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Basics

« Sample measurements

* Error propagation

* Probabilities, Bayes Theorem
* Probability density function

Introductory books (non exhaustive)

Model testings

« p-value and test statistics
e Chi2 and KS tests

* Hypothesis testing

Parameter estimation
 Maximum likelihood method
* Least square fit
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Excellent book of reference

« G. Cowan, Statistical Data Analysis
(Oxford Science Publication)

Introduction to Bayesian analysis

« D. Sivia, Data Analysis: A Bayesian
Tutorial (Oxford Science Publication)

Nice approach

» Louis Lyons, Statistics for Nuclear and
Particle Physicists (Cambridge
University Press)

En Francais

« B. Clement, Analyse de données en
sciences expérimentales (Dunod)



Population

Samples: basic basics

» Let's consider a sample of values (e.g. experimental measurements)
N measurement of a variable X: {x;} = {Xq, X5, ..., X}

« There are several quantities that can be determined to characterize this
population without any knowledge of the underlying model/theory

Measure of position

1
Arithmetic mean:| x = —

Nt

-

1=1

Median: value that separates sample in half

Quartiles (Q4,Q,,Q3): values that separates sample in four equal-size sample

X4

X145
| 111 | | o

Q Q,

> X
r 1
X Q,

median
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Samples: basic basics

Measure of dispersion

N
1
Variance: if truth sample mean p is known | v = NZ(xi — )
i=1

But y is in general not know and sample mean is used instead

N
1 __
« Sample variance (biased): v = Nz(’“f —x)% =x2%2 — x°
i=1
N
« Estimated variance (unbiased):| v = LZ(x- —x)% = N (x2 — x2)
' N —1. - ¥ N—-1
i=

— Bias is below a if N 2 1/a — 1 (ex for 1% bias, N=101)

Standard deviation (is of same unit as x): | 0 = /v

SOS 2016 4



Standard deviation and error

In many situations repeating an experiment a large amount of time produces a
spread of results whose distribution is approximately Gaussian.

This is a consequence of the Central Limit Theorem.

= 0.5 |

0.15

Gaussian distribution 045
04F [l16 — 68.3%
1 1(x—[,t)2 0.35F M2 — 95.5%
S\ 03
f(X)= Iy e 2\ o [1.255—
27-[0- D_Qz_

Interval p+o contains 68.3% of distribution o1

0.05F

0g

-4 3 =2 -1 0 1 2 3

A measurement = outcome of the sum of a large number of effects.

In general the distribution of this variable will be gaussian. The std deviation
of the sample is associated to the std deviation of the Gauss distribution.

The standard deviation is then interpreted as the interval that could contain
the true value with a 68.3% confidence level.
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CLT at work

Simple illustration of CLT

» let's consider x: a random variable uniformly distributed in [0,1]

N
« and the distribution of N sums of x: z = E X;
i=1
_ _ ¥ /ndi 12506004/ 196
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Uniform (N=1)

!

[rwin-Hall
(see here)

!

Gauss
(N>40)


https://en.wikipedia.org/wiki/Irwin%E2%80%93Hall_distribution

Multidimensional samples

Case where N measurements are performed of M different variables
— The sample then consists of N vectors of M measurements

{Yl)} — {x_l)! x_Z)! reny ﬁ)} with x_1>: xl(l), xl(z),... Xl(M)

i (..))

Ty @,y @,y ™D

Mean and variance can be calculated for each variable x;¥) but to quantify
how of one variable behaves w.r.t another one uses the covariance:

N
1
For two variables x and y:| cov(x,y) = NZ(xi —X)(y; —y) =xy — Xy
i=1

cov(x,y)
oy ay

Correlation factor is defined as: | Pxy with —1<p,, <1

P,y = 1(-1) — x and y are fully (anti)correlated
Py, = 0 — x and y are uncorrelated (# independent !)
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Covariance matrix

