Basic concepts - part 1

SOS 2016 May 30 - June 3, Autrans Julien Donini UBP/LPC Clermont-Ferrand

Basics

- Sample measurements
- Error propagation
- Probabilities, Bayes Theorem
- Probability density function

Model testings

- p -value and test statistics
- Chi2 and KS tests
- Hypothesis testing

Parameter estimation

- Maximum likelihood method
- Least square fit
- BLUE

Introductory books (non exhaustive)

Excellent book of reference

- G. Cowan, Statistical Data Analysis (Oxford Science Publication)

Introduction to Bayesian analysis

- D. Sivia, Data Analysis: A Bayesian Tutorial (Oxford Science Publication)

Nice approach

- Louis Lyons, Statistics for Nuclear and Particle Physicists (Cambridge University Press)

En Français

- B. Clement, Analyse de données en sciences expérimentales (Dunod)

Samples: basic basics

Population

- Let's consider a sample of values (e.g. experimental measurements)
N measurement of a variable $X:\left\{x_{i}\right\}=\left\{X_{1}, x_{2}, \ldots, x_{N}\right\}$
- There are several quantities that can be determined to characterize this population without any knowledge of the underlying model/theory

Measure of position

Arithmetic mean: $\bar{x}=\frac{1}{N} \sum_{i=1}^{N} x_{i}$ Median: value that separates sample in half
Quartiles $\left(Q_{1}, Q_{2}, Q_{3}\right)$: values that separates sample in four equal-size sample

median

Samples: basic basics

Measure of dispersion
Variance: if truth sample mean μ is known

$$
v=\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\bar{\mu}\right)^{2}
$$

But μ is in general not know and sample mean is used instead

- Sample variance (biased):

$$
v=\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}=\overline{x^{2}}-\bar{x}^{2}
$$

- Estimated variance (unbiased): $v=\frac{1}{N-1} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}=\frac{N}{N-1}\left(\overline{x^{2}}-\bar{x}^{2}\right)$
\rightarrow Bias is below α if $N \geq 1 / \alpha-1$ (ex for 1% bias, $N \geq 101$)
Standard deviation (is of same unit as \mathbf{x}): $\sigma=\sqrt{v}$

Standard deviation and error

In many situations repeating an experiment a large amount of time produces a spread of results whose distribution is approximately Gaussian.
This is a consequence of the Central Limit Theorem.
Gaussian distribution

$$
f(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}
$$

Interval $\mu \pm \sigma$ contains 68.3% of distribution

A measurement = outcome of the sum of a large number of effects. In general the distribution of this variable will be gaussian. The std deviation of the sample is associated to the std deviation of the Gauss distribution. The standard deviation is then interpreted as the interval that could contain the true value with a 68.3% confidence level.

CLT at work

Simple illustration of CLT

- let's consider x : a random variable uniformly distributed in $[0,1]$
- and the distribution of N sums of $\mathrm{x}: \quad z=\sum_{i=1}^{N} x_{i}$

Uniform ($\mathrm{N}=1$)

Irwin-Hall
(see here)

Gauss
($\mathrm{N}>40$)

Multidimensional samples

Case where N measurements are performed of M different variables
\rightarrow The sample then consists of N vectors of M measurements

$$
\left\{\overrightarrow{\boldsymbol{x}_{\boldsymbol{i}}}\right\}=\left\{\overrightarrow{\boldsymbol{x}_{\mathbf{1}}}, \overrightarrow{\boldsymbol{x}_{\mathbf{2}}}, \ldots, \overrightarrow{\boldsymbol{x}_{\boldsymbol{N}}}\right\} \quad \text { with }\left\{\begin{array}{c}
\overrightarrow{\boldsymbol{x}_{\mathbf{1}}}: x_{1}^{(1)}, x_{1}^{(2)}, \ldots x_{1}^{(M)} \\
(\ldots) \\
\overrightarrow{\boldsymbol{x}_{\boldsymbol{N}}}: x_{N}^{(1)}, x_{N}^{(2)}, \ldots x_{N}^{(M)}
\end{array}\right.
$$

Mean and variance can be calculated for each variable $x_{i}^{(k)}$ but to quantify how of one variable behaves w.r.t another one uses the covariance:

