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Before we go on...

1" VERY IMPORTANT !!!

Understand your inputs well
before you start playing with multivariate techniques
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Introduction

Decision tree origin

@ Machine-learning technique, widely used in social sciences.
Originally data mining/pattern recognition, then medical diagnostic,

insurance/loan screening, etc.
¥ L. Breiman et al., “Classification and Regression Trees” (1984)

v
Basic principle
@ Extend cut-based selection
e many (most?) events do not have all characteristics of signal or

background
e try not to rule out events failing a particular criterion

@ Keep events rejected by one criterion and see whether other criteria
could help classify them properly

|

Binary trees

@ Trees can be built with branches splitting into many sub-branches

@ In this lecture: mostly binary trees
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Growing a tree

© Growing a tree
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Tree building algorithm

Start with all events (signal and background) = first (root) node

@ sort all events by each variable

@ for each variable, find splitting value with best separation between
two children
e mostly signal in one child
e mostly background in the other
@ select variable and splitting value with best separation, produce two
branches (nodes)
e events failing criterion on one side
@ events passing it on the other

v

Keep splitting

@ Now have two new nodes. Repeat algorithm recursively on each node

@ Can reuse the same variable
@ lterate until stopping criterion is reached

@ Splitting stops: terminal node = leaf

v
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Algorithm example

o Consider signal (s;) and background
(bj) events described by 3 variables: pr
of leading jet, top mass M; and scalar
sum of pr's of all objects in the event
Hr
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Algorithm example

o Consider signal (s;) and background
(bj) events described by 3 variables: pr
of leading jet, top mass M; and scalar
sum of pr's of all objects in the event
Hr

o sort all events by each variable:
o p} <pp <. < pP <P
o HP <HP < ... <HF < H®
o MP® < MP < - < M2 <M
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Algorithm example

o Consider signal (s;) and background
(bj) events described by 3 variables: pr
of leading jet, top mass M; and scalar
sum of pr's of all objects in the event
Hr

o sort all events by each variable:
o p} <pp <. < pP <P
o HP <HP < ... <HF < H®
o MP® < MP < - < M2 <M
o best split (arbitrary unit):
o pr < 56 GeV, separation = 3
o Hr < 242 GeV, separation = 5
o M, < 105 GeV, separation = 0.7
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Algorithm example

o Consider signal (s;) and background
(bj) events described by 3 variables: pr
of leading jet, top mass M; and scalar
sum of pr's of all objects in the event
Hr

o sort all events by each variable:

o p} <pp <. < pP <P

o HP <HP < ... <HF < H®

o MP® < MP < - < M2 <M
o best split (arbitrary unit):

o pr < 56 GeV, separation = 3

o Hr < 242 GeV, separation = 5

o M, < 105 GeV, separation = 0.7
o split events in two branches: pass or

fail Hr < 242 GeV

Fail Pass
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Algorithm example

o Consider signal (s;) and background
(bj) events described by 3 variables: pr
of leading jet, top mass M; and scalar
sum of pr's of all objects in the event
Hr

o sort all events by each variable:

o p} <pp <. < pP <P

o HP <HP < ... <HF < H®

o MP® < MP < - < M2 <M
o best split (arbitrary unit):

o pr < 56 GeV, separation = 3

o Hr < 242 GeV, separation = 5

o M, < 105 GeV, separation = 0.7
o split events in two branches: pass or

fail Hr < 242 GeV
@ Repeat recursively on each node

Pass
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Algorithm example

o Consider signal (s;) and background
(bj) events described by 3 variables: pr
of leading jet, top mass M; and scalar
sum of pr's of all objects in the event
Hr

o sort all events by each variable:

o p} <pp <. < pP <P

o HP <HP < ... <HF < H®

o MP® < MP < - < M2 <M
o best split (arbitrary unit):

o pr < 56 GeV, separation = 3

o Hr < 242 GeV, separation = 5

o M, < 105 GeV, separation = 0.7
o split events in two branches: pass or

fail Hr < 242 GeV
@ Repeat recursively on each node
@ Splitting stops: e.g. events with Hr < 242 GeV and M; > 162 GeV

are signal like (p = 0.82)
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Decision tree output

Run event through tree

Start from root node

Apply first best cut

Go to left or right child node
Apply best cut for this node

°
°
°
°
o ...Keep going until...
°

Event ends up in leaf

DT Output

o Purity ({75, with weighted events) of leaf, close to 1 for signal and 0
for background

@ or binary answer (discriminant function +1 for signal, —1 or 0 for
background) based on purity above/below specified value (e.g. %) in
leaf

@ E.g. events with Hy < 242 GeV and M; > 162 GeV have a DT
output of 0.82 or +1 )
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Tree construction parameters

Normalization of signal and background before training

@ same total weight for signal and background events (p = 0.5,
maximal mixing)

v

Selection of splits

o list of questions (variable; < cut;?, “Is the sky blue or overcast?")

@ goodness of split (separation measure)

Decision to stop splitting (declare a node terminal)

minimum leaf size (for statistical significance, e.g. 100 events)
insufficient improvement from further splitting

°
@ perfect classification (all events in leaf belong to same class)
°

maximal tree depth (like-size trees choice or computing concerns)

v

Assignment of terminal node to a class
@ signal leaf if purity > 0.5, background otherwise
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Splitting a node

Impurity measure i(t)

@ minimal for node with either signal

@ maximal for equal mix of
¢ only or background only

signal and background _
@ strictly concave = reward purer

nodes (favours end cuts with one
smaller node and one larger node)

@ symmetric in psignas and

Pbackground

v

Optimal split: figure of merit

Stopping condition

@ Decrease of impurity for split s of
node t into children tp and tr
(goodness of split):

Ai(s, t) = i(t)—pp-i(tp) —pr-i(tF)

@ Aim: find split s* such that: il ol ctonpi
o Care early-stoppin

Ai(s*,t) = max Ai(s,t) Ut with early-stopping

se{splits} conditions )

v

@ See previous slide

@ When not enough
improvement

(Ai(s*, t) < B)

@ Maximising Ai(s, t) = minimizing overall tree impurity J
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Splitting a node: examples

Node purity
o Signal (background) event i with weight w/ (w})

, @ Signal purity (= purity)
Ziesignal WS’

S
p= : - Ps =P = s+p
ZiEsignal WSI + Zjebkg M/l})

@ Background purity

pp=z5=1-p;=1-p

Common impurity functions o
£ 02

@ misclassification error
=1-—max(p,1 - p)

015

r Split criterion
o1 = Misclas. error

@ (cross) entropy

L = Entropy
== j—spPilog pj **H —Gini
o Gini index
J analpuriy
2 2
: s N .
@ Also cross section (—335) and excess significance (—%) J
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Splitting a node: Gini index of diversity

Defined for many classes

i pi
o Gini = Zi,je{classes} PiPj

Statistical interpretation

@ Assign random object to class i with probability p;.

