 
 w.import(hs) ; 
 
// Construct parametric template models from histograms 
// implicitly creates vector of gamma parameters 
 w.factory(“ParamHistFunc::s(hs)”) ; 
  
 // Product of subsidiary measurement 
 w.factory(“HistConstraint::subs(s)”) ;  
 
 // Construct full model 
 w.factory(“PROD::model(s,subs)”) ; 



Example 5 – BB-lite + morphing


•  Template morphing model!
with Beeston-Barlow-lite!
MC statistical uncertainties


L(

N | s,


b) = P(Ni |γ i ⋅[si (α, si

−, si
0, si

+ )+ bi ])
bins
∏ P(si + bi |γ i ⋅[ si + bi ]

bins
∏ )G(0 |α,1)

si (α,...) =
si
0 +α ⋅ (si

+ − si
0 ) ∀α > 0

si
0 +α ⋅ (si

0 − si
− ) ∀α < 0

$
%
&

'&

// Import template histograms in workspace 
 w.import(hs_0,hs_p,hs_m,hb) ; 
 
 // Construct parametric template morphing signal model 
 w.factory(“ParamHistFunc::s_p(hs_p)”) ; 
 w.factory(“HistFunc::s_m(x,hs_m)”) ; 
 w.factory(“HistFunc::s_0(x[80,100],hs_0)”) ; 
 w.factory(“PiecewiseInterpolation::sig(s_0,s_,m,s_p,alpha[-5,5])”) ;  
 
 // Construct parametric background model (sharing gamma’s with s_p) 
 w.factory(“ParamHistFunc::bkg(hb,s_p)”) ; 
 
 // Construct full model with BB-lite MC stats modeling 
 w.factory(“PROD::model(ASUM(sig,bkg,f[0,1]), 
            HistConstraint({s_0,bkg}),Gaussian(0,alpha,1))”) ; 



HistFactory – structured building of binned template models


•  RooFit modeling building blocks allow to easily construct!
likelihood models that model shape and rate systematics with!
one or more nuisance parameter


–  Only  few lines of code per construction


•  Typical LHC analysis required modeling of 10-50 systematic 
uncertainties in O(10) samples in anywhere between 2 and 100 
channels  à Need structured formalism to piece together model 
from specifications. This is the purpose of HistFactory


•  HistFactory conceptually similar to workspace factory, but has 
much higher level semantics


–  Elements represent physics concepts (channels, samples, uncertainties and 
their relation) rather than mathematical concepts


–  Descriptive elements are represented by C++ objects (like roofit),!
and can be configured in C++, or alternively from an XML file


–  Builds a RooFit (mathematical) model from a HistFactory physics model.
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HistFactory elements of a channel


•  Hierarchy of concepts for description of one measurement channel


Wouter Verkerke, NIKHEF


(Theory) sample normalization


Template morphing shape systematic


Beeston-Barlow-lite MC statistical uncertainties




HistFactory elements of measurement


•  One or more channels are combined to form a measurement

–  Along with some extra information (declaration of the POI, the luminosity of the 

data sample and its uncertainty)
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Example of model building with HistFactory


•  An example of model building with HistFactory

•  Measurement consists of one channel (“VBF”)

•  The VBF channel comprises


1.  A data sample

2.  A template model of two samples (“signal” and “qcd”)

3.  The background sample has a “JES” template !

morphing systematic uncertainty!
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Model building with HistFactory


Wouter Verkerke, NIKHEF


// external input in form of TH1 shown in green 
 
// Declare ingredients of measurement 
HistFactory::Data data ; 
data.SetHisto(data_hist) ; 
 
HistFactory::Sample signal("signal") ; 
signal.SetHisto(sample_hist) ; 
 
HistFactory::Sample qcd("QCD") ; 
qcd.SetHisto(sample_hist) ; 
 