For two variables x and $y: \operatorname{cov}(x, y)=\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)=\overline{x y}-\bar{x} \bar{y}$
Correlation factor is defined as: $\rho_{x y}=\frac{\operatorname{cov}(x, y)}{\sigma_{x} \sigma_{y}}$ with $-1 \leq \rho_{x y} \leq 1$

$$
\begin{aligned}
& \rho_{x y}=1(-1) \rightarrow x \text { and } y \text { are fully (anti)correlated } \\
& \left.\rho_{x y}=0 \rightarrow x \text { and } y \text { are uncorrelated (} \neq \text { independent }!\right)
\end{aligned}
$$

Covariance matrix

Covariance matrix (aka error matrix) of sample $\left\{\overrightarrow{x_{i}}\right\}, \mathrm{i}=1 . . \mathrm{N}$

- Real, symmetric, $\mathrm{N} \times \mathrm{N}$ matrix of the form:
$C=\left(\begin{array}{ccc}\operatorname{cov}\left(x_{1}, x_{1}\right) & \ldots & \operatorname{cov}\left(x_{1}, x_{N}\right) \\ \vdots & \operatorname{cov}\left(x_{i}, x_{j}\right) & \vdots \\ \operatorname{cov}\left(x_{N}, x_{1}\right) & \ldots & \operatorname{cov}\left(x_{N}, x_{N}\right)\end{array}\right)=\left(\begin{array}{ccc}\sigma_{1}{ }^{2} & \ldots & \rho_{1 N} \sigma_{1} \sigma_{N} \\ \vdots & \rho_{i j} \sigma_{i} \sigma_{j} & \vdots \\ \rho_{N 1} \sigma_{N} \sigma_{1} & \ldots & \sigma_{N}{ }^{2}\end{array}\right)$

Correlation matrix: $\quad \rho=\left(\begin{array}{ccc}1 & \cdots & \rho_{1 N} \\ \vdots & 1 & \vdots \\ \rho_{N 1} & \cdots & 1\end{array}\right)$

Example of usage of covariance matrix:

- Transformation of input variables
- Error propagation
- Combination of correlated measurements

Decorrelation

Decorrelation: choose a basis $\left\{\bar{y}_{i}\right\}$ where C becomes diagonal.
\rightarrow transformation matrix A such that new covariance matrix U is diagonal

$$
\begin{array}{c|c}
y_{i}=\sum_{j=1}^{N} A_{i j} x_{j} & \begin{array}{rl}
U_{i j} & =\operatorname{cov}\left(y_{i}, y_{j}\right)=\operatorname{cov}\left(\sum_{k=1}^{N} A_{i k} x_{k} \sum_{l=1}^{N} A_{j l} x_{l}\right) \\
& =\sum_{k, l=1}^{N} A_{i k} A_{j l} \operatorname{cov}\left(x_{l,} x_{k}\right)=\sum_{k, l=1}^{N} A_{i k} C_{k l} A_{l j}^{T} \\
Y=A X & U=A C A^{T}
\end{array} \\
&
\end{array}
$$

Diagonalization of C : find orthonormal eigenvectors e_{j} such that $C e_{j}=\lambda_{j} e_{j}$

$$
A=\left(\begin{array}{cccc}
e_{1}{ }^{(1)} & e_{1}{ }^{(2)} & \cdots & e_{1}{ }^{(N)} \\
& \vdots & \vdots & \\
& & & \\
e_{N}{ }^{(1)} & e_{N}{ }^{(2)} & \cdots & e_{N}{ }^{(N)}
\end{array}\right) \quad \text { and } \mathrm{U}=\left(\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{N}
\end{array}\right)
$$

$$
\lambda_{i}=\text { eigenvalues of } C=\sigma_{j}^{\prime 2} \text { : variance of } y_{i}
$$

Decorrelation

2D example: variables x_{1} and x_{2} with correlation factor ρ

$$
\lambda_{ \pm}=\frac{1}{2}\left({\sigma_{1}}^{2}+{\sigma_{2}}^{2} \pm \sqrt{\left({\sigma_{1}}^{2}+{\sigma_{2}}^{2}\right)^{2}-4\left(1-\rho^{2}\right){\sigma_{1}}^{2} \sigma_{2}^{2}}\right)
$$

$$
\begin{aligned}
A & =\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right) \\
\theta & =\frac{1}{2} \tan ^{-1}\left(\frac{2 \rho \sigma_{1} \sigma_{2}}{\sigma_{1}{ }^{2}-\sigma_{2}{ }^{2}}\right)
\end{aligned}
$$