@ Probability that it is actually in class j is p;

@ = Gini = probability of misclassification

For two classes (signal and background)

@i=s,band ps=p=1-—pp

o = Gini=1-Y,_,,p?=2p(1-p) = 2L

@ Most popular in DT implementations

@ Usually similar performance to e.g. entropy

A\
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Variable selection |

Reminder
@ Need model giving good description of data
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Variable selection |

Reminder
@ Need model giving good description of data

Playing with variables

@ Number of variables:

o not affected too much by “curse of dimensionality”
o CPU consumption scales as n/N log N with n variables and N training
events

o Insensitive to duplicate variables (give same ordering = same DT)
@ Variable order does not matter: all variables treated equal
@ Order of training events is irrelevant (batch training)

@ lrrelevant variables:

@ no discriminative power = not used
o only costs a little CPU time, no added noise

@ Can use continuous and discrete variables, simultaneously
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Variable selection |l

Transforming input variables

@ Completely insensitive to the replacement of any subset of input
variables by (possibly different) arbitrary strictly monotone functions
of them:

e let f: x; — f(x;) be strictly monotone

if x > y then f(x) > f(y)

e ordering of events by x; is the same as by f(x;)
o = produces the same DT

@ Examples:

e convert MeV — GeV
@ no need to make all variables fit in the same range
e no need to regularise variables (e.g. taking the log)

@ = Some immunity against outliers
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Variable selection |l

Transforming input variables

@ Completely insensitive to the replacement of any subset of input
variables by (possibly different) arbitrary strictly monotone functions
of them:

e let f: x; — f(x;) be strictly monotone

e if x > y then f(x) > f(y)

e ordering of events by x; is the same as by f(x;)
o = produces the same DT

@ Examples:

e convert MeV — GeV
@ no need to make all variables fit in the same range
e no need to regularise variables (e.g. taking the log)

@ = Some immunity against outliers

Note about actual implementation

@ The above is strictly true only if testing all possible cut values

@ If there is some computational optimisation (e.g., check only 20

possible cuts on each variable), it may not work anymore.
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Variable selection 111

Variable ranking

@ Ranking of x;: add up decrease of impurity each time x; is used
@ Largest decrease of impurity = best variable

v

Shortcoming: masking of variables

@ x; may be just a little worse than x; but will never be picked
@ Xx; is ranked as irrelevant
@ But remove x; and x; becomes very relevant

= careful with interpreting ranking

v

Solution: surrogate split

@ Compare which events are sent left or right by optimal split and by
any other split

@ Give higher score to split that mimics better the optimal split

@ Highest score = surrogate split

@ Can be included in variable ranking

@ Helps in case of missing data: replace optimal split by surrogate

v
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Tree (in)stability

© Tree (in)stability
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Tree instability: training sample composition

@ Small changes in sample can lead to very different tree structures
@ Performance on testing events may be as good, or not

@ Not optimal to understand data from DT rules
°

Does not give confidence in result:
o DT output distribution discrete by nature
o granularity related to tree complexity
e tendency to have spikes at certain purity values (or just two delta
functions at £1 if not using purity)
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Pruning a tree

Why prune a tree?

@ Possible to get a perfect classifier on training events

@ Mathematically misclassification error can be made as little as wanted

@ E.g. tree with one class only per leaf (e.g. down to 1 event per leaf)

@ Training error is zero

@ But run new independent events through tree (testing or validation
sample): misclassification is probably > 0, overtraining

@ Pruning: eliminate subtrees (branches) that seem too specific to
training sample:
e a node and all its descendants turn into a leaf

Pruning algorithms (details in *backu )

@ Pre-pruning (early stopping condition like min leaf size, max depth)

@ Expected error pruning (based on statistical error estimate)

@ Cost-complexity pruning (penalise “complex” trees with many
nodes/leaves)
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Decision tree score card

Training is fast
Human readable (not a black box, can interpret tree as selection
rules or physics)

Deals with continuous and discrete variables simultaneously
No need to transform inputs

Resistant to irrelevant variables
Works well with many variables

--Data
== t-channel (x10)
|14

I Wajets
I multijet

Good variables can be masked

Event Yield

Very few parameters
Not that “original” in HEP anymore

20
Unstable tree structure

Piecewise nature of output % o2 04 06 08 1
DT output

e X
XXX TR <%

Need at least as many training examples as variations

in target function
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Tree (in)stability: distributed representation

@ One tree:
o one information about event (one leaf)
e cannot really generalise to variations not covered in training set (at
most as many leaves as input size)
@ Many trees:
o distributed representation: number of intersections of leaves
exponential in number of trees
e many leaves contain the event = richer description of input pattern

Partition 3 .
v artition 2
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Tree (in)stability solution: averaging

@ Build several trees and average the output

[Dietterich, 1997]

Class 1 Class 1

Class 2 Class 2

o K-fold cross-validation (good for small samples)

o divide training sample £ in K subsets of equal size: £ =]J,_; x L«
o Train tree T; on L — Ly, test on Ly
o DT output = £ >, 1 4« Tk

@ Bagging, boosting, random forests, etc.
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Boosting

@ Boosting
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A brief history of boosting

First provable algorithm by Schapire (1990)
@ Train classifier T; on N events
@ Train T, on new N-sample, half of which misclassified by T;
@ Build T3 on events where T7 and T, disagree

@ Boosted classifier: MajorityVote( Ty, T, T3)
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A brief history of boosting

First provable algorithm by Schapire (1990)

@ Train classifier T; on N events

@ Train T, on new N-sample, half of which misclassified by T;
@ Build T3 on events where T; and T, disagree
@ Boosted classifier: MajorityVote( Ty, T, T3)