HistFactory::HistoSys hsys("QCD_JetEnergyScale") ; 
hsys.SetHistoLow(sample_hist_sysdn) ; 
hsys.SetHistoHigh(sample_hist_sysup) ; 
qcd.AddHistoSys(hsys) ; 
 
HistFactory::Channel channel("VBF") ; 
channel.SetData(data) ; 
channel.AddSample(sample) ; 
 
HistFactory::Measurement meas("MyAnalysis") ; 
meas.AddChannel(channel) ; 
 
// Now build RooFit model according to specs 
HistFactory::HistoToWorkspaceFactoryFast h2w(meas) ; 
RooWorkspace* w = h2w.MakeCombinedModel(meas) ; 
w->Print("t") ; 
w->writeToFile("test.root") ; 



HistFactory model output

•  Contents of RooFit workspace produced by HistFactory 


Wouter Verkerke, NIKHEF


RooWorkspace(combined) combined contents 
 
variables 
--------- 
(Lumi,alpha_QCD_JetEnergyScale,binWidth_obs_x_VBF_0,binWidth_obs_x_VBF_1,channelCat, 
 nom_alpha_QCD_JetEnergyScale,nominalLumi,obs_x_VBF,weightVar) 
 
p.d.f.s 
------- 
RooSimultaneous::simPdf[ indexCat=channelCat VBF=model_VBF ] = 0 
  RooProdPdf::model_VBF[ lumiConstraint * alpha_QCD_JetEnergyScaleConstraint * VBF_model(obs_x_VBF) ] = 0 
    RooGaussian::lumiConstraint[ x=Lumi mean=nominalLumi sigma=0.1 ] = 1 
    RooGaussian::alpha_QCD_JESConstraint[ x=alpha_QCD_JetEnergyScale mean=nom_alpha_QCD_JetEnergyScale sigma=1 ] = 1 
    RooRealSumPdf::VBF_model[ binW_obs_x_VBF_0 * L_x_sig_VBF_overallSyst_x_Exp + binW_obs_x_VBF_1 * L_x_QCD_VBF_overallSyst_x_HistSyst ] = 0 
      RooProduct::L_x_sig_VBF_overallSyst_x_Exp[ Lumi * sig_VBF_overallSyst_x_Exp ] = 0 
        RooProduct::sig_VBF_overallSyst_x_Exp[ sig_VBF_nominal * sig_VBF_epsilon ] = 0 
          RooHistFunc::sig_VBF_nominal[ depList=(obs_x_VBF) ] = 0 
      RooProduct::L_x_QCD_VBF_overallSyst_x_HistSyst[ Lumi * QCD_VBF_overallSyst_x_HistSyst ] = 0 
        RooProduct::QCD_VBF_overallSyst_x_HistSyst[ QCD_VBF_Hist_alpha * QCD_VBF_epsilon ] = 0 
          PiecewiseInterpolation::QCD_VBF_Hist_alpha[ ] = 0 
            RooHistFunc::QCD_VBF_Hist_alphanominal[ depList=(obs_x_VBF) ] = 0 
            RooHistFunc::QCD_VBF_Hist_alpha_0low[ depList=(obs_x_VBF) ] = 0 
            RooHistFunc::QCD_VBF_Hist_alpha_0high[ depList=(obs_x_VBF) ] = 0 
 
datasets 
-------- 
RooDataSet::asimovData(obs_x_VBF,weightVar,channelCat) 
RooDataSet::obsData(channelCat,obs_x_VBF) 
 
embedded datasets (in pdfs and functions) 
----------------------------------------- 
RooDataHist::sig_VBFnominalDHist(obs_x_VBF) 
RooDataHist::QCD_VBF_Hist_alphanominalDHist(obs_x_VBF) 
RooDataHist::QCD_VBF_Hist_alpha_0lowDHist(obs_x_VBF) 
RooDataHist::QCD_VBF_Hist_alpha_0highDHist(obs_x_VBF) 
 