Decorrelation: use cases

- Data pre-processing (for MVA): remove correlation from input variables
- Reduce dimensionality of a problem: Principal Component Analysis (PCA)

Consider only the $\mathrm{M}<\mathrm{N}$ dominant eigenvalues (=variance) terms in U
\rightarrow Reduced covariance matrix $\mathrm{C}: \mathrm{M} \times \mathrm{M}$

Note: the decorrelation method is able to eliminate only linear correlations

Error propagation

Function \boldsymbol{f} of several variables $\mathbf{x}=\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{N}\right\}$

- Each variable x_{i} of mean μ_{i} and variance $\sigma_{i}{ }^{2}$
- Perform $1^{\text {st }}$ order Taylor expansion of f around mean value

$$
\begin{gathered}
f(\vec{x}) \approx f(\vec{\mu})+\sum_{i=1}^{N} \frac{\partial f}{\partial x_{i}}(\vec{\mu})\left(x_{i}-\mu_{i}\right) \\
f(\vec{x})^{2} \approx f(\vec{\mu})^{2}+2 f(\vec{\mu}) \sum_{i=1}^{N} \frac{\partial f}{\partial x_{i}}(\vec{\mu})\left(x_{i}-\mu_{i}\right)+\sum_{i, j=1}^{N} \frac{\partial f}{\partial x_{i}} \frac{\partial f}{\partial x_{j}}(\vec{\mu})\left(x_{i}-\mu_{i}\right)\left(x_{j}-\mu_{j}\right)
\end{gathered}
$$

Variance of $f(x)$:

$$
\sigma_{f}^{2}=\overline{f(\vec{x})^{2}}-(\overline{f(\vec{x})})^{2} \approx \sum_{i, j=1}^{N} \frac{\partial f}{\partial x_{i}} \frac{\partial f}{\partial x_{j}}(\vec{\mu}) \times \operatorname{cov}\left(x_{i}, x_{j}\right)
$$

$$
\text { Since } \overline{\left(x_{i}-\mu_{i}\right)}=0
$$

$$
\overline{\left(x_{i}-\mu_{i}\right)^{2}}=\sigma_{i}^{2}
$$

Validity: up to $2^{\text {nd }}$ order, linear case, small errors

$$
\begin{aligned}
& \overline{\left(x_{i}-\mu_{i}\right)\left(x_{j}-\mu_{j}\right)} \\
& =\operatorname{cov}\left(x_{i}, x_{j}\right)
\end{aligned}
$$

Error propagation

Example:

x and y with correlation factor ρ

$$
\sigma_{f}^{2}=\left(\frac{\partial f}{\partial x} \sigma_{x}\right)^{2}+\left(\frac{\partial f}{\partial y} \sigma_{y}\right)^{2}+2 \frac{\partial f}{\partial x} \frac{\partial f}{\partial y} \operatorname{cov}(x, y)
$$

$$
\begin{array}{ll}
f(x, y)=x+y & \rightarrow \sigma_{f}^{2}=\sigma_{x}^{2}+\sigma_{y}^{2}+2 \rho \sigma_{x} \sigma_{y} \\
f(x, y)=x y \quad \rightarrow \sigma_{f}^{2}=y \sigma_{x}^{2}+x \sigma_{y}^{2}+2 x y \rho \sigma_{x} \sigma_{y}
\end{array}
$$

For a set of m function $f_{1}(\mathbf{x}), \ldots, f_{m}(\mathbf{x})$

- \mathbf{C} is the covariance of variables $\mathbf{x}=\left\{x_{i}\right\}$
- We can build the covariance matrix of $\left\{\mathbf{f}_{\mathrm{i}}(\mathbf{x})\right\}$: \mathbf{U}

$$
U_{k l}=\operatorname{cov}\left(f_{k}, f_{l}\right)=\sum_{i, j=1}^{N} \frac{\partial f_{k}}{\partial x_{i}} \frac{\partial f_{l}}{\partial x_{j}}(\vec{\mu}) \times \operatorname{cov}\left(x_{i}, x_{j}\right)
$$

This can be expressed as $U=A C A^{T}$ where

$$
\mathrm{A}_{\mathrm{ij}}=\frac{\partial f_{i}}{\partial x_{j}}(\vec{\mu})
$$

(matrix of derivatives)

Interlude

You are given a coin, you toss it and obtain "tail". What is the probability that both sides are "tail" ?