Covariance matrix (aka error matrix) of sample {x;},i = 1..N
* Real, symmetric, NxN matrix of the form:

cov(xq, X1) cov(xy, Xy) 0y ° P1NO10N

C = : cov(x;, X;j) Pij0i0j
cov(xy, X1) cov(xy, Xn) PN10NO1 ON

2

1 " PIN
Correlation matrix; p={ ¢ 1 :
PN1 1

Example of usage of covariance matrix:

* Transformation of input variables

« Error propagation

« Combination of correlated measurements
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Decorrelation

Decorrelation: choose a basis {y;} where C becomes diagonal.
— transformation matrix A such that new covariance matrix U is diagonal

N N N
Vi = Z Ajjx; Uij = Cov(yi,yj) = COV (z A Xy Z Aﬂxl>
j=1 k=1 =1

N N
Y = AX = Z AjAjicov(x; xy) = z ApCraAy;'
k=1 k=1
U= ACAT

Diagonalization of C: find orthonormal eigenvectors g, such that | Ce; = Aje;

31(1) 31(2) el(N) /‘{1 0 o 0
A= 5 : and U= 0. {12 0
eN(l) eN(Z) eN(N) 0O 0 /1N

A; = eigenvalues of C = ¢’/ : variance of y,
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Decorrelation

2D example: variables x; and x, with correlation factor p

1
Ay = _(012 + 0,2 £ /(012 + 0,2)2 — 4(1 — ,02)012022)

2
X, .
y X _ ( cosf  sind
2 1 Y 4 (—sinH cose)
8 wetedie
2 1 _ [ 2poi0;

. 6 = —tan

U 2 0-12 - 0-22

>x1

Decorrelation: use cases
« Data pre-processing (for MVA): remove correlation from input variables
* Reduce dimensionality of a problem: Principal Component Analysis (PCA)

Consider only the M<N dominant eigenvalues (=variance) terms in U
— Reduced covariance matrix C: MxM

Note: the decorrelation method is able to eliminate only linear correlations
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Error propagation

Function f of several variables x={x4,...,Xy\}
« Each variable x; of mean p; and variance o2
« Perform 1st order Taylor expansion of f around mean value

N
0
F@) ~ D)+ Y (i)~ )
i=1

N N

9, df o
fOO?2 = F(I)? + 2f () 26—£(ﬁ)(xi — W) + 9 9 (D) (e — ) (g — )
i=1 ‘

0x; 0x;
ij=1 7

Variance of f(x):

Since (x; — ;) =0
N af af l L

=D - (D) =~

() X cov(x;, x;j) Ce, — )2 = o?

[,j=1

(x; — 1) (x5 — 1)
Validity: up to 2"d order, linear case, small errors = cov(x;, X;)
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Error propagation

Example: . (of 2 aF \2 of of
x and y with correlation factorp | 9 = (ax ) + (@ 0y> T 2 oy OV Y)

fxy)=x+y — o0} =0%+05+2po,0,
fx.y)=xy — of=yo%+xo5+2xypo,o,
For a set of m function f,(x), ..., f,(x)

« C is the covariance of variables x={x;}
« We can build the covariance matrix of {f;(x)}: U

Ui = cov(fie f) = af : afl (i) X cov(x, ;)

ij=1

ft L) (matrix of
ax] derivatives)

This can be expressed as| U = ACAT | where
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You are given a coin, you toss it and obtain “tail”.
What is the probability that both sides are “tail” ?




It depends on the prior that the coin is unfair
(and on the person that gave you the coin)

Who is more likely to give a fair coin ?
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Probabilities

Sample space: Q
« Set of all possible results of an experiment
 Populated by events

Probability
 Frequentist: related to frequency of occurrence

number of time event A occurs

P(A) =
(4) number of time experience is repeated

« Subjectivist (Bayesian): degree of belief that A is true
Introduces concepts of prior and posterior probability

P(A|data) « P(data|A) x P(A)

N

Knowledge on A increases using data
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Axioms and rules