parameter snapshots 
------------------- 
NominalParamValues = (nominalLumi=1[C],nom_alpha_QCD_JetEnergyScale=0[C],weightVar=0,obs_x_VBF=-4.5,Lumi=1,alpha_QCD_JetEnergyScale=0, 
                     binWidth_obs_x_VBF_0=1[C],binWidth_obs_x_VBF_1=1[C]) 
 
named sets 
---------- 
ModelConfig_GlobalObservables:(nominalLumi,nom_alpha_QCD_JetEnergyScale) 
ModelConfig_Observables:(obs_x_VBF,weightVar,channelCat) 
ModelConfig_POI:() 
globalObservables:(nominalLumi,nom_alpha_QCD_JetEnergyScale) 
observables:(obs_x_VBF,weightVar,channelCat) 
 
generic objects 
--------------- 
RooStats::ModelConfig::ModelConfig 

RooFit!
probability!
model as !
specified


Definition of!
POI, NPs,!

Observables

Global observables!



Universal!

Model Configuration




HistFactory model structure


•  RooFit object structure

–  As visalized with simPdf::graphVizTree(“model.dot”)  

followed by dot –Tpng –omodel.png model.dot’ 
 

•  This RooFit probability model can be evaluated without knowledge 
of HistFactory


–  Additional (documentary) information stored in workspace specifies a uniquely 
specified statistical model (definition of POI, NP etc) 
 Wouter Verkerke, NIKHEF


JES subsidiary!
measurement


Lumi subsidiary!
measurement


QCD morphing model

Signal model




Wouter Verkerke, NIKHEF


Diagnostics II:

Overconstraining &

choices in modeling !
parametrization
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Role reversal of physics and subsidiary measurements


•  As mention in Section 3, full (profile) likelihood treats physics and 
subsidiary measurement on equal footing


•  Our mental picture:!



•  Is this picture (always) correct?!
!
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L(N, 0 | s,α) = Poisson(N | s+ b(1+ 0.1α)) ⋅Gauss(0 |α,1)

Physics measurement
 Subsidiary measurement


“measures s”
 “measures α”


“dependence on α!
weakens inference on s”




Understanding your model – what constrains your NP


•  The answer is no – not always! Your physics measurement!
may in some circumstances constrain α better than your 
subsidiary measurement.


•  Doesn’t happen in Poisson counting example 

–  Physics likelihood has no information to distinguish effect of s from effect of α


•  But if physics measurement is based on a distribution or 
comprises multiple distributions this is well possible 
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L(N, 0 | s,α) = Poisson(N | s+ b(1+ 0.1α)) ⋅Gauss(0 |α,1)

Physics measurement
 Subsidiary measurement




Understanding your model – what constrains your NP


•  A case study – measuring jet multiplicity

–  Physics observable of interest is a jet multiplicity spectrum !

[3j,4j,5j] after an (unspecified) pT cut.


–  Describe data with sum of signal (mildly peaking at 4j) and !
a single background (exponentially falling in nj).


–  POI is signal strength modifier μ. 

–  Jet Energy Scale is the leading !

systematic uncertainty 

•  JES strongly affects jet multiplicity !

after a pT cut, 

•  Effect modeled by response !

function rs(α) 

•  Magnitude of uncertainty on α !

constrained by subsidiary !
measurement
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L(

N |µ,αJES ) = Poisson(

i=3,4,5
∏ Ni | (µ ⋅ si ⋅+ bi ) ⋅ rs (αJES ))) ⋅Gauss(0 |αJES,1)



Understanding your model – what constrains your NP


•  Now measure (μ,α) from data – 80 events!



•  Is this fit OK?

–  Effect of JES uncertainty propagated in to μ via response modeling in likelihood. 

Increases total uncertainty by about a factor of 2

–  Estimated uncertainty on α is not precisely 1, as one would expect!

from unit Gaussian subsidiary measurement…  
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µ̂ =1.0± 0.37

α̂ = 0.01± 0.83

Estimators of!
μ, α correlated!
due to similar!

response in physics!
measurement


Uncertainty!
on μ without effect of JES




Understanding your model – what constrains your NP


•  The next year – 10x more data  (800 events)!
repeat measurement with same model


•  Is this fit OK?