Interlude

It depends on the prior that the coin is unfair (and on the person that gave you the coin)

Who is more likely to give a fair coin?

Sample space: Ω

- Set of all possible results of an experiment
- Populated by events

Probability

- Frequentist: related to frequency of occurrence

$$
P(A)=\frac{\text { number of time event A occurs }}{\text { number of time experience is repeated }}
$$

- Subjectivist (Bayesian): degree of belief that A is true Introduces concepts of prior and posterior probability

```
P(A|data)}\propto\boldsymbol{P}(\mathrm{ data }|\boldsymbol{A})\times\boldsymbol{P}(\boldsymbol{A}
```

Knowledge on A increases using data

Mathematical formalization (Kolmogorov)

$$
\begin{gathered}
P(\Omega)=1 \\
0 \leq P(A) \leq 1 \\
P(A \cap B)=P(A)+P(B)-P(A \cup B)
\end{gathered}
$$

$P(A \cap B)$

Incompatible events: $P(A \cap B)=\emptyset \Rightarrow P(A \cup B)=P(A)+P(B)$
Conditional probability: $\quad \boldsymbol{P}(\boldsymbol{A} \mid \boldsymbol{B})=\frac{\boldsymbol{P}(\boldsymbol{A} \cap \boldsymbol{B})}{\boldsymbol{P}(\boldsymbol{B})}$
Independent events: $\boldsymbol{P}(\boldsymbol{A} \cap \boldsymbol{B})=\boldsymbol{P}(\boldsymbol{A} \mid \boldsymbol{B}) \boldsymbol{P}(\boldsymbol{B})=\boldsymbol{P}(\boldsymbol{A}) \boldsymbol{P}(\boldsymbol{B})$

Bayes theorem

An Essay towards solving a Problem in the Doctrine of Chances.
By the late Rev. Mr. Bayes, communicated by Mr. Price (1763)
"If there be two subsequent events, the probability of the second b / N and the probability of both together P / N, and it being first discovered that the second event has also happened, from hence I guess that the first event has also happened, the probability I am right is P/b."
http://www.stat.ucla.edu/history/essay.pdf

Thomas Bayes (?) c. 1701-1761

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

If the sample space Ω can be divided in disjoint subsets A_{i}

$$
P(B)=\sum_{i} P\left(B \cap A_{i}\right)=\sum_{i} P\left(B \mid A_{i}\right) P\left(A_{i}\right)
$$

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{\sum_{i} P\left(B \mid A_{i}\right) P\left(A_{i}\right)}
$$

$\boldsymbol{A}_{\boldsymbol{i}} \cap \boldsymbol{A}_{\boldsymbol{j}}=\emptyset(\boldsymbol{i} \neq \boldsymbol{j})$

Bayes Theorem in everyday life

Example: 10 coins, one of which is unfair (two-sided tail): You flip a random coin and obtain tail. What is the probability that this is the unfair coin?

A: event where the coin is unfair, \mathbf{B} : event where the result is tail
You want $\mathrm{P}(\mathrm{A} \mid \mathrm{B}): \quad \boldsymbol{P}(\boldsymbol{A} \mid \boldsymbol{B})=\frac{\boldsymbol{P}(\boldsymbol{B} \mid \boldsymbol{A}) \boldsymbol{P}(\boldsymbol{A})}{\boldsymbol{P}(\boldsymbol{B})}$
where: $\quad P(B)=P(B \cap A)+P(B \cap \bar{A})=P(B \mid A) P(A)+P(B \mid \bar{A}) P(\bar{A})$

$$
\begin{aligned}
& P(B \mid A)=1, P(A)=\frac{1}{10} \\
& \Rightarrow \boldsymbol{P}(\boldsymbol{A} \mid \boldsymbol{B})=\frac{\mathbf{1} \times \frac{\mathbf{1}}{\mathbf{1 0}}}{\mathbf{1 \times \frac { \mathbf { 1 } } { \mathbf { 1 0 } } + \frac { \mathbf { 1 } } { \mathbf { 2 } } \times \frac { \mathbf { 9 } } { \mathbf { 1 0 } }}=\frac{\mathbf{2}}{\mathbf{1 1}}}
\end{aligned}
$$

In Bayesian language: $\mathrm{P}(\mathrm{A})$ is the prior probability and $\mathrm{P}(\mathrm{B} \mid \mathrm{A})$ the posterior

Consequences of not knowing Bayes Th.