@ Variation by Freund (1995): boost by majority (combining many
learners with fixed error rate)

@ Freund&Schapire joined forces: 1% functional model AdaBoost (1996)

v
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A brief history of boosting

First provable algorithm by Schapire (1990)
@ Train classifier T1 on N events
@ Train T, on new N-sample, half of which misclassified by T;
@ Build T3 on events where T; and T, disagree
@ Boosted classifier: MajorityVote( Ty, T, T3)

Then

@ Variation by Freund (1995): boost by majority (combining many
learners with fixed error rate)

@ Freund&Schapire joined forces: 1% functional model AdaBoost (1996)

|

|

When it really picked up in HEP

@ MiniBooNe compared performance of different boosting algorithms
and neural networks for particle ID (2005)

@ DO claimed first evidence for single top quark production (2006)
@ CDF copied v (2008). Both used BDT for single top observation
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Principles of boosting

What is boosting?
@ General method, not limited to decision trees

@ Hard to make a very good learner, but easy to make simple,
error-prone ones (but still better than random guessing)

@ Goal: combine such weak classifiers into a new more stable one, with
smaller error

v

Algorithm

@ Training sample Ty of N @ Pseudocode:
events. For ith event:

Initialise Ty
for k in 1..Niee
train classifier T, on Ty

o weight wX
e vector of discriminative

variables x; : '

o class label y; = +1 for assign weight ay to Ty
signal, —1 for modify Ty into Tyiq
background @ Boosted output: F(T1,.., Tp,..)

v
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AdaBoost

Introduced by Freund&Schapire in 1996

Stands for adaptive boosting

Learning procedure adjusts to training data to classify it better
Many variations on the same theme for actual implementation
Most common boosting algorithm around

Usually leads to better results than without boosting
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AdaBoost algorithm

@ Check which events of training sample Ty are misclassified by Ty:
I(X) =1if X is true, 0 otherwise

o for DT output in {£1}: isMisclassified (i ) =1(yi x Tk(x) <0)

o or isMisclassified, (i) = I(y; x (T«(x;) — 0.5) < 0) in purity convention
e misclassification rate:

Z?’zl w x isMisclassified (/)
N
Dimg W

o Derive tree weight o, = 8 x In((1 — ex)/ek)

R(Tk) =&k =

@ Increase weight of misclassified events in Ty to create Ty, 1:

Wik N Wik+1 _ Wik % a0k
@ Train Tyyq on Tyyq
. Ntree
@ Boosted result of event i: 1
k=1 Ok x—1
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AdaBoost by example

@ Assume g =1

Not-so-good classifier

@ Assume error rate ¢ = 40%

@ Then a=Inl 04_04

@ Misclassified events get their weight multiplied by e®4=1.5
°

= next tree will have to work a bit harder on these events

V.
Good classifier

@ Error rate e = 5%
® Then a =In1592 =29
@ Misclassified events get their weight multiplied by e29=19 (I1)

@ = being failed by a good classifier means a big penalty:

e must be a difficult case
o next tree will have to pay much more attention to this event and try to
get it right
v

Yann Coadou (CPPM) — Boosted decision ti S$0S2016, Autrans, 31 May 2016 27/69




AdaBoost error rate

Misclassification rate € on training sample

@ Can be shown to be bound: Niree
e < H 2/ ek(1 —ex)
k=1

o If each tree has g, # 0.5 (i.e. better than random guessing):

the error rate falls to zero for sufficiently large Nyee

@ Corollary: training data is over fitted

@ Error rate on test sample may reach a minimum and then potentially
rise. Stop boosting at the minimum.
@ In principle AdaBoost must overfit training sample
@ In many cases in literature, no loss of performance due to overtraining
e may have to do with fact that successive trees get in general smaller

and smaller weights
o trees that lead to overtraining contribute very little to final DT output

on validation sample
S0S2016, Autrans, 31 May 2016 28/69
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Training and generalisation error

Efficiency vs. background fraction

Efficiency

Single tree on testing sample

038 AT N ° Boosted trees on testing sample
0.2 (] Single tree on training sample
0184 ° Boosted trees on training sample
o 111 Lo T T T T T Ty

. 1
Background Fraction

@ Clear overtraining, but still better performance after boosting

Yann Coadou (CPPM) — Boosted decision trees S0S2016, Autrans, 31 May 2016

29/69



Cross section significance (s/+/s + b)

[ Cross section significance |

o,
2]

Significance
o

4.5

3.5

Number of trees

@ More relevant than testing error
@ Reaches plateau
@ Afterwards, boosting does not hurt (just wasted CPU)

@ Applicable to any other figure of merit of interest for your use case
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Clues to boosting performance

Misclassification rate for each tree Tree weight o

5025

1
o

0.2]

14
>

0.15

Misclassification rate
e
w

0.1

0.2

0.1— 0.05

Number of trees Number of trees

@ First tree is best, others are minor corrections

@ Specialised trees do not perform well on most events = decreasing
tree weight and increasing misclassification rate

@ Last tree is not better evolution of first tree, but rather a pretty bad
DT that only does a good job on few cases that the other trees could

not get right
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Concrete examples

@ Concrete examples
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Concrete example

*~ F .
E .
§ T T T T T T § E G
2 o8 2 =
s 8 1/ Background E
E o7 E E
2 2 E .
06 L 08 = .
&
05 i .
B 06 ..
04 s
03 H 0.4 pa
02 2 F
< 02 E
01 H 2F
49 £ .
U = 0 _‘)7\\\\\\\\\\\\\\\\\\\\\\\\\\
1 0 1 2
y y
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Concrete example

N=1000.000000
S/(S+B)=0.500
y< 0.85

N=420.000000 N=580.000000

Intermediate Nodes.