–  Uncertainty of JES NP much reduced w.r.t. subsidiary meas. (α = 0 ± 1)

–  Because the physics likelihood can measure it better than the subsidiary 

measurement (the effect of μ, α are sufficiently distinct that both can be 
constrained at high precision)
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µ̂ = 0.90± 0.13

α̂ = −0.23± 0.31

Estimators of!
μ, α correlated!
due to similar!

response in physics!
measurement




Understanding your model – what constrains your NP


•  Is it OK if the physics measurement constrains NP associated with 
a systematic uncertainty better than the designated subsidiary 
measurement?


–  From the statisticians point of view: no problem, simply a product of two 
likelihood that are treated on equal footing ‘simultaneous measurement’


–  From physicists point of view? Measurement is only valid is model is valid.


•  Is the probability model of the physics measurement valid?


•  Reasons for concern

–  Incomplete modeling of systematic uncertainties,

–  Or more generally, model insufficiently detailed 
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L(

N |µ,αJES ) = Poisson(

i=3,4,5
∏ Ni | (µ ⋅ si ⋅+ bi ) ⋅ rs (αJES ))) ⋅Gauss(0 |αJES,1)



Understanding your model – what constrains your NP


•  What did we overlook in the example model?

–  The background rate has no uncertainty!

–  Insert modeling of background uncertainty!

!



•  With improved model!
accuracy estimated!
uncertainty on both!
αJES, μ goes up again…


–  Inference weakened!
by new degree of!
freedom αbkg


–  NB αJES estimate still!
deviates a bit from normal!
distribution estimate…
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L(

N |µ,αJES,αbkg ) = Poisson(

i=3,4,5
∏ Ni | (µ ⋅ si ⋅+ bi ⋅ rb(αbkg )) ⋅ rs (αJES ))) ⋅Gauss(0 |αJES,1) ⋅Gauss(0 |αbkg,1)

Background rate!
subsidiary measurement


Background rate!
response function


µ̂ = 0.93± 0.29

α̂JES = 0.90± 0.70

(α̂bkg =1.36± 0.20)



Understanding your model – what constrains your NP


•  Lesson learned: if probability model of a physics measurement is 
insufficiently detailed (i.e. flexible) you can underestimate 
uncertainties


•  Normalized subsidiary measurement provide an excellent 
diagnostic tool


–  Whenever estimates of a NP associated with unit Gaussian subsidiary 
measurement deviate from α = 0 ± 1then physics measurement is 
constraining or biases this NP.


–  Always inspect all NPs of your fit for such signs!



•  Is ‘over-constraining’ of systematics NPs always bad?

–  No, sometimes there are good arguments why a physics measurement can 

measure a systematic uncertainty better than a dedicated calibration 
measurement (that is represented by the subsidiary measurement)


–  Example: in sample of reconstructed hadronic top quarks tàbW(qq), the pair 
of light jets should always have m(jj)=mW.  For this special sample of jets it will 
possible to calibrate the JES better than with generic calibration measurement
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Commonly heard  arguments in discussion on over-constraining


•  Overconstraining of a certain systematic is OK “because this is what 
the data tell us”


–  It is what the data tells you under the hypothesis that your model is correct. The 
problem is usually in the latter condition


•  “The parameter αJES should not be interpreted as Jet Energy Scale 
uncertainty provided by the jet calibration group”


–  A systematic uncertainty is always combination of response prescription and one or 
more nuisance parameters uncertainties.


–  If you implement the response prescription of the systematic, then the NP in your 
model really is the same as the prescriptions uncertainty 


•  “My estimate of αJES = 0 ± 0.4 doesn’t mean that the ‘real’ Jet Energy 
Scale systematic is reduced from 5% to 2%


–  It certainly means that in your analysis a 2% JES uncertainty is propagated to the 
POI instead of the “official” 5%.