Simple tools for understanding risks: from innumeracy to insight (2003)
G. Gigerenzer, A. Edwards, BMJ 327, 2003 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC200816/

Conditional probabilities

The probability that a woman has breast cancer is 0.8%. If she has breast cancer, the probability that a mammogram will show a positive result is 90%. If a woman does not have breast cancer the probability of a positive result is 7%. Take, for example, a woman who has a positive result. What is the probability that she actually has breast cancer?
$P(C \mid+)=\frac{P(+\mid C) P(C)}{P(+)}=\frac{0.9 \times 0.008}{0.9 \times 0.008+0.07 \times 0.992}=9.4 \%$

Natural frequencies

Eight out of every 1000 women have breast cancer. Of these eight women with breast cancer seven will have a
 positive result on mammography. Of the 992 women who do not have breast cancer some 70 will still have a positive mammogram. Take, for example, a sample of women who have positive mammograms. How many of these women actually have breast cancer?

$$
P(C \mid+)=\frac{0.9 \times 8}{0.9 \times 8+0.07 \times 992}=9.4 \%
$$

"Bad presentation of medical statistics such as the risks associated with a particular intervention can lead to patients making poor decisions on treatment"

Bayes Theorem and statistical inference

Statistical inference

Estimate true parameters of a theory or a model using data

- Frequentist: perform measurement (or set limits)
- Bayesian: Improve prior knowledge using data

Going Bayesian

Probability distribution

Random variable X

Discrete random variable: result (realizations) $\mathrm{x}_{\mathrm{i}} \in \Omega$ with probability $\mathrm{P}\left(\mathrm{x}_{\mathrm{i}}\right)$
$\rightarrow \mathbf{P}$ is the probability distribution and $\sum_{i}^{N} P\left(x_{i}\right)=1$
For continuous variable: probability of observing x in infinitesimal interval
\rightarrow Given by the probability density function (p.d.f) $f(x) \quad f(x)$
Probability of x in $[x, x+d x]=f(x) d x$
Probability of x in $[a, b]=\int_{a}^{b} f(x) d x$
with:

$$
\int_{\Omega} f(x) d x=1
$$

\rightarrow Cumulative distribution $\mathrm{F}(\mathrm{x}): \quad F(x)=\int_{-\infty}^{x} f\left(x^{\prime}\right) d x^{\prime}$

Probability density function: $\quad f(x)$

Cumulative distribution: $\quad F(x)=y$

Inverse cumulative distribution: $x=F^{-1}(y)$

Median: x such that $F(x)=1 / 2 \rightarrow x_{1 / 2}=F^{-1}(1 / 2)$

Quantile of order α : $x_{\alpha}=F^{-1}(\alpha)$

Expectation value

Expectation value of a random variable X :

For a function of $\mathrm{x}, \mathrm{a}(\mathrm{x})$, the expectation value is: $E[\boldsymbol{a}(x)]=\int_{-\infty}^{\infty} \boldsymbol{a}(x) \boldsymbol{f}(x) \boldsymbol{d x}$

- mean of $\mathrm{X}: E[x]=\int_{-\infty}^{\infty} x f(x) d x=\mu$
- $\mathrm{n}^{\text {th }}$ order moment: $E\left[x^{n}\right]=\int_{-\infty}^{\infty} x^{n} f(x) d x=\mu_{n}$
- Characteristic function $\phi(t)$:

$$
\phi(t)=E\left[e^{i t x}\right]=\int e^{i t x} f(x) d x=\mathrm{FT}^{-1}(f) \text { where } \mu_{n}=(-i)^{n} \frac{d^{n} \phi}{d t^{n}}(0)
$$

- Variance:

$$
\begin{aligned}
V[x]= & E\left[(x-E[x])^{2}\right]=\int_{-\infty}^{\infty}(x-\mu)^{2} f(x) d x \\
& =E\left[x^{2}\right]-E[x]^{2}
\end{aligned}
$$