Mathematical formalization (Kolmogorov) o

P(Q) =1

0<PA)<1 @
P(AnB) = P(A) + P(B)— P(AU B) P(AN B)

Incompatible events: P(AnB) = @ = P(AU B) = P(A) + P(B)

P(ANB)
P(B)

Conditional probability: P(AlB) =

Independent events: P(4 n B) = P(A|B)P(B) = P(A)P(B)
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Bayes theorem

An Essay towards solving a Problem in the Doctrine of Chances.
By the late Rev. Mr. Bayes, communicated by Mr. Price (1763)

“If there be two subsequent events, the probability of the

. second b/N and the probability of both together P/N, and it
e being first discovered that the second event has also
' happened, from hence I guess that the first event has also

http://www.stat.ucla.edu/history/essay.pdf

Thomas Bayes (?)

c. 1701 -1761 pap) = P EIDP@A)

P(B)

If the sample space Q can be divided in disjoint subsets A, m
\ ,
P(B) = Z_P(B nA;) = Z_P(BIA.:)P(A,:) W
5 5

PBIA)PA) AN =0 (%))
iP(B|A)DP(A;)

P(A|B) = S
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Bayes Theorem in everyday life

Example: 10 coins, one of which is unfair (two-sided tail): You flip a random
coin and obtain tail. What is the probability that this is the unfair coin ?
A: event where the coin is unfair, B: event where the result is tail

P(B|A)P(A)
P(B)

You want P(A|B): P(A|B) =
where: P(B) = P(Bn A) + P(B nA) = P(B|A)P(A) + P(B|A)P(A)

P(B|A) =1,P(A) = i

10
1><1—10 2
= P(A|B) = 1 1 9-11
1X1—0+7X1—0

In Bayesian language: P(A) is the prior probability and P(B|A) the posterior
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Consequences of not knowing Bayes Th.

Simple tools for understanding risks: from innumeracy to insight (2003)
G. Gigerenzer, A. Edwards, BMJ 327, 2003 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC200816/

Conditional probabilities

The probability that a woman has breast cancer is
0.8%. If she has breast cancer, the probability that a
mammogram will show a positive result is 90%. If a
woman does not have breast cancer the probability of
a positive result is 7%. Take, for example, a woman
who has a positive result. What is the probability
that she actually has breast cancer?

P(+|OP(C) 0.9 x 0.008

P(C|+) = =
€+ PP 0.9x0.008 + 0.07 x 0.992

Natural frequencies

Eight out of every 1000 women have breast cancer. Of
these eight women with breast cancer seven will have a
positive result on mammography. Of the 992 women
who do not have breast cancer some 70 will still have a
positive mammogram. Take, for example, a sample of
women who have positive mammograms. How many
of these women actually have breast cancer?

P(Cl+) = 0.9%8 _ 9.4%
=0 9x8+007x992 > *°
SOS 2016
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“Bad presentation of medical
statistics such as the risks associated
with a particular intervention can lead
to patients making poor decisions on
treatment”

19


http://www.ncbi.nlm.nih.gov/pmc/articles/PMC200816/

Bayes Theorem and statistical inference

Statistical inference

Estimate true parameters of a theory or a model using data
* Frequentist: perform measurement (or set limits)

» Bayesian: Improve prior knowledge using data

Going Bayesian

Likelihood of observing

_ these data given a theory
Posterior knowledge

on theory T Prior knowledge
_—7 ontheory
P(data|theory) P (theory)
P(theory|data) = P( d?ta) Yy

l

Usually just an irrelevant
normalisation factor
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Probability distribution

Random variable X
Discrete random variable: result (realizations) x;€ () with probability P(x;)

N
—» P is the probability distribution and Z P(x;) = 1
[

For continuous variable: probability of observing x in infinitesimal interval
— Given by the probability density function (p.d.f) f(x) fﬁ‘)