Signal Leaf Nodes

SI(S+8)=0.055 S/(S+8)=0.822
y<1.18 x<1.06
N=77.000000

5/(5+8)=0.260

5i(5+8)=0.009 S/(5+8)=0.043 SI(S+B)=0.969
x<0.649

N=44.000000

5/(5+8)=0.000 SI(S+B)=0.606
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Concrete example

N=1000.000000 N=1000.000000
SI(S+B)=0.355 SEE
— -
N=591.858000

S/(S+B)=0.117
y<0.677

N=1000.000000
S/(S+B)=0.488
x<1.33

N=1000.000000
S/(S+B)=0.539
2>0.875

N=633.983000
S/(5+B)=0.435

x>-0.792

@ Specialised trees
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Concrete example

TMVA response for classifier: BDT
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Concrete example: XOR

E R PR T TR R LT s L )
y (3 B S o & 2% .
B A Y h AN g
08/08,38 o8y .."":h;‘.:‘ -fo‘.’; ‘n'. 3 o
e

0.6

0.4

0.2
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Concrete example: XOR

0.2

o8 o
‘o8 o

<t

A

N=1000.000000
S/(S+B)=0.500
<0.126

Intermediate Nodes
Signal Leaf Nodes
Backgr. Leaf Nodes.

N=876.000000
S/(S+B)=0.489

x>0.426

rejection versus Signal

Background rejection

0.8

0.7

0.6

0.5

0.4

03

0.2

£ MVA Method: El
E BDT E
P —oT E
£~ Fisher |
0 01 02 03 04 05 06 07 08 09 1
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Concrete example: XOR with 100 events

> L. . . oy
L . . o o % . .
S N S Small statistics
0.8 . o ot . o
N AL S A @ Single tree or Fischer
b R discriminant not so good
I N SRR @ BDT very good: high
L . . o * "o s 0 n__ o
P o - performance discriminant from
SRR 2 o .
IO combination of weak classifiers
% 02 0.4 06 08 1 o
TMVA response for classifier: BDT [ versus Signal | TMVA
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- I RRR AR RS AR RN T[T T TT T[T TTTTTH
< o . ‘s b
>
0.5
TMVA Input Variables: var0 0 L
e g T g r
% tP77) Background ; é L
3 3 ) -
B z 3 C
p=2 p= s -
=
s L
s
s -
H C . ]
3 Bl b b bea bi e B0 ek b Lo Lo d
0.080.60.402 0 0.20.40608 1 1.21.4 > -0.8-0.6-0.4-02 0 02040608 1 1.2

Circular correlation

@ Using TMVA and create_circ macro from
$ROOTSYS/tmva/test/createData.C
($ROOTSYS/tutorials/tmva/createData.C in latest ROOT
versions) to generate dataset

var0

varQ
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Circular correlation

Boosting longer

@ Compare performance of Fisher discriminant, single DT and BDT
with more and more trees (5 to 400)

o All other parameters at TMVA default (would be 400 trees)

Background rejection versus Signal efficiency

1

0.9

08

0.7

0.6

Background rejection

0.5

04

03

0.2

TMVA
E AN “\d
E MVA Method: \ 1
F - BDT100 B
F ———:BDT5 \ \ 3
[ BDT400. |
F ——— BDT{ \ E
= BUTY -
F——ior \ 1
f =——: Fishel \ \:
0 01 02 03 04 05 06 07 08 09

Signal efficiency

Yann Coadou (CPPM) — Boosted decision trees

@ Fisher bad (expected)
@ Single (small) DT: not
so good

@ More trees = improve
performance until
saturation
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Circular correlation: decision contours

Illll‘llllll“"'I"lI.'I"I‘l"l”llllllll‘-FiSher

vari

Yann Coadou (CPPM) — Boosted decision trees

Fisher bad (expected)
Note: max tree depth = 3

Single (small) DT: not so
good. Note: a larger tree
would solve this problem

More trees = improve
performance (less step-like,
closer to optimal
separation) until saturation

Largest BDTs: wiggle a
little around the contour
= picked up features of
training sample, that is,
overtraining
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Circular correlation

Training /testing output

TMVA. MVA. MVA.
E Tignal lies! T < Signal (tralning E Signal {tesl < Signal (iralning ERE- I Biotal oot "1 % Slgnai (ihining 4 T
z 2 Background (est sample) | | - Background (raining sample) 3 Z Background (est sample) | | « Background (raining sample) I Z {77 Background (test sample) | | + Background (raining sample)
z Nk W3 g Eeomonereamimor et el ackgrwnd probsty <0857 1 3 ® [RokmogareSrimor et e Cckgrn) robaby 0.9 030
L z 7F E
16
4 2 L1 S 2
5 o 15 H
2 i H g
H y H H
10 i 4 ? EH F
H H H
© H 3 /! =5 g
s = 7 z b
= 2 ’ EH a
: RN ; ;
2 [ I ;
o ‘ ‘ ‘ s, lon G Hulnl H G g
1 o5 0 05 1 & 05 0 05 1 08 06 04 02 0 02 04 06 08 1
DT response BDTS response BDT10 response
ava TMVA overtraining check for classifier: BDT100 ava TMVA overtraining check for classifier: BDT400 ava
& [ S st sampis) " T+ Slahal (rining same) "] 5 [N Sighal Gestsartpio) " T]'| + 5ignai (raning sampid B 5 [E ol T T+ Bighat dmple) "]
g 3 7/7) Background (test sample) | | « Background (training sample) | g 3.5 7/ Background (test sample) | | + Background (training sample) g vZZ7) ple) |« le)
g 25 ER 3 - z
i3 EH H )
£ g H
EH H H
EH 3 3
i ]
g W 77#7/7%7 H g
05 08 96 94 02 o0 o0z 04 08 y y
BDTS0 response BDT100 response BDT400 response
@ Better shape with more trees: quasi-continuous
@ Overtraining because of disagreement between training and testing?
L ’
et s see J
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Circular correlation