–  One can argue that the 5% shouldn’t apply because your sample is special and can 
be calibrated better by a clever model, but this is a physics argument that should 
be documented with evidence for that (e.g. argument JES in tàbW(qq) decays)   
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Dealing with over-constrained systematic NPs


•  Step 1 – Diagnostics

–   Always inspect nuisance parameters in your fit for signs of over-constraining


•  Step 2 – Analyze

–  Are there systematic uncertainties overlooked in the construction of the 

likelihood that introduce unwarranted physics assumption in model that ML 
estimator exploits to constrain models?


–  Is your systematic uncertainty conceptually covered by a single nuisance 
parameter? do you perhaps need more NPs?


–  In case the physics likelihood comprises multiple samples, do you assume 
fully correlated responses functions, whereas sample composition should 
conceptually allow for some degree of decorrelation?


•  Step 3 – Solution

–  If over-constraining is analyzed to be the result of inaccurate modeling, 

improve model structure, add new NPs, decompose NPs in different ways to 
reflect sample correlations


–  If constraint from physics is believed to be document studies as part of your 
physics analysis
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Dealing with over-constraining – introducing more NPs


•  Some systematic uncertainties are not captured well by one 
nuisance parameter. 


•  Example Jet Energy Scale

–  Statement “the JES uncertainty is 5% for all jets” does not necessarily imply 

that the calibration of all jets can be modeled with a single NP.

–  A single NP implies that the calibration can only be coherently off among all 

jets. Such an assumption allows, for example, to precisely constrain JES with 
a high-statistics sample of low-pT jets, and then transport that reduced 
uncertainty to high-pT jets, using the calibration scale coherency encoded in 
the model


–  In reality correlation between the energy scale of low-pT and high-pT jets is 
controlled by the detector design and calibration procedure and is likely a lot 
more complicated à Invalid modeling of systematic uncertainties often a 
result of ‘own interpretation’ of imprecisely formulated systematic prescription.


–  Besides this, a calibration may have multiple sources of uncertainty that were 
lumped together in a prescription (calibration measurements, simulation 
assumptions, sample-dependent effects) that would need to be individually 
modeled
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Dealing with over-constraining – Theory uncertainties


•  Over-constraining of theory uncertainties in physics measurements 
has different set of issues than for detector uncertainties


•  Different: In principle it is the goal of physics measurements to 
constrain theory uncertainties


–  So role of physics measurement and subsidiary measurement are not symmetric:  
the latter quantifies some ‘degree of belief’ that is not based on an experimental 
measurement. 


–  Likelihood of physics measurement constitutes an experimental measurement and 
is in principle preferred over ‘belief’


–  But question remains if physics likelihood was well designed to constrain this 
particular theory uncertainty.


•  Same: response function and set of NPs must be able to accurately 
capture underlying systematic effect.


–  Sometimes easy, e.g. ‘renormalization scale’ has well-defined meaning in a given 
theoretical model and a clearly identifiable single associated parameter


–  Sometimes hard, e.g. ‘Pythia vs Herwig’. Not clear what it means or how many 
degrees of freedom underlying model has. 
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Dealing with ‘two-point’ uncertainties


•  In discussion of rate systematics in Section 3 !
it was mentioned that ‘two-point systematics’ !
can always be effectively represented with an !
interpolation strategy!
!



•  But this argument relies crucially on the dimensional correspondence 
between the observable and the NP


–  The effect on a scalar observable can always be modeled with one NP

–  In other words the existence of a 3rd generator ‘Sherpa’ can always be!

effectively capture by the Pythia-Herwig inter/extrapolation

–  It can of course modify your subsidiary measurement (e.g. lending more credence 

to the Pythia outcome if its result is close, but response model is still valid)
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 Subsidiary meas.