Probability of x in [x,x + dx]| = f(x)dx

b
Probability of x in [a, b]| = j f(x)dx
a

with: j f)dx =1 X
o

X
— Cumulative distribution F(x): | F(x) = Jf(x’)dx’

hence: f(x) = % (x)
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0 1
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Probability density function: f(x)
Cumulative distribution: F(x)=y
Inverse cumulative distribution: x=F-(y)
Median: x such that F(x)=1/2 — x,,,= F1(1/2)

Quantile of order a: x,= F-'(a)

22



Expectation value

Expectation value of a random variable X:

For a function of x, a(x), the expectation value is: E[a(x)] = j a(x)f(x)dx

- mean of X: | E[x] = Jooxf(x)dx =u

- nth order moment: E[x"] = f x"f(x)dx = u,

- Characteristic function ¢(t):

#(0) = Ele"] = [ e (0 = FT-1(s) where p, = (- T2

dtm

(0)

- Variance: | V[x] = E|(x — E[x 2]—] (x — wW?*f(x)dx

= E |x?] — E[x]?

- Standard deviation: o = /V][x]
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Some common distributions

Binomial law: efficiency, trigger rates, ...
B(k;n,p) = Cip*(1 —p)" *,u=np,0 = \/np(1 — p)

Poisson distribution: counting experiments, hypothesis testing
Ate

P(n;A) = pu=210=vVA

n' ’

Gauss distribution (aka Normal): many use-case (asymptotic convergence)

— 2
e‘%(%)

flu o) = —

Cauchy distribution (aka Breit-Wigner): particle decay width, ....
1

ny[1+(

f(x;x0,7) =
X — xO

14

)2] u and g not defined (divergent integral)
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Cumulative distribution and p-value

> X

X
xsel sel

F(x) = f f(x"dx' p—value = j f(xHdx'

One can choose any x to compute F(x) or p-value, that is x,,, does not have a
preferred value: it follows the uniform distribution.

=» The distributions of F(x,,) and p-value are also uniform
=» Important for MC sample generation and hypothesis testing
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(Silly) use case

Grading copies: Try Cauchy distrilloution
fx) =

Ty [1 - (x _yxo)zl

1 X —X 1
F(x) = —arctan( O) +§

GRADNG: THE FRST SECOND HouR
HOUR.

-‘,L -~

WowW CAH You GET
THIS WRONG2? |

+ COVERED T LIKE

il
S

14

M

WiWW. PHDCOMICS. COM

« 100 copies, grades: 0-20 F~1(y) = x = ytan (n( _ 1)) + xg
« Peaked distribution at 10

B = . *F .
3 Cauchy x,=10 - Cumulative ' Inverse Cumulative

= os ., . . ST .
"F dist. f(x) - distribution waf distribution F-1 (x)
02t 06 12F
0.15F C F(X) m?

= 04 8
01 5;
a%é— 0.2 4?

- [ 2F

R R R B M |/ B~ i - L R R ey S S 7 S o - R ¢

piabr b borpn by b v by b o e
01 02 03 04 05 06 0.7 08 09 1
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(Silly) use case

Grading copies: Try Cauchy distribution
&RMM%B;EEMEI SECOND HOouR ]?(xi) — 1 >
ot o0 o5 Ty [1 + (x — xo) ]
LS COVERED IT LIKE ) 4
1 — 1
F(x) = —arctan <x xo) —
T 14 2
* 100 copies, grades: 0-20 F~1(y) = x = ytan (n y—= ) + x,
» Peaked distribution at 10

20¢ 045F

18- 04F

16 0355

14E—< 0_32_

e 0.25F

10 =

af- 025

oF 0155

45— 0.1

oF n.ﬂsi—””

q] pia b b B bvrna b s by b boa fla s [h ! i I P | T 11

01 02 03 04 05 06 0.7 08 09 1 2 4 6 8 10 12 14 16 18 20
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Multi-dimensional p.d.f

An experiment can perform a set of measurement
— Vector of N measurements ¥ = {x{, x5,..., Xy}

Probability of observing x in infinitesimal interval x + dx given by joint p.d.f
f(f)d}) = f(xl,..., xN)dx1 de