ormance in optimal significance

Cut efficiencies and optimal cut value Cut efficiencies and optimal cut value Cut efficiencies and optimal cut value
Signal efficiency Sonatpurty Signal efficiency fonalpurty " Signal efficiency = L
14— Bacoromdatciency Sl saconcy PRy Background effloncy el saconcy Pty Background efcens e
- 1 . = a5 a
z wEE - £
é st € =il €L LA H
> ° 5 = i 25 § % Ww 7 ™~ 225 6
3 2 T os F £ os &
£ 09 g [—" g /f
k4 E| kS G0 3 20
2 - £ 0s
5 os S g, U EJL\ L\ H E
o 10 e “Jo o4 \ L 10
06 or 3 For AT aT}1.1000 background 02 ! H“ |
R Ly Ry i
05 i 0BT . r R
b 25 o o5 i A o5 o o5 b 95 05 04 02 0 o2 04 05 08 1
Cut value applied on DT output Cut value applied on BDT5 output Cut value applied on BDT10 output
Cut efficiencies and optimal cut value Cut efficiencies and optimal cut value Cut efficiencies and optimal cut value
Signal efficiency ) oLt Signal efficiency =y Signal efficiency o ety
—— Background fficiency | ol ity Background ety | " Séneletencypurty Background stcincy | 2" Skndleteencyputy
H 1,1 E iz H
£ 1 £ 1 §E 1 30 §
& [N\ S H \\ §z N _/:% $
3 0s 3 0s 58 3 0s s 8
! N
_5 | M _5 |- L E °
$ 3 ER | o
ﬁ 06 E 06 E 0.6
- s - s
0af- 0af-
o \ N
02| For 1000 signet amdg00baskground 3 02 "
‘events the maximum S4S+B is. \\ o \_\
L) L g et | BRIy
06 04 02 0 02 04 06 08 06 -04 0.2 o 02 04 06 0.4 -02 0.2 04
Cut value applied on BDT50 output Cut value applied on BDT100 output Cut value applied on BDT400 output

@ Best significance actually obtained with last BDT, 400 trees!
@ But to be fair, equivalent performance with 10 trees already

@ Less “stepped” output desirable? = maybe 50 is reasonable
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Circular correlation: control plots

@ Boosting weight decreases fast and stabilises

@ First trees have small error fractions, then increases towards 0.5
(random guess)

@ = confirms that best trees are first ones, others are small corrections

Boost weights vs tree error fraction vs tree number
= [T T T T < 7
5 ] 2.6 3
S10[- - g ]
2 ] & ]
3 1 0.5 h
'88— b ] ]
] 0.4 ]
of . 5
] 0.3 3
ir . 0.2 3
2k ] 0.1 3
P PP P P FEUTL FUTT RUTT PP PP ]
0 50 100 150 200 250 300 350 400 % ""50 100 150 200 250 300 350 400

#tree #tree
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Circular correlation

Separation criterion for node splitting

@ Compare performance of Gini, entropy, misclassification error, ﬁ
@ All other parameters at TMVA default
s © Very similar performance (even
g zooming on corner)
8 oosF INNE o (e
T N\ @ Small degradation (in this
T - - 3 s 5
E oo ] pa-rtlc.ular case) for ! only
g C MVA Method: . criterion that does not respect
S085L CrossEntropy good properties of impurity
0sk GiniWithLaplace measure (see earlier: maximal
B Gini for equal mix of signal and bkg,
0.75 - MisclassificationError ] symmetric in psjg and ppig,
C :SDivSgrtSPlusB ] s 0 o
o7k L ] minimal for node with either

055 06 065 07 075 08 085 09 095 signal only or bkg only, strictly
Signal efficiency Concave)
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Circular correlation

Cut efficiencies and optimal cut value Cut efficiencies and optimal cut value Cut efficiencies and optimal cut value
Signal efficiency Signelpurty Signal efficiency — Signelpurty Signal efficiency - Signalpurity
—— Background efficiency e . Background efficiency b sl - Background efficiency el purty .
= £c H
255 % op 58 7 o - 25 &
LA o g — L
; :
0 2 _/\/ \\ E O V E
0.6 0.6
g g
s 3 \ s E— s
10 \ 10 \ 10
0.2 " background - 0.2
E ovents the maximumS\ S48 s 5 ay \ \ d
) £ i S i oats \
04 0.2 0 02 04 06 S °4u -02 0.2 04 04.4 03 02 01 0 01 02 03 04 05 0
Cut value applied on CrossEntropy output Cut value applied on Gini output Cut value applied on GiniWithLaplace output
Cut efficiencies and optimal cut value Cut efficiencies and optimal cut value
ignal efficiency ‘Signal purity Signal efficiency ———signal purity
—— Background eficency | - gee e Puy —— Background ffcency | 27777 Senaleciencypurty
> g3 i 8
Z . w0 s £ ok :
[ X N~ S
s A £ 8-SV ls i
e _,_/)\/ @ g = @
2 2
: £
E— s b \ I\ ds
04— 04—
N\ N NANEC
o N El
Some o 3 \L‘\(
0 04 03 02 -01 o 01 02 03 04 0 08 -06 -04 -02 o 02 04 06 08
Cut value applied on MisclassificationError output Cut value applied on SDivSqriSPIusB output
v
o Confirms previous page: very similar performance, worse for BDT
.
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Many small trees or fewer large trees?

@ Using same create_circ macro but generating larger dataset to

avoid stats limitations

@ 20 or 400 trees; minimum leaf size: 10 or 500 events

@ Maximum depth (max number of cuts to reach leaf): 3 or 20
Background rejection versus Signal efficiency TMVA
T T T e g S
g 1 2 £ & ]
1 gosest N\ —
1 2k
] '§ 0.9 =" mvA Mektisd: =
2o085F
o E
- E
8 08l
o E
0.75 F
07F BOT20" inevts00 iaxdepthzo .
£ BDT20_mi )| B
0.65 E BDT400_minevt10_r E
T F TRV Oy 0102 05 04 05 06 07 08 09 1
-0.80.60.40.2 0 0.20.40.608 1 1.21.4 . - ) : : . i .
var0 Signal efficiency

@ Overall: very comparable performance. Depends on use case.