- Standard deviation: $\sigma=\sqrt{V[x]}$

Some common distributions

Binomial law: efficiency, trigger rates, ...

$$
B(k ; n, p)=C_{k}^{n} p^{k}(1-p)^{n-k}, \mu=n p, \sigma=\sqrt{n p(1-p)}
$$

Poisson distribution: counting experiments, hypothesis testing

$$
P(n ; \lambda)=\frac{\lambda^{n} e^{-\lambda}}{n!}, \mu=\lambda, \sigma=\sqrt{\lambda}
$$

Gauss distribution (aka Normal): many use-case (asymptotic convergence)

$$
f(x ; \mu, \sigma)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}
$$

Cauchy distribution (aka Breit-Wigner): particle decay width,

$$
f\left(x ; x_{0}, \gamma\right)=\frac{1}{\pi \gamma\left[1+\left(\frac{x-x_{0}}{\gamma}\right)^{2}\right]} \quad \mu \text { and } \sigma \text { not defined (divergent integral) }
$$

Cumulative distribution and p-value

$$
\begin{aligned}
& F(x)=\int_{-\infty}^{x} f\left(x^{\prime}\right) d x^{\prime}
\end{aligned}
$$

One can choose any $x_{\text {sel }}$ to compute $F(x)$ or p-value, that is $x_{\text {sel }}$ does not have a preferred value: it follows the uniform distribution.
\rightarrow The distributions of $F\left(x_{\text {sel }}\right)$ and p-value are also uniform
\rightarrow Important for MC sample generation and hypothesis testing

(Silly) use case

Grading copies:

Try Cauchy distribution

$$
f(x)=\frac{1}{\pi \gamma\left[1+\left(\frac{x-x_{0}}{\gamma}\right)^{2}\right]}
$$

$$
F(x)=\frac{1}{\pi} \arctan \left(\frac{x-x_{0}}{\gamma}\right)+\frac{1}{2}
$$

- 100 copies, grades: 0-20
- Peaked distribution at 10

$$
F^{-1}(y)=x=\gamma \tan \left(\pi\left(y-\frac{1}{2}\right)\right)+x_{0}
$$

(Silly) use case

Grading copies:

Try Cauchy distribution

$$
f(x)=\frac{1}{\pi \gamma\left[1+\left(\frac{x-x_{0}}{\gamma}\right)^{2}\right]}
$$

$$
F(x)=\frac{1}{\pi} \arctan \left(\frac{x-x_{0}}{\gamma}\right)+\frac{1}{2}
$$

- 100 copies, grades: 0-20
- Peaked distribution at 10

$$
F^{-1}(y)=x=\gamma \tan \left(\pi\left(y-\frac{1}{2}\right)\right)+x_{0}
$$

Multi-dimensional p.d.f

An experiment can perform a set of measurement
\rightarrow Vector of N measurements $\vec{x}=\left\{\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{N}\right\}$

Probability of observing \vec{x} in infinitesimal interval $\vec{x}+d \vec{x}$ given by joint p.d.f

$$
f(\vec{x}) d \vec{x}=f\left(x_{1}, \ldots, x_{N}\right) d x_{1} \ldots d x_{N}
$$

Ex: for a measurement of 2 values x and y
Probability of x in $[x, x+d x]$ and y in $[y, y+d y]$ is $f(x, y) d x d y$

$$
\iint_{\Omega} f(x, y) d x d y=1
$$

Marginal and conditional p.d.f

Marginal distribution: p.d.f of one variable regardless of the others

$$
f_{x}(x)=\int_{-\infty}^{\infty} f(x, y) d y \quad f_{y}(y)=\int_{-\infty}^{\infty} f(x, y) d x
$$

Conditional distribution: p.d.f of one variable given a constant other

$$
\begin{aligned}
k(y \mid x) & =\frac{f(x, y)}{f_{x}(x)}=\frac{f(x, y)}{\int f\left(x, y^{\prime}\right) d y^{\prime}} \\
g(x \mid y) & =\frac{f(x, y)}{f_{y}(y)}=\frac{f(x, y)}{\int f\left(x^{\prime}, y\right) d x^{\prime}}
\end{aligned}
$$