Dealing with ‘two-point’ uncertainties


•  If ‘2-point’response functions models a distribution, the response 
corresponding to a new ‘third point’ is not necessarily mapped by 
b(α) for any value of α


•  This point is important in the discussion to what extent a two-
point response function can be over-constrained.


–  A result α2p = 0.5 ± 1 has ‘reasonable’ odds to cover the ‘true generator’ 
assuming all generators are normally scattered in an imaginary ‘generator 
space’
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Dealing with ‘two-point’ uncertainties


•  If ‘2-point’response functions models a distribution, the response 
corresponding to a new ‘third point’ is not necessarily mapped by 
b(α) for any value of α


•  This point is important in the discussion to what extent a two-
point response function can be over-constrained.


–  Does a hypothetical overconstrained result α2p = 0.1 ± 0.2 ‘reasonably’ cover 
the generator model space?
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Dealing with ‘two-point’ uncertainties

•  Arguments on representativeness of sampling points of ‘2 point’ models raise 

questions in validity of physics models that over-constrain these

•  The main problem is that you become rather sensitive to things you don’t 

know and quantify: the ‘dimensionality’ of the generator space.

–  To understand what you are doing you’d need to know what all degrees of freedom are 

(and ideally what they conceptually represent)

–  Unless you know this – trying to reduce the ‘considered space of possibilities’ is rather 

speculative

–  The real problem is often that you don’t really know what causes the ‘Pythia/Herwig’ 

effect. Unless you learn more about that there is no real progress.


•  The ‘unknown dimensionality’ problem often enters a model in a seemlingly 
standard modeling assumptions


–  Take an inclusive cross-section measurement 

–  Needs to extrapolate acceptance region!

to full inclusive phase space using generator!
à Introduces generator systematic


–  Physics likelihood can ‘measure’ !
that nature inside acceptance is very !
Pythia-like insideusing 2-point !
response function with 1 NP


–  Is nature in the entire phase space therefore!
Pythia-like? If yes, we can greatly reduce!
inclusive cross-section uncertainty, if no, not… 


Generator phase space


Analysis acceptance
Nature!
is measured!

to be very!
Pythia-like!

here
 Is nature!
therefore!
also very Pythia-like!
here?




Summary


•  Diagnostics over NP overconstraining provide powerful insight into 
your analysis model


–  An overconstrained NP indicates an externally provided systematic is 
inconsistent with physics measurement


–  This may point to either an incorrect response modeling of that uncertainty, to 
result in a genuinely better estimate of the uncertainty


–  Solution not always clear-cut, but you should be at least aware of it.

–  Note that over-constraining always points to an underlying physics issue!

(lack of knowledge, simplistic modeling) à Treat it as a physics analysis 
problem, not as a statistics problem 


•  Diagnostic power of profile likelihood models highlights one of the 
major shortcomings of the ‘naïve’ strategy of error propagation (as 
discussed in Section 1)


–  Physics measurement can entangle in non-trivial ways with systematic 
uncertainties
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Example of likelihood modeling diagnostics
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Summary


•  Modelling of systematic uncertainties in the likelihood (‘profiling’) !
is the best we know to incorporate systematic uncertainties in 
rigorous statistical procedures


–  Profiling requires more a ‘exact’ specification of what a systematic uncertainty 
means that traditional prescriptions à this is good thing, it makes you think 
about (otherwise hidden) assumption


–  It’s important to involve the ‘author’ of uncertainty prescription in this process, 
as flawed assumptions can be exploited by statistical methods to arrive at 
unwarranted conclusions


–  Systematic uncertainties that have conceptual fuzziness (‘pythia-vs-herwig’)!
are difficult to capture in the likelihood, but this is a reflection of an underlying 
physics problem


–  Good software tools exist to simplify the process of likelihood modeling

–  It’s important to carefully diagnose your profile likelihood models for both 

technical and interpretational problems (‘over-constraining’)    
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