)

ann Coadou (CPPM) — Boosted decision trees

S0S2016, Autrans, 31 May 2016

47/69



Other boosting algorithms

e-Boost (shrinkage)
@ reweight misclassified events by a fixed e®® factor

o T(i) = Nree e T (i)

e-LogitBoost

o o o o no o =i T (x;
@ reweight misclassified events by logistic function ;L.i:T,kT(k(l,)
o T(i) = L eTu(i)

Real AdaBoost

o DT output is Tk(i) = 0.5 x In 7 (()) where py (i) is purity of leaf on
which event j falls

o reweight events by e Tk()
o T(i) =Y pky Tu(i)

@ c-HingeBoost, LogitBoost, Gentle AdaBoost, GradientBoost, etc. J

A\
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Other averaging techniques

Bagging (Bootstrap aggregating)
o Before building tree T take random sample of N events from
training sample with replacement
@ Train Ty on it
@ Events not picked form “out of bag” validation sample

Yann Coadou (CPPM) — Boosted decision trees S$0S2016, Autrans, 31 May 2016 49/69



Other averaging techniques

Bagging (Bootstrap aggregating)

@ Before building tree Tj take random sample of N events from
training sample with replacement

@ Train Ty on it
@ Events not picked form “out of bag” validation sample

Random forests

@ Same as bagging

@ In addition, pick random subset of variables to consider for each node
split

@ Two levels of randomisation, much more stable output

A,
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Other averaging techniques

Bagging (Bootstrap aggregating)

@ Before building tree Tj take random sample of N events from
training sample with replacement

@ Train Ty on it
@ Events not picked form “out of bag” validation sample

Random forests

|

@ Same as bagging

@ In addition, pick random subset of variables to consider for each node
split

@ Two levels of randomisation, much more stable output

|

Trimming
@ Not exactly the same. Used to speed up training

@ After some boosting, very few high weight events may contribute

@ = ignore events with too small a weight

v

Yann Coadou (CPPM) — Boosted deci S$0S2016, Autrans, 31 May 2016 49/69




BDTs in real life

e BDTs in real physics cases
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Single top production evidence at D0 (2006)

@ Three multivariate techniques: o+t =4.91+1.4 pb
BDT, Matrix Elements, BNN p-value = 0.035% (3.40)
@ Most sensitive: BDT SM compatibility: 11% (1.30)
> o}s_ol—chanr.lels., l‘btqb D@ R‘nn n Prelimin.lr.y, 910 pb’ E A
2 Bayésidn © DO 0.9fb' «
R : > tb+tqb
a Cr_o:sg?f::li:n g W+jetS .
P w Multijets |

| Bayes Ratio > 10

P i i ]
2 4 6 B 0 3
Cross Section [pb]
DG Run Il Preliminary 910, pb”
s orees
frequentist e+p-channel

Full systematics

24 entries above
observed cross section

p-value: 3.5e-04
sigma: 3.4

4 5 6 7 8 8
Observed thiqb cross section [pb]

Yann Coadou (CPPM) — Boosted decision trees

0.7

e+u
2-4 jets
1-2 tags

0.8 0.9 1

tb+tgb Decision Tree Output

os =1.040.9 pb

» Phys. Rev. D78, 012005 (2008)
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http://dx.doi.org/10.1103/PhysRevD.78.012005

Decision trees — 49 input variables

Object Kinematics Event Kinematics o o
pr(jetl) Aplanarity(alljets, W) ° Addlng variables
pr(jet2) M(W bestl) (“best” top mass) did not degrade
pr(jet3) M(W tagl) (“b-tagged” top mass)
pr(jetd) H (alljets) performance
pr1(bestl) Hr (alljets—best1)
pr(notbest1) Hr (alljets—tagl)
pr(notbest2) Hr (alljets, W) @ Tested shorter
pr(tagl) Hr (jetl jet2) lists, lost some
pr(untagl) Hr(jetl,jet2, W) ..
pr(untag2) M(alljets) sensitivity

M(alljets—best1)

Angular Correlations M(alljets—tagl) H
eRGet o) Mt ei2) @ Same list used for
cos(bestl,lepton)best top M(jet1 jet2, W) all channels
cos(best1,notbestl)esttop M7 (jetl jet2)
cos(tagl,alljets)al1jets My (W)
cos(tagl,lepton)taggedtop Missing ET
cos(jetl,alljets) a11jots pr(alljets—best1)
cos(jetl,lepton)ptaggedtop pr(alljets—tagl)
cos(jet2,alljets) a11jets pr(jetl,jet2)
cos(jet2,lepton)ptaggedtop Q(lepton) x n(untagl)
cos(lepton, Q(lepton) X z)pesttop V3
cos(leptonpesttop besttopantrame) Sphericity(alljets, W)
cos(leptonp¢aggedtop btaggedtopcmerame)
cos(notbest,alljets) a11jets
cos(notbest,lepton)besttop
cos(untagl,alljets)au_iets
cos(untagl,lepton)btaggedmp

”
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Decision trees — 49 input variables

Object Kinematics
pr(jetl)
pr(jet2)
pr(jet3)
pr(jetd)
pr1(bestl)
pr(notbest1)
pr(notbest2)
pr(tagl)

pr(untagl)

pr(untag?)

Angular Correlations
AR(jetl,jet2)
cos(bestl,Iepton)bestcop
cos(bestl,notbestl)bestmp
cos(tagl,alljets)aujets
cos(tagl,lepton)taggedtop
cos(jetl,alljets)aujetS
Cos(jeu-vlepton)btaggedtop
cos(jet2,a||jets)auj ets
cos(jet2,lepton)ptaggedtop
cos(lepton, Q(lepton) x z)bestcop
cos(leptonbesttop ,besttopaMframe)
cos(leptonp¢aggedtop btaggedtopcmerame)
cos(notbest,alljets) a11jets
cos(notbest,lepton)besctop
cos(untagl,alljets)anjets
cos(untagl,lepton) bt aggedtop

Yann Coadou (CPPM) — Boosted decision trees

Event Kinematics
Aplanarity(alljets, W)
M(W bestl) (“best” top mass)
M(W tagl) (“b-tagged” top mass)
Hr (alljets)
Hr (alljets—best1)
Hr (alljets—tagl)
Hr (alljets, W)
Hr (jetl,jet2)
Hr (jet1,jet2, W)
M(alljets)
M(alljets—best1)
M(alljets—tagl)
M(jetl,jet2)
M(jetl,jet2, W)
M7 (jetl jet2)
Mz (W)
Missing ET
pr(alljets—best1)
pr(alljets—tagl)
pr(ietLjet2)
Q(lepton) x n(untagl)
V3
Sphericity(alljets, W)

Adding variables
did not degrade
performance

Tested shorter
lists, lost some
sensitivity

Same list used for
all channels

Best theoretical
variable:
Hr(alljets, W).
But detector not
perfect = capture
the essence from
several variations
usually helps
“dumb” MVA
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Cross-check samples