Ex: for a measurement of 2 values x and y

Probability of x in [x,x + dx] and y in [y,y + dy] is f(x,y)dxdy

f jﬂ fx,y)dxdy =1
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Marginal and conditional p.d.f

Marginal distribution: p.d.f of one variable regardless of the others

Fo(x) = ] f(x,y) dy £, = f f(x,y) dx

o
¢ S S
X &
[T l [T [T I
=)
< N ¢
X &
R A A

Conditional distribution: p.d.f of one variable given a constant other

_fxy)  fxy)

k(J’|X) - fx(x) - ff(x, y,)dy/
oaly) SOV @)
fy@ [ ydx

Note: k and g are both functions of x and y
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Marginal and conditional p.d.f

Bayes theorem for continuous variables

k(y|x)fx(x)
fy()

f,y) =gx|y)fy,y) = kyx)fr(x) — | glx|y) =

Marginal p.d.f can also be expressed with conditional probabilities:

(0]

@ = [ ganf,mdy 0= | kORF® dx

Note: this is a generalization of the relation P(B) = Z.P(BIAi)P(A,-)
to continuous variables l

Independent variables: if x and y are independent f(x,¥) = f,(¥)fx(x)

Ex: 2D Gaussian function with uncorrelated variables

—_ — 2 _ _ 2
Gaus(x, y) = 1 exp( (x — uy) )exp< (y uy)>

2 2
2mo 0, 20, 20,
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Events

50

40

30

20

10

5 4

What's wrong ?
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Test hypothesis

Testing compatibility of observed data against a model
 model = background predictions (for simplicity)
— n,, events: follows Poisson distribution of mean v,

— n... observed events

obs

To quantify degree of compatibility of n
we calculate how likely it is to find n

obs With the background-only hypothesis

obs OF more events of background

p-value: probability that the expected number of event (background)
is at least as high as the number of observed data

p—value = P(n =2 nyps) =1 — P(n < nypg) o

0.16

v,=52,n =8

p-value = 1.55e-01

0.14
+ 00 nObS_1 012

e Vbyy e Vbyy )
— ' — 1 _ ' 0.08
n. n.
N=Nops n=0 ggj:
002
= b e e -

[fOr Vb < nObS] % 2 4 3 8 10 12 14
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Test hypothesis

. ‘;‘:’ 02
For the case where v, > n_, . one can define: £,

0.16

v,=52,n, =4

p-value = 4.06e-01

0.14

Nops e_vb V;} 0_[1121

p—value = E EEE— |
I 0.08

n=0 n. 0.06

0.04
0.02

The previous sums can be simplified using incomplete Gamma functions:

+00 —vpn 1 Vp
e Vv
z ' - = j thobs™le~tdt = I'(Vp, Nops)
~ n. F(nobs)
N=Nopps 0
(00]
with T'(n,,.) = | ttebs~le~tdt = (n,,. — 1)! (if n,,. integer
obs obs obs g
0
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It is customary to transform the p-value into a Z-value using the integral of the
Gaussian distribution:
Z 1 22

A
Gaus(x,u =0,0 = 1)dx = J ——e 2dx =1—pvalue
f_oo i ) N p

Z-value = number of standard deviation, used as a measure of the
significance of an excess (or a deficit) w.r.t the (background) hypothesis.

=2 02fF %045
£ c vp=52,n =8
@ 018 obs 0.4

p-value = 1.55e-01 0.35

significance =1.00 03

0.2
0.15

0.1

D.253—

0.05

é_ID
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In practice one uses the inverse cumulative distribution function of the
Gaussian distribution to compute the significance:

Z = 2Erf~1(1 — 2 x p—value)

Z
T

2 p-value Z

0.159 10
2.28%x102 20
1.35%x103 30
3.15%10° 40
2.85x107 50

N

vp,=52,n =8
p-value = 1.55e-01

significance = 1.0¢

—
III|IIII|IIII|IIII
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