Note: k and g are both functions of x and y

Marginal and conditional p.d.f

Bayes theorem for continuous variables

$$
f(x, y)=g(x \mid y) f_{y}(y)=k(y \mid x) f_{x}(x) \rightarrow g(x \mid y)=\frac{k(y \mid x) f_{x}(x)}{f_{y}(y)}
$$

Marginal p.d.f can also be expressed with conditional probabilities:
$f_{x}(x)=\int_{-\infty}^{\infty} g(x \mid y) f_{y}(y) d y \quad f_{y}(y)=\int_{-\infty}^{\infty} k(y \mid x) f_{x}(x) d x$
Note: this is a generalization of the relation $\boldsymbol{P}(\boldsymbol{B})=\sum_{i} \boldsymbol{P}\left(\boldsymbol{B} \mid \boldsymbol{A}_{\boldsymbol{i}}\right) \boldsymbol{P}\left(\boldsymbol{A}_{\boldsymbol{i}}\right)$ to continuous variables

Independent variables: if x and y are independent $f(x, y)=f_{y}(\boldsymbol{y}) f_{x}(\boldsymbol{x})$
Ex: 2D Gaussian function with uncorrelated variables

$$
\operatorname{Gaus}(x, y)=\frac{1}{2 \pi \sigma_{x} \sigma_{y}} \exp \left(\frac{-\left(x-\mu_{x}\right)^{2}}{2 \sigma_{x}^{2}}\right) \exp \left(\frac{-\left(y-\mu_{y}\right)^{2}}{2 \sigma_{y}^{2}}\right)
$$

Interlude

What's wrong ?

Test hypothesis

Testing compatibility of observed data against a model

- model = background predictions (for simplicity)
$\rightarrow n_{b}$ events: follows Poisson distribution of mean v_{b}
$\rightarrow \mathbf{n}_{\text {obs }}$ observed events
To quantify degree of compatibility of $\mathrm{n}_{\text {obs }}$ with the background-only hypothesis we calculate how likely it is to find $\mathrm{n}_{\text {obs }}$ or more events of background
p-value: probability that the expected number of event (background) is at least as high as the number of observed data

$$
\begin{aligned}
\mathrm{p}-\text { value } & =P\left(n \geq n_{o b s}\right)=1-P\left(n<n_{o b s}\right) \\
& =\sum_{n=n_{o b s}}^{+\infty} \frac{e^{-v_{b}} v_{b}^{n}}{n!}=1-\sum_{n=0}^{n_{o b s}-1} \frac{e^{-v_{b}} v_{b}^{n}}{n!} \\
& {\left[\text { for } v_{b}<n_{o b s}\right] }
\end{aligned}
$$

Test hypothesis

For the case where $\mathbf{v}_{\mathbf{b}}>\mathrm{n}_{\mathrm{obs}}$ one can define:

The previous sums can be simplified using incomplete Gamma functions:

$$
\sum_{n=n_{o b s}}^{+\infty} \frac{e^{-v_{b}} v_{b}^{n}}{n!}=\frac{1}{\Gamma\left(n_{o b s}\right)} \int_{0}^{v_{b}} t^{n_{o b s}-1} e^{-t} d t=\Gamma\left(v_{b}, n_{o b s}\right)
$$

$$
\text { with } \Gamma\left(n_{o b s}\right)=\int_{0}^{\infty} t^{n_{o b s}-1} e^{-t} d t=\left(n_{o b s}-1\right)!\left(\text { if } n_{o b s} \text { integer }\right)
$$

It is customary to transform the p-value into a Z-value using the integral of the Gaussian distribution:

$$
\int_{-\infty}^{Z} \operatorname{Gaus}(x, \mu=0, \sigma=1) d x=\int_{-\infty}^{Z} \frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}} d x=1-\text { pvalue }
$$

Z-value = number of standard deviation, used as a measure of the significance of an excess (or a deficit) w.r.t the (background) hypothesis.

In practice one uses the inverse cumulative distribution function of the Gaussian distribution to compute the significance:

$$
Z=\sqrt{2} \operatorname{Erf}^{-1}(1-2 \times \mathrm{p}-\text { value })
$$

p-value	Z
0.159	1σ
2.28×10^{-2}	2σ
1.35×10^{-3}	3σ
3.15×10^{-5}	4σ
2.85×10^{-7}	5σ