@ Validate method on data in no-signal region

o “WHjets”: = 2 jets,
Hr(lepton, £ 1,alljets) <

175 GeV
E | -® Data D@ Run Il Preliminary 910pb'
> | ==sit-channel e+jets
£ 60" M s+i-channel ==1tag
I.% r m “' . ==2 jets
L o Wejets HT<175.0

| I fake-lepti
40—

20—

0.4 0.6 0.8 1
tbtgb-combined DT output (fulltree)
@ Good agreement

Yann Coadou (CPPM) — Boosted decision trees

Event Yield

o “ttbar”: = 4 jets,
Hr(lepton, £ 1,alljets) >

300 GeV
25 A ]
-® Data D@ Run Il Preliminary 910pb
L eyt I e+jets
==1tag
20 ==4 jets
300.0<HT
15
10
5

0.4 0.6 0.8 1
tbtgb-combined DT output (fulltree)
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Boosted decision tree event characteristics

DT < 0.3 DT > 0.55 DT > 0.65

T ol DO Run Il Preliminary 0.9 ' ¥ DO Run Il Preliminary 0.9 fs' T D@ Run Il Preliminary 0.9 '
5 80 e+t channel H e+l channel £ | e+l channel
8 1-2tags 8 8o 1-2tags 8 1-2tags
3 24 jets o 24 jets v | 24 jets
3 o DT<0.3 g DT>0.55 g DT>0.65
= S s+=4.95 pb ol 5+1=4.95 pb = 5+1=4.95 pb
w0 10—
L a0
L 5
20| 20
% 100 200 300 _ 400 500 % 300 500 % 100 200 300 200 500
b-Tagged Top Mass [GeV] b-Tagged Top Mass [GeV] b-Tagged Top Mass [GeV]
= 6o DO Run Il Preliminary 0.9 b’ z DO Run Il Preliminary 0.9 &' 5 DG Rup Il Preliminary 0.9 6"
8 e+ channel 8 e+|1 channel g | e+t channel
2 1-2tags 2 1-2tags e G 1-2tags
E - 24 jets E 2-4 jets E n 2-4 jets|
5T DT<0.3 5 - DT>0.55 5 I DT>0.65
8 b $+1=4.95 pb 8 $+1=4.95 pb 8 I $+1=4.95 pb
z z T 6
2T = s F
s | = s L
20 r
% 50 100 150 % 50 100 150 %
MyW) [GeV] M(W) [GeV]

@ High BDT region = shows masses of real t and W = expected
@ Low BDT region = background-like = expected
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Boosted decision tree event characteristics

DT < 0.3 DT > 0.55 DT > 0.65

T ol DO Run Il Preliminary 0.9 ' ¥ DO Run Il Preliminary 0.9 fs' T D@ Run Il Preliminary 0.9 '
5 80 e+t channel H e+l channel £ | e+l channel
8 1-2tags 8 8o 1-2tags 8 1-2tags
3 2-4 jets z 2-4 jets o | 24 jets|
3 o DT<0.3 . DT>0.55 g DT>0.65
= S s+=4.95 pb ol 5+1=4.95 pb = 5+1=4.95 pb
w0 10—
L a0
L 5
20| 20
% 100 200 300 _ 400 500 % 300 500 % 100 200 300 200 500
b-Tagged Top Mass [GeV] b-Tagged Top Mass [GeV] b-Tagged Top Mass [GeV]
= 6o DO Run Il Preliminary 0.9 b’ z DO Run Il Preliminary 0.9 &' 5 DG Rup Il Preliminary 0.9 6"
8 e+ channel 8 e+|1 channel g | e+t channel
2 1-2tags 2 1-2tags e G 1-2tags
E - 24 jets E 2-4 jets E n 2-4 jets|
5T DT<0.3 5 - DT>0.55 5 I DT>0.65
8 b $+1=4.95 pb 8 $+1=4.95 pb 8 I $+1=4.95 pb
z z T 6
2T = s F
= L > > 5
20 r
% 50 100 150 % 50 100 150 %
MyW) [GeV] M(W) [GeV]

@ High BDT region = shows masses of real t and W = expected

@ Low BDT region = background-like = expected

@ Above does NOT tell analysis is ok, but not seeing this could be a sign of a
problem
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Comparison for DO single top evidence

Boosted Decision Trees
Bayesian NN, ME

el T N e
1 i
- -
‘t‘-" - - <
- P e
> R o>
5 R Le”
5 0 A 4
o 1 L4
e o pad
) 0y ..
E A 4 .
53 ot/ . Cut-Based
a f' 'O
1/ .
L4
4
I’
0
0 1
Background efficiency

@ Cannot know a priori which method
will work best

@ = Need to experiment with different
techniques

Power curve
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Decision Tree

Neural Network

\ Random guess

g 1 E -
E 09F =—- Decision trees

& O08F - Bayesian NNs

B 07EF —- Matrix elements

3 o6E f

(=] P

= F

%’ 05F {'

@ 04F

1] E /

+ 03F DG

m E

£ 02F s

= E -,4"

o 01F --'-‘5"‘

= ok 1 1 1

0 o 10—3 10—2 10— 1

Background-only p-Value
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@ Now used both
offline and online

@ Systematics:
propagate various
detector/theory
effects to BDT
output and

°
@ BDT output used in final fit to

* Data2011 (1.37 15"
= (W)
B3 e (W ev)
=3 Jet background

ATLAS Preiiminary

Before tau ID

Lol
Cb 0.1020.30405060.70809 1
BDT score

measure cross section

@ Constraints on systematics from

profiling

Yann Coadou (CPPM) — Boosted d

8100 ' ]
3 ~#-Dat:
o ATLAS Z2JES uncentainty
P 80~ _[de:zosn:‘ Bw ]
€ Dwwizzwz
c|>> \s=7TeV \:l%qse/w +jets
’ ) = 1

L go[ Dilepton 1 jet R rua dieptons

401 bl

201 B

0 cman |
-1 -08 -06 -04 -02 0 02 04

Inverse Background Efficiency

T T T T
m Cuts

<
T

—BDT
— Likelihood

2

=)

[ 2011 dijet data [dt L = 130 pt”
[ 1-prong, 40 GeV < p, < 100 GeV
! |

1

tau performance

ATLAS Preliminary 3

L I
02 03 04 05 06 07

0.8

0.9

Signal Efficiency

measure variation
ATLAS Wt production evidence

T T T T

BDT output
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http://dx.doi.org/10.1016/j.physletb.2012.08.011

in HEP: ATLAS tf — e/p + T+jets

2 3
§ 9001 ¢ >1 b-tag data ATLAS —

@ goof- ... i 3

> Phys.Lett. B717 (2012) 89-108 2 Bkgfromfit [La-zosm
o 7001 | Bkg stat. uncertainty E

@ BDT for tau ID: one to reject © 6005 — 5, signal from ft E
. . 500] ¥2/ndf = 0.5 E

electrons, one against jets 400) e

. 300 E

o Fit BDT output to get tau 200 E
contribution in data 100 .
% 01 02 03 04 05 06 07 08 09 |

BDT, (z)
g ATLAS ¢ Data 3 g ATLAS ¢ Data
3 -1+, ] 3 500:_ [aotem,, E
1%} a 1 0 _ ]
o W iibkg E @ 400 W iibkg 1
o other EW | ° F other EW E
Y unceriny 300 7 uncertainty
BDT <07 200 BDT,>07 ]
P F T
Jde:z.osfb E 1000 Jde:z.osfb E

9 >10 5 2 5 6 7 8 § =%
Jet Multiplicity Jet Multiplicity
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BDT in HEP: CMS H — ~~ result

Hard to use more BDT in an analysis:
@ vertex selected with BDT
@ 2" vertex BDT to estimate probability to be within 1cm of
interaction point

@ photon ID with BDT
@ photon energy corrected with BDT regression
@ event-by-event energy uncertainty from another BDT
o several BDT to extract signal in different categories
CMS preliminary, /s = 8 TeV, L=19.6fb"
£ E’m’ 7] ESOUO*CM‘SPW"MN:Y ) ‘ iD‘m 1
7 ey i"“ 2 e ] e g;;:;;;;:g;;ﬁbm,é;gzmml
~O. - Barrel 2
% - 0 §3000
i
> 600 g
£2000
0. =]
40| o
,;-4000
° @
L T B et e ra A @ Um0 T 10 140 150
P (eeh Photon ID MVA ™y (GeV)
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http://cds.cern.ch/record/1530524

BDT in HEP: ATLAS b-tagging in Run 2

@ Run 1 MV1c: NN trained from output of other taggers

@ Run 2 MV2c20: BDT using feature variables of underlying algorithms
(impact parameter, secondary vertices) and pr, 7 of jets

@ Run 2: introduced IBL (new innermost pixel layer)
= explains part of the performance gain, but not all
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BDT and systematics

@ No particular rule

@ BDT output can be considered as any other cut variable (just more
powerful). Evaluate systematics by:

@ varying cut value
@ retraining
o calibrating, etc.

@ Most common (and appropriate, | think): propagate other
uncertainties (detector, theory, etc.) up to BDT ouput and check how
much the analysis is affected

@ More and more common: profiling.

Watch out:
o BDT output powerful
o signal region (high BDT output) probably low statistics
= potential recipe for disaster if modelling is not good

@ May require extra systematics, not so much on technique itself, but
because it probes specific corners of phase space and/or wider
parameter space (usually loosening pre-BDT selection cuts)
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BDT and systematics
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BDT and systematics
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@ Hope: seeing
systematics-affected events
during training may make the
BDT less sensitive to
systematic effects
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BDT and systematics
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Boosted decision tree software

@ Go for a fully integrated solution

o use different multivariate techniques easily
@ spend your time on understanding your data and model
o Examples:

o Weka. Written in Java, open source, very good published manual. Not

written for HEP but very complete
o StatPatternRecognition
e TMVA (Toolkit for MultiVariate Analysis)

Integrated in ROOT, complete manual
o scikit-learn (python)
o pylearn2 (python)

@ Dedicated to BDT: XGBoost > https://github.com /dmlc/xgboost
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Conclusion

@ Decision trees have been around for some time in social sciences

@ Natural extension to cut-based analysis

o Greatly improved performance with boosting (and also with bagging,
random forests)

@ Has become rather fashionable in HEP

@ Even so, expect a lot of scepticism: you will have to convince people
that your advanced technique leads to meaningful and reliable results
= ensemble tests, use several techniques, compare to random grid
search, show them useless plots like BDT output on training and
testing, etc.

@ As with other advanced techniques, no point in using them if data are
not understood and well modelled
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Pruning a tree |

@ Stop tree growth during building phase

@ Already seen: minimum leaf size, minimum separation improvement,
maximum depth, etc.

o Careful: early stopping condition may prevent from discovering
further useful splitting

v

Expected error pruning

@ Grow full tree

@ When result from children not significantly different from result of
parent, prune children

@ Can measure statistical error estimate with binomial error

\/pP(1 — p)/N for node with purity p and N training events
@ No need for testing sample

@ Known to be “too aggressive”
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Pruning a tree Il: cost-complexity pruning

o |dea: penalise “complex” trees (many nodes/leaves) and find
compromise between good fit to training data (larger tree) and good
generalisation properties (smaller tree)

e With misclassification rate R(T) of subtree T (with Nt nodes) of
fully grown tree Tax:

cost complexity Ry (T) = R(T) + aNt

a = complexity parameter
@ Minimise R, (T):
o small a: pick Tax
o large a: keep root node only, T, fully pruned
@ First-pass pruning, for terminal nodes t;, tg from split of t:
o by construction R(t) > R(t.) + R(tr)
e if R(t) = R(tL) + R(tg) prune off t; and tg
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Pruning a tree lll: cost-complexity pruning

@ For node t and subtree T;:
o if t non-terminal, R(t) > R(T:) by construction
o Ry({t})=Ru(t)=R(t)+a (N =1)
o if Ry(T¢) < Ra(t) then branch has smaller cost-complexity than single
node and should be kept

e at critical & = p;, node is preferable

. _ R(®) = R(T%)
o to find p;, solve R, (T:) = R,,(t), or: pr = —H——F—

Nr—1
e node with smallest p; is weakest link and gets pruned
o apply recursively till you get to the root node
@ This generates sequence of decreasing cost-complexity subtrees
o Compute their true misclassification rate on validation sample:
o will first decrease with cost-complexity

o then goes through a minimum and increases again
o pick this tree at the minimum as the best pruned tree

@ Note: best pruned tree may not be optimal in a forest )
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